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Quantum Stochastic Models

Quantum Stochastic Models

Recall that an open quantum system is a system interacting with an
external environment. A basic example is an atom in an electromagnetic
field.

vacuum emitted photon

atom

We now describe dynamical models for open quantum systems in terms of
quantum stochastic models in continuous time. Upon integration and
expectation, these models yield quantum operation descriptions.
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Quantum Stochastic Models

Quantum stochastic models describe open systems with inputs and
outputs.

4

acting on a Hilbert space H (as in subsection III-A), called
the initial space). The partially transmitting mirror affords the
opportunity for this mode to interact with an external free
field, represented by a quantum stochastic process b(t) (to be
discussed shortly). When the external field is in the vacuum
state, energy initially inside the cavity mode may leak out, in
which case the cavity system is a damped harmonic oscillator,
[8].
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Fig. 4. A cavity consists of a pair of mirrors, one of which is perfectly
reflecting (shown solid) while the other is partially transmitting (shown
unfilled). The partially transmitting mirror enables the light mode inside the
cavity to interact with an external light field, such as a laser beam. The external
field is separated into input and output components by a Faraday isolator.
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Fig. 5. A simplified representation of the cavity from Figure 4 which omits
the Faraday isolator. It shows input B and output B̃ fields and the cavity mode
annihilation operator a. This representation will be used for the remainder of
this paper.

Quantization of a (free) electromagnetic field leads to an
expression for the vector potential

A(x, t) =

�
κ(ω)[b(ω)e−iωt+iωx/c + b∗(ω)eiωt−iωx/c]dω,

for a suitable coefficients κ(ω), and annihilation operators
b(ω). Such a field can be considered as an infinite collec-
tion of harmonic oscillators, satisfying the singular canonical
commutation relations

[b(ω), b∗(ω�)] = δ(ω − ω�),

where δ is the Dirac delta function.
An optical signal, such as a laser beam, is a free field

with frequency content concentrated at a very high frequency
ω0 ≈ 1014 rad/sec. The fluctuations about this nominal
frequency can be considered as a quantum stochastic process
consisting of signal plus noise, where the noise is of high
bandwidth relative to the signal. Indeed, a coherent field is
a good, approximate, model of a laser beam, and can be
considered as the sum b(t) = s(t) + b0(t), where s(t) is a

signal, and b0(t) is quantum (vacuum) noise. Such “signal
plus noise” models are of course common in engineering.

The cavity mode-free field system has a natural input-output
structure, where the free field is decomposed as a superposition
of right and left traveling fields. The right traveling field
component is regarded as the input, while the left traveling
component is an output, containing information about the
cavity mode after interaction. The interaction facilitated by
the partially transmitting mirror provides a boundary condition
for the fields. The two components can be separated in the
laboratory using a Faraday isolator. This leads to idealized
models based on rotating wave and Markovian approxima-
tions, where, in the time domain, the input optical field (when
in the ground or vacuum state) is described by quantum white
noise b(t) = b0(t) [8, Chapters 5 and 11], which satisfies the
singular canonical commutation relations

[b(t), b∗(t�)] = δ(t − t�). (5)

In order to accommodate such singular processes, rigorous
white noise and Itō frameworks have been developed, where in
the Itō theory one uses the integrated noise, informally written

B(t) =

� t

0

b(s)ds.

The operators B(t) are defined on a particular Hilbert space
called a Fock space, F, [21, sec. 19]. When the field is in the
vacuum (or ground) state, this is the quantum Wiener process
which satisfies the Itō rule

dB(t)dB∗(t) = dt

(all other Itō products are zero). Field quadratures, such as
B(t) + B∗(t) and −i(B(t) − B∗(t)) are each equivalent
to classical Wiener processes, but do not commute. A field
quadrature can be measured using homodyne detection, [8,
Chapter 8].

The cavity mode-free field system can be described by the
Hamiltonian

H = ∆a∗a − i�
�

k(ω)(a∗b(ω) − b∗(ω)a)dω, (6)

where the first term represents the self-energy of the cavity
mode (the number ∆ is called the “detuning”, and represents
the difference between the nominal external field frequency
and the cavity mode frequency), while the remaining two terms
describe the energy flow between the cavity mode and the
free field (a photon in the free field may be created by a
loss of a photon from the cavity mode, and vice versa). This
Hamiltonian is defined on the composite Hilbert space, the
tensor product H⊗F; the tensor product is not written explicitly
in the expression (6).

The Schrödinger equation for the cavity-free field system is
derived from (6) under certain assumptions [8], and is given
by the Itō quantum stochastic differential equation (QSDE)

dV (t) = {√γadB∗(t) −√
γa∗dB(t)

−γ

2
a∗adt − i∆a∗adt}V (t), (7)

with vacuum input and initial condition V (0) = I , so that
V (t) is unitary. The complete cavity mode-free field system

cavity modeexternal free field with 
input and output components

Quantum systems with inputs and outputs
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Quantum Stochastic Models

Recall that for a closed oscillator:
Unitary dynamics (Schrodinger equation)

U̇(t) = −iωa∗aU(t), U(0) = I

Heisenberg motion a(t) = U∗(t)aU(t)

d

dt
a(t) = −iωa(t)

with solution
a(t) = e−iωta

The commutation relations are preserved:

[a(t), a∗(t)] = [a, a∗] = 1
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Quantum Stochastic Models

Quantum fields (boson)

Infinitely many quantum oscillators b(t) (or b(x) or b(ω))

Singular commutation relations

[b(t), b∗(t ′)] = δ(t − t ′)

Quantum stochastic representation

B(t) =

∫ t

0
b(s)ds

Ito product rule [more to come on this]

dB(t)dB∗(t) = dt
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Quantum Stochastic Models

Open quantum harmonic oscillator

Single oscillator a interacting with field b(t) - energy exchange:

Hint = i
√
γ(b∗(t)a− a∗b(t))

Dynamics (Ito form) [more to come on this]

dU(t) = {√γadB∗(t)−√γa∗dB(t)

−γ
2
a∗adt − iωa∗adt}U(t),

Motion of oscillator mode a(t) = U∗(t)aU(t)

ȧ(t) = −(
γ

2
+ iω)a(t)−√γ b(t)

Again, the commutation relations are preserved

[a(t), a∗(t)] = [a, a∗] = 1
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Quantum Stochastic Models

The output field Bout(t) = U∗(t)B(t)U(t) is given by

bout(t) =
√
γ a(t) + b(t)

4

acting on a Hilbert space H (as in subsection III-A), called
the initial space). The partially transmitting mirror affords the
opportunity for this mode to interact with an external free
field, represented by a quantum stochastic process b(t) (to be
discussed shortly). When the external field is in the vacuum
state, energy initially inside the cavity mode may leak out, in
which case the cavity system is a damped harmonic oscillator,
[8].
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reflecting (shown solid) while the other is partially transmitting (shown
unfilled). The partially transmitting mirror enables the light mode inside the
cavity to interact with an external light field, such as a laser beam. The external
field is separated into input and output components by a Faraday isolator.
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Fig. 5. A simplified representation of the cavity from Figure 4 which omits
the Faraday isolator. It shows input B and output B̃ fields and the cavity mode
annihilation operator a. This representation will be used for the remainder of
this paper.

Quantization of a (free) electromagnetic field leads to an
expression for the vector potential

A(x, t) =

�
κ(ω)[b(ω)e−iωt+iωx/c + b∗(ω)eiωt−iωx/c]dω,

for a suitable coefficients κ(ω), and annihilation operators
b(ω). Such a field can be considered as an infinite collec-
tion of harmonic oscillators, satisfying the singular canonical
commutation relations

[b(ω), b∗(ω�)] = δ(ω − ω�),

where δ is the Dirac delta function.
An optical signal, such as a laser beam, is a free field

with frequency content concentrated at a very high frequency
ω0 ≈ 1014 rad/sec. The fluctuations about this nominal
frequency can be considered as a quantum stochastic process
consisting of signal plus noise, where the noise is of high
bandwidth relative to the signal. Indeed, a coherent field is
a good, approximate, model of a laser beam, and can be
considered as the sum b(t) = s(t) + b0(t), where s(t) is a

signal, and b0(t) is quantum (vacuum) noise. Such “signal
plus noise” models are of course common in engineering.

The cavity mode-free field system has a natural input-output
structure, where the free field is decomposed as a superposition
of right and left traveling fields. The right traveling field
component is regarded as the input, while the left traveling
component is an output, containing information about the
cavity mode after interaction. The interaction facilitated by
the partially transmitting mirror provides a boundary condition
for the fields. The two components can be separated in the
laboratory using a Faraday isolator. This leads to idealized
models based on rotating wave and Markovian approxima-
tions, where, in the time domain, the input optical field (when
in the ground or vacuum state) is described by quantum white
noise b(t) = b0(t) [8, Chapters 5 and 11], which satisfies the
singular canonical commutation relations

[b(t), b∗(t�)] = δ(t − t�). (5)

In order to accommodate such singular processes, rigorous
white noise and Itō frameworks have been developed, where in
the Itō theory one uses the integrated noise, informally written

B(t) =
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b(s)ds.

The operators B(t) are defined on a particular Hilbert space
called a Fock space, F, [21, sec. 19]. When the field is in the
vacuum (or ground) state, this is the quantum Wiener process
which satisfies the Itō rule

dB(t)dB∗(t) = dt

(all other Itō products are zero). Field quadratures, such as
B(t) + B∗(t) and −i(B(t) − B∗(t)) are each equivalent
to classical Wiener processes, but do not commute. A field
quadrature can be measured using homodyne detection, [8,
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The cavity mode-free field system can be described by the
Hamiltonian

H = ∆a∗a − i�
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k(ω)(a∗b(ω) − b∗(ω)a)dω, (6)

where the first term represents the self-energy of the cavity
mode (the number ∆ is called the “detuning”, and represents
the difference between the nominal external field frequency
and the cavity mode frequency), while the remaining two terms
describe the energy flow between the cavity mode and the
free field (a photon in the free field may be created by a
loss of a photon from the cavity mode, and vice versa). This
Hamiltonian is defined on the composite Hilbert space, the
tensor product H⊗F; the tensor product is not written explicitly
in the expression (6).

The Schrödinger equation for the cavity-free field system is
derived from (6) under certain assumptions [8], and is given
by the Itō quantum stochastic differential equation (QSDE)

dV (t) = {√γadB∗(t) −√
γa∗dB(t)

−γ

2
a∗adt − i∆a∗adt}V (t), (7)

with vacuum input and initial condition V (0) = I , so that
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Quantum Stochastic Models

Quantum stochastic processes
The three fundamental (integrated) field operators are

B(t) =

∫ t

0
b(s)ds (annihilation)

B∗(t) =

∫ t

0
b∗(s)ds (creation)

Λ(t) =

∫ t

0
b∗(s)b(s)ds (counting)
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Quantum Stochastic Models

The amplitude quadrature

Q(t) = B(t) + B∗(t)

is self-adjoint, and commutes with itself at different times
([Q(t),Q(s)] = 0), and so by the spectral theorem it turns out that Q(t)
is equivalent to a classical Wiener process (with respect to the vacuum
state).

The phase quadrature

P(t) = −i(B(t)− B∗(t))

which is also equivalent to a classical Wiener process, but note that
[Q(t),P(t)] 6= 0.
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Quantum Stochastic Models

Let α1(t) and α2(t) be operator-valued adapted processes, i.e.
independent of future field operators.

Ito quantum stochastic integrals are defined in terms of forward
increments:

I (t) =

∫ t

0
α1(s)dB(s) +

∫ t

0
α2(s)dB∗(s)

≈
∑

j

α1(sj)(B(sj+1)− B(sj)) +
∑

j

α2(sj)(B∗(sj+1)− B∗(sj))
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Quantum Stochastic Models

The Ito rule is expressed in terms of four products (ignoring Λ(t))

dB(t)dB(t) = 0, dB(t)dB∗(t) = dt,

dB∗(t)dB(t) = 0, dB∗(t)dB∗(t) = 0.

This Ito table is valid for vacuum and coherent field states. Ito tables for
squeezed and thermal field states have more non-zero terms.
An important property is that for an adapted process α(t), we have

[α(t), dB(t)] = 0 = [α(t), dB∗(t)].

The expected value of the above stochastic integral is zero in the vacuum
state |φ〉:

Eφ[I (t)] = 0.
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Quantum Stochastic Models

Suppose

J(t) =

∫ t

0
β1(s)dB(s) +

∫ t

0
β2(s)dB∗(s)

The product rule is

d(IJ) = (dI )J + I (dJ) + (dI )(dJ)

= α1JdB + α2JdB
∗ + Iβ1dB + Iβ2dB

∗ + α1β2dt

= (α1J + Iβ1)dB + (α2J + Iβ2)dB∗ + α1β2dt;

that is,

I (t)J(t) =

∫ t

0
(α1(s)J(s) + I (s)β1(s))dB(s)

+

∫ t

0
(α2(s)J(s) + I (s)β2(s))dB∗(s)

+

∫ t

0
α1(s)β2(s)ds.

Note that the order is important in these expressions.
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Quantum Stochastic Models

Open quantum systems
An open system G coupled to n field channels is specified by three physical
parameters:

G = (S , L,H)

Here:

H is the intrinsic Hamiltonian

L is a vector of coupling operators

S is a unitary matrix of operators.

Two level system:

Gqbit = (I ,
√
κσ−,

ω

2
σz)

Harmonic oscillator:
Gosc = (I ,

√
γ a,

ω

2
a∗a)
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Quantum Stochastic Models

Beamsplitter:
Gbs = (S , 0, 0)

[
Bout
1 (t)

Bout
2 (t)

]
=

[
S11 S12
S12 S22

] [
B1(t)
B2(t)

]

Beamsplitters

These are a special case where L = 0 and H = 0.

�
Bout

1

Bout
2

�
=

�
S11 S12

S21 S22

� �
B1

B2

�
.

The entries of S may be operators of the system - leading to a
beamsplitter dynamics.

PRINCIPLES AND APPLICATIONS OF QUANTUM CONTROL ENGINEERING ROYAL SOCIETY KAVLI INSTITUTE, 2011 John Gough, joint work with M.R. James, D.G. Evans Quantum Structures, Information and Control, AberystwythTHE SERIES PRODUCT AND QUANTUM FEEDBACK NETWORKS
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Quantum Stochastic Models

Quantum Stochastic Differential Equation

Master Equation Quantum Filter (Quantum Trajectories)

quantum expectation quantum conditional expectation

classical

 expectation
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Quantum Stochastic Models

Schrodinger equation: (take n = 1 for simplicity)

dU(t) = {(S − I )dΛ(t) + dB∗(t)L− L∗SdB(t)− (
1

2
L∗L + iH)dt}U(t)

[Hudson-Parthasarathy (1984), Gardiner-Collett (1985)]

Heisenberg dynamics of system operators:

X (t) = U∗(t)(X ⊗ I )U(t).

Using the quantum Ito rule, we have

dX (t) = (−i [X (t),H(t)] + LL(X (t)))dt

+dB∗(t)S†(t)[X (t), L(t)] + [L∗(t),X (t)]S(t)dB(t)

+(S†(t)X (t)S(t)− X (t))dΛ(t)

Here, H(t) = U∗(t)(H ⊗ I )U(t) and L(t) = U∗(t)(L⊗ I )U(t).
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Quantum Stochastic Models

The master equation for a system density operator ρ is obtained by
averaging out the quantum noise:

tr[ρ(t)X ] = E[X (t)]

Master equation: (vacuum state)

ρ̇(t) = L∗(ρ(t))

where

L∗(ρ) =
1

2
[L, ρL∗] +

1

2
[Lρ, L∗] + i [ρ,H].
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Quantum Stochastic Models

The output field is defined by

Bout(t) = U∗(t)(I ⊗ B(t))U(t).

By the quantum Ito rule,

dBout(t) = L(t)dt + dB(t).

before

interaction

after

interaction

The Markov Property: the past is statistically independent of the
future given the present.

We note that the Fock space F for the Bose field decomposes for
each times s < t as

F = F≤s ⊗ F[s,t] ⊗ F≥t ,

where F[s,t] is the Fock space for the degrees of freedom of the
field passing through the system from time s to time t.

Figure: Gardiner’s input formalism Figure: (S,L,H)

PRINCIPLES AND APPLICATIONS OF QUANTUM CONTROL ENGINEERING ROYAL SOCIETY KAVLI INSTITUTE, 2011 John Gough, joint work with M.R. James, D.G. Evans Quantum Structures, Information and Control, AberystwythTHE SERIES PRODUCT AND QUANTUM FEEDBACK NETWORKS
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Quantum Stochastic Models

Quantum probability model for open quantum systems:

A quantum probability space (S ⊗F , ρ0 ⊗ Φ), where

S are system operators (acting on H),
F are field (environment) operators (acting on F),
ρ0 is the initial system state, and
Φ is the vacuum state for the field.

A Schrodinger equation with unitary solution U(t).
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Quantum Stochastic Models

Two-level system

Gqbit = (I ,
√
κσ−,

ω

2
σz)

Equations of motion for Pauli matrices:

dσx(t) = (−ωσy (t)− κ

2
σx(t))dt

+
√
κ(dB∗(t)σz(t) + σz(t)dB(t))

dσy (t) = (ωσx(t)− κ

2
σy (t))dt

−i√κ(σz(t)dB∗(t)− σz(t)dB(t))

dσz(t) = (−κσz(t)− κ)dt

−2
√
κ(dB∗(t)σ−(t) + σ+(t)dB(t))

Output field:

dBout(t) =
√
κσ−(t)dt + dB(t).

The above equations are quantum stochastic differential equations.
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Quantum Stochastic Models

Bloch vector
r(t) = (x(t), y(t), z(t))

representation for density operator

ρ(t) =
1

2
(I + x(t)σx + y(t)σy + z(t)σz),

where x(t) = E[σx(t)] = tr[ρ(t)σx ], y(t) = E[σy (t)] = tr[ρ(t)σy ], and
z(t) = E[σz(t)] = tr[ρ(t)σz ].
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Quantum Stochastic Models

Master equation:

ẋ(t) = −κ
2
x(t)− ωy(t),

ẏ(t) = −κ
2
y(t) + ωx(t),

ż(t) = −κz(t)− κ.

The master equation is an ordinary differential equation.

Matt James (ANU) Quantum Feedback Control - Lecture 2 24 / 33



Quantum Filtering

Quantum Filtering

filterHD

measurement

signal
estimatessystem

detector

input output

Continuous monitoring of the output field (e.g. homodyne detection)
approximates measurement of the observable

Y (t) = Bout(t) + B∗out(t)

In differential form,

dY (t) = (L(t) + L∗(t))dt + dZ (t),

where Z (t) = B(t) + B∗(t).
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Quantum Filtering

The quantum conditional expectation

X̂ (t) = πt(X ) = E[X (t)|Y (s), 0 ≤ s ≤ t]

is well-defined, since X (t) commutes with Y (s), 0 ≤ s ≤ t.

Using the quantum stochastic calculus, the conditional expectation is
given by the quantum filter:

dπt(X ) = πt(L(X ))dt

+(πt(XL + L∗X )− πt(X )πt(L + L∗))(dY (t)− πt(L + L∗)dt)

[Belavkin (1993), Carmichael (1993)]
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Quantum Filtering

Conditional density operator ρ̂(t) is defined by

πt(X ) = tr[ρ̂(t)X ]

For a two-level system, we use Bloch sphere coordinates:

ρ̂(t) =
1

2
(I + x̂(t)σx + ŷ(t)σy + ẑ(t)σz),
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Quantum Filtering

The quantum filter is then given by

dx̂(t) = (−ωŷ(t)− κ

2
x̂(t))dt

+
√
κ (1 + ẑ(t)− x̂2(t))dW (t)

dŷ(t) = (ωx̂(t)− κ

2
ŷ(t))dt

+
√
κ x̂(t)ŷ(t)dW (t),

dẑ(t) = (−κẑ(t)− κ)dt

−√κ x̂(t)(1 + x̂(t))dW (t).

The innovations process is given by dW (t) = dY (t)− x̂(t)dt.

The quantum filter is driven by the measurement signal Y (t).
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Optimal Measurement Feedback Quantum Control

Optimal Measurement Feedback Quantum Control

HD

classical

measurement

signal

detector

classical

controller
classical

control

signal
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Optimal Measurement Feedback Quantum Control

Quantum optimal control (measurement feedback)
For a measurement feedback controller K define

J(K ) = E[

∫ T

0
C1(u(s))ds + C2(T )]

where [two-level system]

C1(u) =

(
c1
2 |u|2 0

0 1 + c1
2 |u|2

)
,

C2 =

(
0 0
0 c2

)
,

and E denotes quantum expectation with respect to the underlying states
for the system and field (vacuum).
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Optimal Measurement Feedback Quantum Control

The measurement feedback quantum optimal control problem is to
minimize J(K ) over all measurement feedback controllers K .

Using properties of conditional expectation, the cost function can be
expressed in terms of the quantum conditional expectation

J(K ) = E[

∫ T

0
πs(C1(u(s)))ds + πT (C2)]

= E[
1

2

∫ T

0
(1− ẑ(t) + c1|u(t)|2)dt +

c2
2

(1− ẑ(T ))].

This converts a quantum measurement feedback problem to a classical full
information control problem that can be solved using standard classical
optimal control methods.
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Optimal Measurement Feedback Quantum Control

Optimal measurement feedback controller:

dπt(X ) = πt(Lu(t)(X ))dt

+(πt(XL + L∗X )− πt(X )πt(L + L∗))(dY (t)− πt(L + L∗)dt)

u(t) = u?(πt , t)

Note the separation structure:

estimation part (filter, the equation for πt)

control part (u?)

HD

classical

measurement

signal

detector

classical

controller
classical

control

signal

[Belavkin (1983), Doherty-Jacobs (1999), James (2005)]
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Optimal Measurement Feedback Quantum Control

Risk-sensitive quantum optimal control (measurement feedback)
For a measurement feedback controller K define the risk-sensitive
performance index

J(K ) = E[R∗(T )eµC2(T )R(T )]

where
Ṙ(t) =

µ

2
C1(u(t))R(t), R(0) = I .

The solution to the problem involves a quantum information state given
by a modified Schrodinger equation that includes the cost term. This
appears to be new to physics. This state depends on:

information gained as the system evolves (knowledge), and

the objective of the closed loop feedback system (purpose).
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