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Lecture 1 Introduction and basic concepts
Quantum technology, quantum control, postulates of
quantum mechanics, quantum probability.

Lecture 2 Measurement feedback quantum control

Open quantum systems, quantum stochastic models,
quantum filtering, optimal measurement feedback control,
risk-sensitive quantum control.

Lecture 3 Coherent feedback quantum control
Quantum feedback networks, quantum dissipative systems,
control by interconnection, linear quantum systems.
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Lecture 2 - Outline

© Quantum Stochastic Models

© Quantum Filtering

© Optimal Measurement Feedback Quantum Control
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Quantum Stochastic Models

Quantum Stochastic Models

Recall that an open quantum system is a system interacting with an

external environment. A basic example is an atom in an electromagnetic
field.

X(t)
B(t) "“II\I‘\R“‘»’ Bour(
B ———— —_—
vacuum emitted photon

atom

We now describe dynamical models for open quantum systems in terms of
quantum stochastic models in continuous time. Upon integration and
expectation, these models yield quantum operation descriptions.
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Quantum Stochastic Models

Quantum stochastic models describe open systems with inputs and
outputs.

b‘j

external free field with

. cavity mode
input and output components

Matt James (ANU) Quantum Feedback Control - Lecture 2 5/33



Quantum Stochastic Models

Recall that for a closed oscillator:
Unitary dynamics (Schrodinger equation)

U(t) = —iwa*al(t), U(0)=1
Heisenberg motion a(t) = U*(t)aU(t)
9 a(t) = —iwa(t)

dt

with solution
a(t) = e ™a
The commutation relations are preserved:

[a(t), a"(2)] = [a,a"] = 1
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Quantum fields (boson)
Infinitely many quantum oscillators b(t) (or b(x) or b(w))
Singular commutation relations
[b(t), b(t)] = 6(t — 1)
Quantum stochastic representation
t
B(t) = / b(s)ds

0

Ito product rule [more to come on this]

dB(t)dB*(t) = dt
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Open quantum harmonic oscillator
Single oscillator a interacting with field b(t) - energy exchange:

Hint = iy/y(b*(t)a— a*b(t))
Dynamics (Ito form) [more to come on this]

dU(t) = {/7adB*(£) — y/7a" dB(1)
_%a*adt — iwa*adt}U(t),

Motion of oscillator mode a(t) = U*(t)aU(t)

a(t) = —( + iw)alt) = 7 b(t)

Again, the commutation relations are preserved
[a(t),a"(t)] = [a,a"] =1
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Quantum Stochastic Models

The output field Boyt(t) = U*(t)B(t)U(t) is given by

external free field with
input and output components

Matt James (ANU)

bout(t) = v/ a(t) + b(t)
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Quantum Stochastic Models

Quantum stochastic processes
The three fundamental (integrated) field operators are

B(t) = /ot b(s)ds (annihilation)

B*(t) = /Ot b*(s)ds (creation)

/\(t“):/0 b*(s)b(s)ds (counting)
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Quantum Stochastic Models

The amplitude quadrature
Q(t) = B(t) + B*(t)

is self-adjoint, and commutes with itself at different times

([Q(t), Q(s)] = 0), and so by the spectral theorem it turns out that Q(t)
is equivalent to a classical Wiener process (with respect to the vacuum
state).

The phase quadrature

which is also equivalent to a classical Wiener process, but note that

[Q(t), P(t)] # O.
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Quantum Stochastic Models

Let a1(t) and a(t) be operator-valued adapted processes, i.e.
independent of future field operators.

Ito quantum stochastic integrals are defined in terms of forward
increments:

I(t) = /tal(s)dB(s)+/Otozz(s)dB*(s)

0
_ a1(sj)(B(sj+1) — B(s))) + ZCMQ(S])(B*(SJ+1) - B*(s)))

Q
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Quantum Stochastic Models

The Ito rule is expressed in terms of four products (ignoring A(t))

dB(t)dB(t) =0, dB(t)dB*(t)= dt,
dB*(t)dB(t) =0, dB*(t)dB*(t)=0.
This Ito table is valid for vacuum and coherent field states. Ito tables for

squeezed and thermal field states have more non-zero terms.
An important property is that for an adapted process «(t), we have

[a(t),dB(t)] = 0 = [a(t), dB*(1)].

The expected value of the above stochastic integral is zero in the vacuum
state |¢):

Ey[/(£)] = 0.
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Quantum Stochastic Models

Suppose

J(t) = / 61(s)dB(s / Ba(s)dB* (s)

The product rule is

d(1J) = (dI)J+ I(dJ) + (dI)(dJ)
— 1 JdB + axJdB* + 181dB + 18,dB* + a1 fadt
= (OzlJ + /ﬁl)dB + (OQJ + /Bz)dB* + a1 B> dt;
that is,

YOI (aa(s)J(s) + 1(s)Bu(s))dB(s)
+ [ (aals) () + 1(5)52() 0B (9
0

+ /0 01(5)Ba(s)ds

Note that the order is important in these expressions.
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Quantum Stochastic Models

Open quantum systems
An open system G coupled to n field channels is specified by three physical
parameters:
G =(S,L,H)

Here:

@ H is the intrinsic Hamiltonian

@ L is a vector of coupling operators

@ S is a unitary matrix of operators.

Two level system:
w
Gapit = (I, Vro_, 502)

Harmonic oscillator:

Wy
Gosc :(I7\ﬁa7§a a)
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Quantum Stochastic Models

Beamsplitter:
Gps = (S,0,0)

Ertin ]
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Quantum Stochastic Models

Quantum Stochastic Differential Equation
dU(t) = {LdB*(t)—L"dB(r) — (EL*L+ iH)dt}U(t)
dX = (—i[X,H] + Z.(X))dt +dB*[X,L] + [L*, X]dB

dY = (L+L")dt+d(B+B")

quantum expectation quantum conditional expectation
Master Equation Quantum Filter (Quantum Trajectories)
W ) Z(p) | | 4 = AL Z ()
expectation +(Lﬁ + ﬁL* - tr[(L + L*>/3]ﬁ>(dy - tr[(L + L*>/5]dl>
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Schrodinger equation: (take n = 1 for simplicity)

dU(t) = {(S — IdA(t) + dB*(t)L — L*SdB(t) — (%L*L + iH)dt}U(t)

[Hudson-Parthasarathy (1984), Gardiner-Collett (1985)]
Heisenberg dynamics of system operators:

X(t) = U"(t)(X @ I U(t).
Using the quantum lto rule, we have

dX(t) = (=i[X(t), H(t)] + LL(X(¢)))dt
+dB*(t)ST(t)[X(t), L(t)] + [L*(t), X(t)]S(t)dB(t)
+(ST()X(1)S(2) — X (1)) dA(t)

Here, H(t) = U*(t)(H ® I)U(t) and L(t) = U*(t)(L® I)U(t).
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Quantum Stochastic Models

The master equation for a system density operator p is obtained by
averaging out the quantum noise:

trlp(£)X] = E[X (1))
Master equation: (vacuum state)
p(t) = L(p(t))

where 1 1
L5(p) = SIL pL] + SLp, L]+ ilp, H].
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The output field is defined by

Bout(t) = U*(t)(l ® B(t))U(t)
By the quantum lto rule,

dBout(t) = L(t)dt + dB(t).

before after
interaction interaction
—_— N —
B(t) Bou (1)

S A out
: n
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Quantum Stochastic Models

Quantum probability model for open quantum systems:
@ A quantum probability space (. ® %, po @ ®), where
o % are system operators (acting on §),
o .F are field (environment) operators (acting on §),
@ pp is the initial system state, and
e ® is the vacuum state for the field.

@ A Schrodinger equation with unitary solution U(t).
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Two-level system

w
quit = (17 \/Ea—a EUZ)

Equations of motion for Pauli matrices:

doy(t) = (~wo,(t)— gax(t))dt
VE(dB*(£)o,(t) + o4(t)dB(t))

doy(t) = (wox(t)— gay(t))dt
—iVi(o2(t)dB*(t) — o,(t)dB(t))

do,(t) = (—roz(t)—k)dt
—2v/K(dB*(t)o_(t) + o4(t)dB(t))

Output field:
dBout(t) = Vk o_(t)dt + dB(t).

The above equations are quantum stochastic differential equations.
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Quantum Stochastic Models

Bloch vector
r(t) = (x(t), (1), z(t))

representation for density operator

o) = 51+ x(2)a + y(D)oy + 2(t)o),
where x(t) = Eloy(t)] = tr[p(t)os]. y(t) = Elo, (8] = talo(t)a, ] and
2(t) = Eloz(8)] = trlp(t)o]

Matt James (ANU) Quantum Feedback Control - Lecture 2 23 /33



Quantum Stochastic Models

Master equation:

%(t) = —2x(t) —wy(b),
() = —Zy()+wx()
z(t) = —kz(t)— k.

The master equation is an ordinary differential equation.
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Quantum Filtering

Quantum Filtering

B(r) Bou(t) Y(r) X(1)
—_— J» HD filter s
detector

input system output measurement estimates
signal

[E]

Continuous monitoring of the output field (e.g. homodyne detection)
approximates measurement of the observable

Y(t) = Bout(t) + B:ut(t)
In differential form,
dY(t) = (L(t) + L*(t))dt + dZ(t),

where Z(t) = B(t) + B*(t).
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Quantum Filtering

The quantum conditional expectation
X(t) = m(X) = E[X(t)| Y(s),0 < s < 1]
is well-defined, since X(t) commutes with Y(s), 0 <s <'t.
Using the quantum stochastic calculus, the conditional expectation is

given by the quantum filter:

dre(X) = me(L(X))dt
F(me(XL + LX) — me(X)me(L+ L)) (dY (t) — me(L + L*)dt)

[Belavkin (1993), Carmichael (1993)]

Matt James (ANU) Quantum Feedback Control - Lecture 2 26 / 33



Conditional density operator j(t) is defined by

me(X) = tr[p(t)X]

For a two-level system, we use Bloch sphere coordinates:

§1) = 201+ 5(2)ax + 9(D)oy + 2(1)o),
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Quantum Filtering

The quantum filter is then given by

dx(t) = (—wp(t) = SR(t)de
VR (14 2(t) — £2(2))dW(t)
dj(t) = (WS(t) - 39(t)dt
VR R(E)I(£)dW(2),
dz(t) = (—r2(t) —k)dt

—Vr 2(1)(1 + £(£))dW(t).

The innovations process is given by dW(t) = dY(t) — X(t)dt.

The quantum filter is driven by the measurement signal Y(t).
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Optimal Measurement Feedback Quantum Control

Optimal Measurement Feedback Quantum Control

B(1) - Bou(1) 0
—_— iy »|HD
detector
u(t)
classical
' measurement
classical classical - signal
controller [
control
signal K
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Optimal Measurement Feedback Quantum Control

Quantum optimal control (measurement feedback)
For a measurement feedback controller K define

IE[/ Ci(u(s))ds + Go(T))]

where [two-level system]

G0
— 2
Cl(”)_< 0 1+ %[uf >

0 O
C2—<OC2>7

and E denotes quantum expectation with respect to the underlying states
for the system and field (vacuum).
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Optimal Measurement Feedback Quantum Control

The measurement feedback quantum optimal control problem is to
minimize J(K) over all measurement feedback controllers K.

Using properties of conditional expectation, the cost function can be
expressed in terms of the quantum conditional expectation

JK) = M/ 7o(Ca(u(5)))ds + 77(Co)

= el [ (- 20+ aluoP)+ - 2T

This converts a quantum measurement feedback problem to a classical full
information control problem that can be solved using standard classical
optimal control methods.
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Optimal Measurement Feedback Quantum Control

Optimal measurement feedback controller.

dre(X) = m(£0(X))dt

(XL + LX) — e (X)me(L+ L)Y (2) — me(L + L¥)dt)

u(t) = u(m,t)

Note the separation structure:
@ estimation part (filter, the equation for ;)

e control part (u*)

B(1) Y (1)
S
_— A HD
& [HD)
detector
u(t)
classical
. measurement
classical classical signal
control controller [
signal K
[Belavkin (1983), Doherty-Jacobs (1999), James (2005)]
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Optimal Measurement Feedback Quantum Control

Risk-sensitive quantum optimal control (measurement feedback)
For a measurement feedback controller K define the risk-sensitive
performance index

J(K) = E[R*(T)e" *(DR(T)]

where
R(t) = SGu(e)R(E), R(O)=1.

The solution to the problem involves a quantum information state given
by a modified Schrodinger equation that includes the cost term. This
appears to be new to physics. This state depends on:

@ information gained as the system evolves (knowledge), and

@ the objective of the closed loop feedback system (purpose).
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