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Quantum Feedback Networks

Quantum Feedback Networks

Quantum information is lost when measurements are made.
Coherent feedback loops need not involve measurements, and so
allow for the flow of quantum information. The controller is another
quantum system.The controller is also a quantum system, and feedback may involve a flow of 

quantum information, as well as direct couplings.

quantum
controller

quantum system

quantum 
control
actions

quantum
information

direct couplings

[coherent feedback]

• Not using measurement
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Quantum Feedback Networks

Exchange of quantum information may occur via

direct physical couplings
indirect couplings using freely travelling quantum fields serving as
‘quantum wires’.

According to Mabuchi 2008:

“. . . gives rise to a genuinely new category of
control-theoretic problems as it encompasses
non-commutative signals and quantum-dynamical
transformations thereof” and “. . . relatively little is yet
known about the systematic control theory of coherent
feedback”.

Coherent-feedback quantum control with a dynamic compensator

Hideo Mabuchi∗

Physical Measurement and Control, Edward L. Ginzton Laboratory, Stanford University
(Dated: March 12, 2008)

I present an experimental realization of a coherent-feedback control system that was recently
proposed for testing basic principles of linear quantum stochastic control theory [M. R. James,
H. I. Nurdin and I. R. Petersen, to appear in IEEE Transactions on Automatic Control (2008),
arXiv:quant-ph/0703150v2]. For a dynamical plant consisting of an optical ring-resonator, I demon-
strate ∼ 7 dB broadband disturbance rejection of injected laser signals via all-optical feedback with
a tailored dynamic compensator. Comparison of the results with a transfer function model pinpoints
critical parameters that determine the coherent-feedback control system’s performance.

PACS numbers: 02.30.Yy,42.50.-p,07.07.Tw

The need for versatile methodology to control quantum
dynamics arises in many areas of science and technol-
ogy [1]. For example, quantum dynamical phenomena
are central to quantum information processing, mag-
netic resonance imaging and protein structure determina-
tion, atomic clocks, SQUID sensors, and many important
chemical reactions. Substantial progress has been made
over the past two decades in the development of intuitive
approaches within specific application areas [2–9] but the
formulation of an integrated, first-principles discipline of
quantum control—as a proper extension of classical con-
trol theory—remains a broad priority.

In our contemporary view it is natural to distinguish
among three basic modes of quantum control: open-loop,
in which a quantum system is driven via some time-
dependent control Hamiltonian in a pre-determined way;
measurement-feedback, in which discrete or continuous
measurements of some output channel of an open quan-
tum system are used to adjust the control actions in real
time; and coherent-feedback, in which a quantized field
scattered by the quantum system of interest is processed
coherently (without measurement) and then redirected
into the system in order to effect control. The first two
modes are entirely analogous with classical open-loop and
real-time feedback control, and their relation to exist-
ing engineering theory is now well understood [1]. The
possibility of coherent feedback, however, gives rise to a
genuinely new category of control-theoretic problems as
it encompasses non-commutative signals and quantum-
dynamical transformations thereof [14]. While some in-
triguing proposals can be found in the physics literature
[15, 16], relatively little is yet known about the system-
atic control theory of coherent feedback [18].

This article describes an experimental implementation
of coherent-feedback quantum control with optical res-
onators as the dynamical systems and laser beams as
the coherent disturbance and feedback signals. It is
presented in the context of recent developments in con-
trol theory [19–21], which have shown that optimal and
robust design of quantum coherent-feedback loops can
be accomplished (in certain settings) using sophisticated
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FIG. 1: Schematic diagram of the experimental apparatus
showing the coupled plant and controller resonators, vari-
able optical attenuators (PBS/HWP), piezoelectric transduc-
ers (PZT) and photodetector (PD).

methods of systems engineering (the setup parallels the
quantum-optical system analyzed in [19]). From the per-
spective of quantum information science, the results pre-
sented here represent a first step towards the goal of de-
veloping embedded, autonomous controllers that can im-
plement feedback protocols for error correction without
ever bringing signals up to a classical, macroscopic level.

Fig. 1 presents a schematic overview of the appara-
tus and the coherent feedback loop. Two optical ring-
resonators represent the “plant” and “controller” dynam-
ical systems; the control-theoretic design goal is to tailor
the properties of the controller so as to minimize the
optical power detected at output z when a “noise” sig-
nal (optical coherent state with arbitrary time-dependent
complex amplitude) is injected at the input w. The com-
ponent y of the noise beam that reflects from the plant
input coupler is treated as the error signal, which is coher-

[James-Nurdin-Petersen 2007, Mabuchi 2008] [Mabuchi Lab, Stanford]
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Quantum Feedback Networks

Circuit diagrams are widely used in classical engineering.
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Quantum Feedback Networks

Some basic requirements of quantum network models:

Capture the quantum physics

Be capable of representing classical components

Include dissipative mechanisms - noise, uncertainty, decoherence

Preserve canonical structure - e.g. commutation relations, energy

Network of interconnected components should also be a quantum
system - recursive

Efficient methods for representation, interconnection, manipulation,
and physical realization

Seamlessly integrates classical components.

Efficient methods for analysis, design, and synthesis
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Quantum Feedback Networks

Basic ideas
Classical: series connection of resistors.

(a) Classical circuit
The simple algebraic formula R = R1 + R2 is based on underling physics
(electromagnetism).
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Quantum Feedback Networks

Quantum: series connection of open systems.

(b) Quantum network
The simple algebraic formula

G2 / G1 = (S2S1, L2 + S2L1,H1 + H2 + Im[L†2S2L1])

is based on underlying physics (quantum mechanics).
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Quantum Feedback Networks

Where does this come from?

dB1,out = L1dt + S1dB1,in

dB2,out = L2dt + S2dB2,in

B2,in(t) = B1,in(t − τ), τ ↓ 0.

dB2,out = (L2 + S2L1)dt + S2S1dB1,in

[Gardiner, 1994; Carmichael, 1994; Gough-James, 2009]
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Quantum Feedback Networks

Network components - open quantum systemsOpen quantum models

regarded as unitary dynamics for a larger system with the

additional degrees of freedom averaged out). The unitary

dynamics is given by (Heisenberg picture)

X(t) = U∗(t)XU(t) (1)

for any X ∈ U , where {U(t)}t∈T. The behavioral modeling
task is to determine U(t), or a differential equation for it.
This can be achieved by using physical parameters.

Before we describe the parametric description in the fol-

lowing section, we close this section with a list of items that

are needed to specify an open quantum system, a quantum

system that may interact with its environment, and/or other

quantum systems, Figure 2. These items are

S = (U , ρ, H, I), (2)

where

1) U is the ∗-algebra of physical variables of interest;
2) ρ, is the (initial) state on U ;

3) H ∈ U is a self-adjoint operator called the Hamilto-

nian, specifying the self-energy of the system;

4) and I is an interface specification.

direct

✲
✲
✲ ✲

✲
✲

❄

✻

❄

✻

inputs outputs

Fig. 2. Diagram of an open quantum system S showing an interface I con-
sisting of unidirectional field channel inputs and outputs, and bidirectional
direct couplings.

These items, together with the unitary dynamical postulate,

determine the behaviour of the open quantum system and

its statistics. Quantum measurements can be understood

within the framework of quantum conditional expectations

and Belavkin’s quantum filtering theory, [1], [2].

IV. OPEN QUANTUM SYSTEMS

The class of systems we consider in this paper are quantum

noise models of open quantum systems. These idealized

models are based on more complicated first principles mod-

els; we refer the reader to the literature for details: [4],

[14], [10], [2], [5]. These models can be expressed in terms

of a quantum version of the Ito calculus, [8], [4], and all

differential equations will be interpreted in this sense.

The open system models describe a system, or systems,

interacting with boson fields (such as an atom interacting

with the electromagnetic field in free space, or phonon

vibrations in a material). The fields can be considered as

channels that may contain a signal component, and a quan-

tum noise component. The former component may represent

modulation of a light beam (e.g. by a classical signal, or

by variables from a source), while the latter component

describes the volatile nature of the idealized system-field

(heat bath) interaction characteristic of white noise models.

In addition to bidirectional direct Hamiltonian interactions

between systems, field channels provide a mechanism for

unidirectional indirect field mediated interactions between

systems. For example, in quantum optics laser beams may

be used as “quantum wires” interconnecting components, as

in Figure 1.

A. Definitions

We now give some more details regarding the open system

models. We assume the system is defined on an underlying

Hilbert space H. Boson fields are defined on a Fock space
F, a particular type of Hilbert space, with an associated ∗-
algebra F (for full details, see [8], [2]).1 Open quantum

models are defined in terms of operators in the tensor product

U ⊗ F . The algebra U may be regarded as the initial

variable space for the system, while U ⊗F might be called

the full variable space for the complete system-field model.

A collection of n field channels is given by the quantum

stochastic processes

A =




A1

...

An


 ,

which describe annihilation of photons in the field channels,

and by the gauge processes

Λ =




A11 . . . A1n

...
...

...

An1 . . . Ann


 ,

which describe scattering between channels. We assume

that these processes are canonical, meaning that we have

the following non-vanishing second order Ito products:

dAj (t) dAk (t)
∗

= δjkdt, dAjk (t) dAl (t)
∗

= δkldAj(t)
∗,

dAj (t) dAkl (t) = δjkdAl(t) and dAjk (t) dAlm (t) =
δkldAjm(t). The simplest situation is that of a vacuum state

φ for the field channels, in which case the input processes
are purely quantum noise.

Coupling of the system to the field is defined using the

scattering matrix

S =




S11 . . . S1n

...
...

...

Sn1 . . . Snn


 ,

a matrix with operator entries Sij ∈ U satisfying S†S =
SS† = I, and a vector of coupling operators Lj ∈ U

L =




L1

...

Ln


 .

1The Fock space F has time built into it, and so we do not consider spaces
of the form U T, which might be considered analogous to the classical
trajectory space UT.

In terms of these parameters, the Schrodinger equation

dU(t) =
�
tr[(S − I)dΛ] + dA†L − L†SdA

−1

2
L†Ldt − iHdt

�
U(t) (3)

with initial condition U(0) = I determines the unitary

motion of the system, in accordance with the fundamen-

tal postulate of quantum mechanics. Given an operator X
defined on the initial space H, its Heisenberg evolution is
defined by

X(t) = jt(X) = U (t)
∗
XU (t) (4)

and satisfies

dX(t) = (LL(t)(X(t)) − i[X(t),H(t)])dt

+dA†(t)S†(t)[X(t),L(t)] + [L†(t), X(t)]S(t)dA(t)

+tr[(S†(t)X(t)S(t) − X(t))dΛ(t)]. (5)

In this expression, all operators evolve unitarily according to

(4) (e.g. L(t) = jt(L)) (commutators of vectors and matrices
of operators are defined component-wise), and tr denotes the

trace of a matrix. We also employ the notation

LL(X) =
1

2
L†[X,L] +

1

2
[L†, X]L; (6)

this is called the Lindblad superoperator in the physics

literature. The components of the output fields are defined

by

Ã(t) = jt(A(t))
.
= U∗(t)A(t)U(t),

Λ̃(t) = jt(Λ(t))
.
= U∗(t)Λ(t)U(t), (7)

and satisfy the quantum stochastic differential equations

dÃ(t) = S(t)dA(t) + L(t)dt (8)

dΛ̃(t) = S∗(t)dΛ(t)ST (t) + S∗(t)dA∗(t)LT (t) (9)

+L(t)dA(t)ST (t) + L∗(t)LT (t)dt, (10)

where L(t) = jt(L), etc, as above. The output processes also
have canonical quantum Ito products.

It can be seen that the parameters G = (S,L,H) pro-
vide a compact specification of the open system, assuming

canonical field inputs, since they determine the behavior of

the system, via the flow jt(·), as determined by (3). This
flow is defined on the full variable space U ⊗ F . We

call jt(·) the quantum behavioral flow of the system. The

Schrodinger equation (3) may be regarded as the quantum

behavioral equation for the system. Note that the parameters

G = (S,L,H) are drawn from the variable space U (they

are not numerical).

The state of the complete system (including field channels)

P is the tensor product P = ρ ⊗ φ in the case that the

initial system state is ρ and the input field channels are

in the vacuum state φ. The statistics of physical variables
in the complete system can be determined using this state

and the quantum behavioral equation. The specification or

determination of the initial system state ρ is an important
part of the modeling process; but note that the quantum

behavioral equation does not depend on ρ. The canonical
nature of the field input channels that we have assumed

covers a range of boson field states including vacuum and

coherent states, and we also recall that field outputs are

also canonical if the inputs are. (Thermal and squeezed field

states may be accommodated by introducing additional field

parameters, [4], which together with the system parameters

G = (S,L,H), determine the quantum behavioral equation.)

B. Connections

In our recent paper [5], we developed an algebraic frame-

work for quantum networks using the parameters G =
(S,L,H). In particular, we introduced a series product � to
describe series or cascade field-mediated connections, and

a concatenation product � for decomposing or assembling

systems. Direct interactions between systems were accom-

modated using interaction Hamiltonians. In this subsection

we develop these ideas further by being more explicit in the

manner in which direct connections are accommodated—we

introduce a direct connection product �� for this purpose.
In practice it is much easier and more transparent working

with these products than with underlying equations, which

can become complex and unwieldy.

To this end, we enlarge the parametrization as follows:

G = (S,L,Z,H). (11)

As before, S is a scattering matrix, L is vector of field

coupling operators, and H is a Hamiltonian. The new item

in this parameter list is a vector Z of variables available for

direct connection. All of these operators in G belong to the

∗-algebra U for the system. The variables I = (S,L,Z)
simply specify the system’s interface, so that the param-

eterization G = (S,L,Z,H) = (I,H) simply accounts
for energy—energy exchanges with external systems, and

internal energy; we might call this the quantum behavioral

parameterization.

Suppose we are given two such systems: G1 =
(S1,L1,Z1,H1) and G2 = (S2,L2,Z2,H2), defined in
terms of physical variables belonging to ∗-algebras U1 and

U2, respectively. The products we define below combine

these systems to produce new systems defined in terms of

parameters drawn from the tensor product of variable spaces

U1 ⊗ U2 (this replaces the classical behavioral cartesian

product of signal spaces U1 × U2).

The concatenation of G1 and G2 is the system G1 �G2

defined by

G1 �G2 = (

�
S1 0
0 S2

�
,

�
L1

L2

�
,

�
Z1

Z2

�
,H1 +H2).

(12)

This product simply assembles the components together,

without making any connections, Figure 3.

Now suppose G1 = (S1,L1,Z1,H1) and G2 =
(S2,L2,Z2,H2) have the same number of field channels (i.e.
L1 and L2 have the same length. Then the series product

Parameters
internal energy

interface

indirect field connections
direct connections
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Quantum Feedback Networks

Elementary network constructs [Gough and James, 2008, 2010]

Elementary network constructs [Gough and James, 2007, 2008]

In terms of these parameters, the Schrodinger equation

dU(t) =
�
tr[(S − I)dΛ] + dA†L − L†SdA

−1

2
L†Ldt − iHdt

�
U(t) (3)

with initial condition U(0) = I determines the unitary

motion of the system, in accordance with the fundamen-

tal postulate of quantum mechanics. Given an operator X
defined on the initial space H, its Heisenberg evolution is
defined by

X(t) = jt(X) = U (t)
∗
XU (t) (4)

and satisfies

dX(t) = (LL(t)(X(t)) − i[X(t),H(t)])dt

+dA†(t)S†(t)[X(t),L(t)] + [L†(t), X(t)]S(t)dA(t)

+tr[(S†(t)X(t)S(t) − X(t))dΛ(t)]. (5)

In this expression, all operators evolve unitarily according to

(4) (e.g. L(t) = jt(L)) (commutators of vectors and matrices
of operators are defined component-wise), and tr denotes the

trace of a matrix. We also employ the notation

LL(X) =
1

2
L†[X,L] +

1

2
[L†, X]L; (6)

this is called the Lindblad superoperator in the physics

literature. The components of the output fields are defined

by

Ã(t) = jt(A(t))
.
= U∗(t)A(t)U(t),

Λ̃(t) = jt(Λ(t))
.
= U∗(t)Λ(t)U(t), (7)

and satisfy the quantum stochastic differential equations

dÃ(t) = S(t)dA(t) + L(t)dt (8)

dΛ̃(t) = S∗(t)dΛ(t)ST (t) + S∗(t)dA∗(t)LT (t) (9)

+L(t)dA(t)ST (t) + L∗(t)LT (t)dt, (10)

where L(t) = jt(L), etc, as above. The output processes also
have canonical quantum Ito products.

It can be seen that the parameters G = (S,L,H) pro-
vide a compact specification of the open system, assuming

canonical field inputs, since they determine the behavior of

the system, via the flow jt(·), as determined by (3). This
flow is defined on the full variable space U ⊗ F . We

call jt(·) the quantum behavioral flow of the system. The

Schrodinger equation (3) may be regarded as the quantum

behavioral equation for the system. Note that the parameters

G = (S,L,H) are drawn from the variable space U (they

are not numerical).

The state of the complete system (including field channels)

P is the tensor product P = ρ ⊗ φ in the case that the

initial system state is ρ and the input field channels are

in the vacuum state φ. The statistics of physical variables
in the complete system can be determined using this state

and the quantum behavioral equation. The specification or

determination of the initial system state ρ is an important
part of the modeling process; but note that the quantum

behavioral equation does not depend on ρ. The canonical
nature of the field input channels that we have assumed

covers a range of boson field states including vacuum and

coherent states, and we also recall that field outputs are

also canonical if the inputs are. (Thermal and squeezed field

states may be accommodated by introducing additional field

parameters, [4], which together with the system parameters

G = (S,L,H), determine the quantum behavioral equation.)

B. Connections

In our recent paper [5], we developed an algebraic frame-

work for quantum networks using the parameters G =
(S,L,H). In particular, we introduced a series product � to
describe series or cascade field-mediated connections, and

a concatenation product � for decomposing or assembling

systems. Direct interactions between systems were accom-

modated using interaction Hamiltonians. In this subsection

we develop these ideas further by being more explicit in the

manner in which direct connections are accommodated—we

introduce a direct connection product �� for this purpose.
In practice it is much easier and more transparent working

with these products than with underlying equations, which

can become complex and unwieldy.

To this end, we enlarge the parametrization as follows:

G = (S,L,Z,H). (11)

As before, S is a scattering matrix, L is vector of field

coupling operators, and H is a Hamiltonian. The new item

in this parameter list is a vector Z of variables available for

direct connection. All of these operators in G belong to the

∗-algebra U for the system. The variables I = (S,L,Z)
simply specify the system’s interface, so that the param-

eterization G = (S,L,Z,H) = (I,H) simply accounts
for energy—energy exchanges with external systems, and

internal energy; we might call this the quantum behavioral

parameterization.

Suppose we are given two such systems: G1 =
(S1,L1,Z1,H1) and G2 = (S2,L2,Z2,H2), defined in
terms of physical variables belonging to ∗-algebras U1 and

U2, respectively. The products we define below combine

these systems to produce new systems defined in terms of

parameters drawn from the tensor product of variable spaces

U1 ⊗ U2 (this replaces the classical behavioral cartesian

product of signal spaces U1 × U2).

The concatenation of G1 and G2 is the system G1 �G2

defined by

G1 � G2 = (

�
S1 0
0 S2

�
,

�
L1

L2

�
,

�
Z1

Z2

�
,H1 + H2)

This product simply assembles the components together,

without making any connections, Figure 3.

Now suppose G1 = (S1,L1,Z1,H1) and G2 =
(S2,L2,Z2,H2) have the same number of field channels (i.e.
L1 and L2 have the same length. Then the series product

G1 � G2

✲
✲ ✲

✲
✲✲

❄

✻

❄

✻

✲
✲
✲

✲
✲

✲

G1

G2

Fig. 3. Concatenation of two systems, G1 �G2.

G2 � G1 is defined by

G2 � G1 = S2S1,L2 + S2L1,

�
Z1

Z2

�
, (12)

H1 + H2 +
1

2i
(L†

2S2L1 − L†
1S

†
2L2)).

As its name suggests, the series product describes the series

or cascade connection using field channels, Figure 4; a proof

of this is given in [5], and entails equating the inputs of

the second system with slightly delayed outputs of the first

system, [3].

G2 � G1

✲
✲ ✲

✲
✲

❄

✻

❄

✻

✲ ✲
✲
✲

❄

✻

❄

✻

G1 G2

Fig. 4. Series or cascade connection of two systems, G2 � G1.

Finally, if G1 = (S1,L1,Z1,H1) and G2 =
(S2,L2,Z2,H2) have the same number of direct connection
channels (i.e. Z1 and Z2 have the same length. Then the

direct connection product G2 �� G1 is defined by

G1 �� G2 = (

�
S1 0
0 S2

�
,

�
L1

L2

�
, , (13)

H1 + H2 + Z†
2Z1 + Z†

1Z2).

The direct connection product describes interaction between

the components in terms of the interaction Hamiltonian

Z†
2Z1+Z†

1Z2, a self-adjoint operator in U1⊗U2 quantifying

the energy flow between the components, Figure 5.

Here, the blank indicates the absence of an available

connection. All products may be extended in a natural way

to describe the absence of a connection using blanks.

We say that a system G is reducible if it can be expressed

as

G = (�jGfj) � (�kGdk) (14)

G1 �� G2

✲
✲ ✲

✲
✲✲

❄

✻

❄

✻

✲
✲
✲

✲
✲
✲

G1

G2

Fig. 5. Direct connection of two systems, G1 �� G2.

where the subsystems have the form

Gfj = (Sj ,Lj , ,Hfj), Gdk = ( , ,Zj ,Hdk). (15)

The decomposition (14) identifies any block diagonal struc-

ture of the field channels (as reflected in the structure of the

scattering matrix S), and separates out the direct interaction
terms. It is not unique. This is illustrated in Figure 6.

d3

�
�
�

✻

❄

✻

❄

✻

❄

✻

❄
✲

✲

✲

✲✲

✲

✲

✲
f1

f2

f3

f4

d1 d2

d4

�

Fig. 6. A reducible system G = Gf1 �Gf2 �Gf3 �Gf4 �Gd1 �
Gd2 �Gd3 �Gd4.

The concatenation, series and direct connection products

may be used to describe quantum systems. They can be used

to represent components, as well as to assemble networks

(next section). Note that variables evolve according to the

physical laws of both systems and the nature of the con-

nection (cf. [9, sec. 10.8.2])—the behavior of the connected

systems is characterized by the parameters specified by the

products.

V. NETWORKS

A. Reducible Networks

In general, a network can be specified by a collection

of components together with interconnections determined

by direct and field-mediated connections. We now define a

class of networks, which we call reducible networks, that

G1 � G2

✲
✲ ✲

✲
✲✲

❄

✻

❄

✻

✲
✲
✲

✲
✲

✲

G1

G2

Fig. 3. Concatenation of two systems, G1 �G2.

G2 � G1 is defined by

G2 � G1 = S2S1,L2 + S2L1,

�
Z1

Z2

�
,

H1 + H2 +
1

2i
(L†

2S2L1 − L†
1S

†
2L2))

As its name suggests, the series product describes the series
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The chain and dual chain representations have found extensive application in robust control theory, [20], [40]. The following
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These representations are illustrated in Figure 7. Note that

D(G) � C(G) = C(G) � D(G) = (I, 0, 0), (27)

so that D(G) = C(G)−1.
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12 L1

�
,−H

�
:

�
y1

u1

�
�→

�
u2

y2

�
(25)

These representations are illustrated in Figure 7. Note that

D(G) � C(G) = C(G) � D(G) = (I, 0, 0), (26)

so that D(G) = C(G)−1.
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Abstract—The purpose of this paper is to discuss how
Willems’ behavioral modeling might be applied to physical
systems governed by the laws of quantum physics. As we shall
explain, this entails shifting the emphasis from trajectories of
values to variables. A quantum behavior is defined in terms
of the evolution of physical variables according to quantum
mechanics. This evolution is given in terms of parameters that
specify the internal energy of the system, and any interfaces to
other systems or fields. A simple framework for modeling open
quantum systems and networks of such systems is described;
this framework provides tools for determining quantum behav-
iors. The ideas are illustrated by an example from quantum
optics.

I. INTRODUCTION

The behavioral approach to dynamical systems modeling

has been developed by Willems and collaborators (e.g. [9],

[11], [12]) to provide general model structures that are in-

tended to be appropriate for applications. Behavioral models

describe the range of possibilities that are allowed by the

system being considered, and do not depend on notions

of state nor inputs and outputs. While these notions can

be accommodated and may play important roles, behavioral

modeling is focused on trajectories of values (usually numer-

ical) of system variables and how they are determined. In

particular, the problem of control is seen as finding a control

system that can be connected to the plant being controlled

so that the behavior of the combined system has desirable

properties.

The purpose of this paper is to discuss how behavioral

modeling might be applied to physical systems governed by

the laws of quantum physics. As we shall explain, this entails

shifting the emphasis from trajectories of values to variables.

The unitary dynamical postulate from quantum mechanics

determines how physical variables may evolve in time, thus

determining the quantum behavior. This unitary flow is spec-

ified from physical considerations concerning the energy of

the system, and is usually expressed in terms of a differential

equation, the Schrodinger equation; this may be regarded as

the quantum behavioral equation. Energy specifications may

be regarded as a (non-numerical) parameterization of the

quantum behavior.

In order to get a feeling for what is involved, consider the

quantum optical network shown in Figure 1, which illustrates

a pair of optical cavities coupled by an optical medium
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Fig. 1. A pair of optical cavities coupled by an optical medium and an
optical interconnect, [13, Fig. 1]. Each cavity consists of a pair of mirrors,
one of which is perfectly reflecting (shown solid) while the other is partially
transmitting (shown unfilled). The partially transmitting mirror enables the
light mode inside the cavity to interact with an external light field. The
external field is separated into input and output components by a Faraday
isolator. The optical interconnect is formed when light from the output of
one cavity is directed into the input of the other, here using additional
mirrors.

and an optical interconnect (a light beam). To describe the

behavior of such a network, one needs a mathematical model

that can represent the physical properties of the components

(the cavities), and the mechanisms for interconnection. In

quantum mechanics, the variables (represented as operators

on a Hilbert space, and called observables) that are used

to describe the cavity include ones that do not commute—

this is a fundamental feature of quantum mechanics, and

well known consequences include the famous Heisenberg

uncertainty principle, [7]. It is because of the presence of

observables that do not commute that quantum behavioral

modeling needs to focus on variables, instead of numerical

values; the latter suffice for classical (i.e. non-quantum)

deterministic situations. Since the network of Figure 1

includes the use of an external free field channel (light

beam) as an interconnect, the modeling framework needs

an efficient and tractable quantum mechanical description

for such field channels. Quantum noise models [8], [4] can

be used to describe the random influence of the optical

fields on the cavities. Quantum noise modeling is much like

classical white noise modeling, except that the quantum noise

includes components that do not commute, and is therefore

fundamentally quantum mechanical. A wide range of such

cavity pair is given by the reducible system

N = G1 ∧ G2 = (Gf2 � Gf1) � (Gd1 �� Gd2)

= (1,
√
γ2 a2 +

√
γ1 a1, ,

∆1a
∗
1a1 + ∆2a

∗
2a2 − ig(a2a

∗
1 − a∗

2a1))

This expression simply and transparently describes the net-

work in terms of the interconnections used in forming it, and

is illustrated in Figure 9.
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Fig. 9. Network representation of the connected cavity pair.

The connected cavity pair may be considered as an open

system with a single field channel and no direct connection

channels, as described by the parameters N given by (??),

as shown in Figure 10 (equivalent circuit). This determines

the quantum behavior of the connected cavity pair system

through the quantum behavioral (Schrodinger) equation (3).

�✲ ✲

N

Fig. 10. Equivalent representation of the connected cavity pair.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have discussed some ideas underlying

how the “behavioral approach” might be applied to open

quantum systems. Important points to note include:

1) In modeling open quantum systems, emphasis is placed

on variables, not values. The signal space of values U
is replaced by a ∗-algebra U of physical variables.

2) The behavior of an open quantum system is determined

by parameters (S,L,Z,H) (recall (11)) through the
quantum behavioral equation (Schrodinger) equation

(3). As a consequence, the time evolution of a typical

system variable X ∈ U is given by (5), while that of

any output field channels is given by (8) and (10).

3) The quantum behavioral modeling framework does

not depend on system states. States are used only

when needed—to compute statistical quantities for a

complete system. State specification is an important

part of physical modeling, but is independent of the

behavior.

4) Quantum behavioral modeling does not demand in-

puts and outputs. The framework allows for direct

connections between systems in a natural physical

manner, without imposing an input output structure. It

also allows for indirect connections via field channels,

where an input-output structure is natural.

In the spirit of systems theory, we have provided efficient

algebraic tools for describing open quantum networks using

parameters, complete with rules for decomposition and as-

sembly. The example discussed in subsection V-B employed

the techniques of “tearing (examining the interconnections)

and zooming (examining the subsystems) in a hierarchical

fashion” [12, sec. 9]. One could consider Willems’ terminol-

ogy of manifest and latent variables in the present context,

although we have not done so here. For instance, in the

example of subsection V-B one might think of the input

A1 and output Ã2 as manifest variables, while the variables

associated with the connections may be regarded as latent.

The internal cavity variables could be regarded as latent also.

Clearly, our discussion of quantum behaviors has been at

a general level. It is not clear what, if any, meaning may

be given to behavioral notions and methods developed in

detail for deterministic classical linear systems in [9] (such as

controllability) in the quantum context. It is possible that they

may depend too much on the context of numerical values and

linearity.

We remark that classical (i.e. non-quantum) systems, de-

terministic or stochastic, linear or nonlinear, may be regarded

as special cases by considering them as commutative sub-

systems of open quantum systems. This will be discussed in

more detail in a journal version of this paper.

It seems that the behavioral ideas we have discussed for

open quantum systems and networks, with their focus on

the behavior of physical variables, is consistent with much

of the behavioral philosophy advocated by Willems and

collaborators, e.g. [9], [11], [12]. However, it appears that we

need a quantum probability space (U , P)2: the big quantum
physical variable space in the sky (cf. [9, page 7])!
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Figure 2: Linear optical network consisting of a beamsplitter and two cavities
A and B, [13, Fig. 4].

QFN model for this network that includes finite-duration interconnections. We
also show how to express this network in a standard lower LFT form, and from
this obtain a simplified Markovian network model as the connections lengths
are set to zero.

The network of Figure 3 is an example of a network that has attracted
interest within the quantum optics community since the early 1980’s ??? CITE
???. It consists of two beamsplitters connected by means of a free field b1 and
a classical electrical signal path. This path consists of a photodetector PD,
which detects photons to produce a classical electronic current flow η, which
is amplified by an electronic amplifier with gain g to produce a signal ζ which
is used to modulate the transmissivity of the beamsplitter BS1. This network
is nonlinear due to the presence of the photodetector (nonlinear in the field
operators) and the nonlinear dependence of the modulated beamsplitter. This
network was analyzed in ??? CITE ?? using a linearization method.

beamsplitter
✱
✱✱✲ ✲

✛

✻
✻

✻ ✻

✻
✲ PD

ν µ

b1 b2

b3b4

b0

g

S1 S2

ζ

η

beamsplitter

modulated ✱
✱✱

Figure 3: Feedback using a modulated beamsplitter (left), a conventional beam-
splitter (right), a photodetector (PD) and classical electronic amplifier (g), ???
CITE ??.

This network exhibits some interesting features that are beyond the scope of

5

These items provide a complete specification of the linear optical network, in-
cluding finite length edges.
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Figure 18: Schematic representation of the linear optical network of Figure 2
showing components and ports.

5.1.2 Markovian QFN Model

If we now wish to obtain a simpler, Markovian network model, we can apply
the results of section 4.2 to eliminate the internal edges. We obtain

Smkv = (77)

Lmkv = (78)

Hmkv = (79)

Alternatively, one could express this network in standard LFT form as shown
in Figure 19. Here, we have used the series product to combine the two cavities
into a single Markovian component. Applying (73) to this standard form, we
again obtain (79).

5.2 Modulated Beamsplitter Feedback Network

We turn now to the second quantum optical feedback network, Figure 3.

5.2.1 QFN Model

The input fields b0, µ and ν are taken to be vacuum (or b0 could be coherent).

34

N = F ((BS � A � B) � T ))

0-0
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controllability) in the quantum context. It is possible that they
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terministic or stochastic, linear or nonlinear, may be regarded

as special cases by considering them as commutative sub-

systems of open quantum systems. This will be discussed in
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It seems that the behavioral ideas we have discussed for
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Direct measurement feedback [Wiseman, 1994]

Controlled Hamiltonian
H0 + Fc

Before feedback, the quantum system is described by

G = (1, L,H0) � (S , 0, 0)

where S = e−iF is unitary (describes the classical input as an equivalent
field input that models photodetection).

Direct measurement feedback [Wiseman, 1994]

14

Here we have twice applied the formulas (38) given in Lemma 2.8.

Alternatively, we may use our theory of equivalent components (Theorem 3.4) to move the phase change (S, 0, 0) to the
very end, as shown in the right diagram in Figure 12. Then

Gcl = (S, 0, 0) ⇤ (1, S⇥L2, 0) ⇤ (1, L1, 0)

= (S, SL1 + L2,
1

2i
(L⇥

2SL1 � L⇥
1S

⇥L2)),

as before.

Either way, the closed loop feedback system is described by Gcl = (Scl, Lcl,Hcl) where

Scl = S ⇥ ei�,

Lcl = SL1 + L2 ⇥
�
1 + ei�

⇥⇤
�a,

Hcl = Im {L⇥
2SL1} ⇥ � sin ⇥ a†a.

From this we obtain the Heisenberg dynamical equation for the mode

da = �
⇤
a,
�
1 + ei�

⇥⇤
�a†⌅ dA1 �

�

2

�
1 + ei�

⇥ �
1 + e�i�

⇥
adt

�i� sin ⇥ adt

⇥ �
�
1 + ei�

⇥
(
⇤
�dA1 + �adt) ,

and the input/output relation

dÃ2 = ei�dA1 +
�
1 + ei�

⇥⇤
�adt.

This is in agreement with [19, eq. (2.29)] who deduce the same relations by a time-lag argument based on [8].

B. Direct Measurement Feedback

In the paper [18], Wiseman considers two types of measurement feedback, one involving photon counting, and another based

on quadrature measurement using homodyne detection (which is a diffusive limit of photon counts). In both cases proportional

feedback involving an electrical current was used. We describe these feedback situations in the following subsections using

our network theory.

1) Photon Counting: Consider the measurement feedback arrangement shown in Figure 13, which show a vacuum input

field A, a control signal c, a photodetector PD, and a proportional feedback gain k.

feedback gain

�

⇥ ⇥

⇥

PD

i(t)

control signal photocurrent

input field output field

k

quantum system

A(t)

c(t)
G

Fig. 13. Direct feedback of photocurrent obtained by photon counting using a photodetector (PD).

Before feedback, the quantum system is described by

G = (1, L,H0 + Fc), (50)

where H0 and F are self-adjoint, and c represent a classical control variable. The photocurrent i(t) resulting from ideal

photodetection of the output field is given by

‘i(t)dt⇤ = d� + LdA⇥ + L⇥dA + L⇥Ldt, (51)

where, mathematically, the photocurrent i(t) is the formal derivative of a self-adjoint commutative jump stochastic process
�̃(t) (the output gauge process) whose Ito differential is given by the RHS of (51) (which contains the input gauge process
�). The feedback is given by

c(t) = ki(t), (52)

Controlled Hamiltonian

H0 + Fc

Before feedback, the quantum system is described by

G = (1, L, H0) � (S, 0, 0)

where S = e�iF is unitary.

After feedback, we have

Gcl = (S, 0, 0) � (1, L, H0) = (S, SL, H0)

dX = (�i[X, H0]+Le�iF L(X))dt+[L⇥, X]e�iF dA+eiF [X, L]dA⇥+(eiF Xe�iF�X)d�.
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After feedback, we have

Gcl = (S , 0, 0) / (1, L,H0) = (S ,SL,H0)

15

where k is a (real, scalar) proportional gain. The feedback gain can be absorbed into F , and so we assume k = 1 in what
follows.

Due to the singular nature of the jump process differentials, we interpret the formal control Hamiltonian differential Fc(t)dt
in the Ito calculus by (e�iF � 1)d�. Therefore we can represent the system before feedback as

G = (1, L,H0) � (S, 0, 0)

where S = e�iF , a unitary operator. The second subsystem (S, 0, 0) captures the gauge coupling of the control signal, viewed
as a field. The self-adjoint commutative nature of the output gauge �̃ means that it describes the outcome of the photon

counting measurement, and only this part of the field is coupled to the system. The closed loop system after feedback is given

by

Gcl = (S, 0, 0) � (1, L,H0) = (S, SL,H0)

using formulas (38) from Lemma 2.8. This is illustrated in Figure 14. This agrees with the results obtained by Wiseman, [18,

eq. (3.44)], which we write in our notation as

dX = (�i[X, H0] + Le�iF L(X))dt + [L⇥, X]e�iF dA + eiF [X, L]dA⇥ + (eiF Xe�iF � X)d�. (53)

S

��

� �

A

C C̃

ÃL�

Fig. 14. Network representation of the direct photocount feedback scheme of Figure 13.

2) Quadrature Measurement: We again consider the quantum system G given by (50), but replace the photodetector PD

in Figure 13 with a homodyne detector HD.3 The homodyne detector produces a photocurrent i(t) given by

‘i(t)dt
⇤
= dI(t) = (L(t) + L†(t))dt + dA(t) + dA⇥(t).

The feedback is given by (52) as above, with feedback gain can be absorbed into F , as above. The measurement result I(t) is
a self-adjoint commutative diffusive process. We replace the formal control Hamiltonian differential Fc(t) in the Ito calculus
by a field coupling with operator M = �iF .
We can now describe the system before feedback as

G = (1, L,H0) � (1,M, 0).

After feedback, the closed loop system is

Gcl = (1,M, 0) � (1, L,H0) = (1, L � iF, H0 +
1

2
(FL + L⇥F ))

using (38). This is illustrated in Figure 15.

This agrees with [18, eq. (4.21)], which we write as

dX = (�i[X, H0 +
1

2
(FL + L†F )] + LL�iF (X))dt + [(L � iF )⇥, X])dA + [X, (L � iF )]dA⇥. (54)

C. Realistic Detection

Consider a quantum systemGq continuously monitored by observing the real quadrature of an output field. This measurement

can ideally be carried out by homodyne detection, but due to finite bandwidth of the electronics and electrical noise, this

measurement could be more accurately modeled by introducing a classical system (low pass filter) and additive noise as shown

in Figure 16, as analyzed in [17]. Here, B is a vacuum field, I is the output of the ideal homodyne detector (HD), v is a
standard Wiener process, and Y is the (integral of) the electric current providing the measurement information. We wish to

derive a filter to estimate quantum system variables Xq from the information available in the measurement Y .

3An ideal homodyne detector HD takes an input field A and produces a quadrature, say A + A�, thus effecting a measurement. This is achieved routinely
to good accuracy in optics laboratories, [10, Chapter 8].

(can also do quadrature measurement)

Controlled Hamiltonian

H0 + Fc

Before feedback, the quantum system is described by

G = (1, L, H0) � (S, 0, 0)

where S = e�iF is unitary.

After feedback, we have

Gcl = (S, 0, 0) � (1, L, H0) = (S, SL, H0)

dX = (�i[X, H0]+Le�iF L(X))dt+[L⇥eiF , X]e�iF dA+eiF [X, e�iF L]dA⇥+(eiF Xe�iF�X)d�.

10
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Realistic detection [Warszawski-Wiseman-Mabuchi, 2002]

The quantum system is given by

Gq = (1, Lq,Hq),

and the classical detection system is given by the classical stochastic
equations

dx(t) = f̃ (x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t),Realistic detection [Warszawski-Wiseman-Mabuchi, 2002]

16

M

⇧
��

��

A

C C̃

ÃL�

Fig. 15. Network representation of the direct homodyne feedback scheme (Figure 13 with HD replacing PD).

Gq

� ��
⇥

��
+

+
Yclassical system

I
quantum system HD

B

detection system

v

Gc

⇤⇥⌅�

Fig. 16. Model of a realistic detection scheme for a quantum system, showing ideal homodyne detection followed by a classical system (e.g. low pass filter)
and additive classical noise.

The quantum system is given by

Gq = (1, Lq,Hq), (55)

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t), (56)

where x(t) ⇥ Rn, y(t) ⇥ R, f̃ , g are smooth vector fields, h is a smooth real-valued function, and w and v are independent
standard classical Wiener processes. As described in the Appendix B, this classical system is equivalent to Gc = (1, Lc1,Hc)�
(1, Lc2, 0), where Lc1 = �igT p � 1

2⇤T g, Lc2 = 1
2h and Hc = 1

2 (fT p + pT f). We represent the system of Figure 16 as a

network, as shown in Figure 17.

Y⇧
� ��

��

�

�

classical system

A2

A1 = B̃

quantum system

B Lc1

Lc2

Gq Gc

Lq

Ã1

Ã2

HD

�

Fig. 17. Network representation of the realistic detection scheme of Figure 16.

Here, the classical noises are represented as real quadratures w = A1 + A�
1, v = A1 + A�

2. Note that since Lc1 is skew-

symmetric, only the real quadrature w = A1 + A�
1 = B̃ + B̃� affects the classical system (this captures the ideal homodyne

detection). The complete cascade system is

G = ((1, Lc1,Hc) � (1, Lq,Hq)) � (1, Lc2, 0)

= (I,

�
L1 + Lc1

Lc2

⇥
,Hq + Hc +

1

2i
(L�

c1Lq � L�
qLc1)) (57)

The quantum system is given by

Gq = (1, Lq, Hq),

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t),

11
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The classical system is equivalent to

Gc = (1, Lc1,Hc) � (1, Lc2, 0)

where Lc1 = −igTp − 1
2∇Tg , Lc2 = 1

2h and Hc = 1
2(f Tp + pT f ).

The complete cascade system is

G = ((1, Lc1,Hc) / (1, Lq,Hq)) � (1, Lc2, 0)

= (I,

(
L1 + Lc1

Lc2

)
,Hq + Hc +

1

2i
(L∗c1Lq − L∗qLc1))
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The unnormalized quantum filter for the cascade system is

dσt(X ) = σt(−i [X ,Hq + Hc +
1

2i
(L∗c1Lq − L∗qLc1)]

+L L1 + Lc1
Lc2

(X ))dt + σt(L
∗
c2X + XLc2)dy .

For instance, X = Xq ⊗φ, where φ is a smooth real valued function on Rn.

Filtered estimate of quantum variables:

πt(Xq) = σt(Xq)/σt(1)

16
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Fig. 15. Network representation of the direct homodyne feedback scheme (Figure 13 with HD replacing PD).
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Fig. 16. Model of a realistic detection scheme for a quantum system, showing ideal homodyne detection followed by a classical system (e.g. low pass filter)
and additive classical noise.

The quantum system is given by

Gq = (1, Lq,Hq), (55)

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t), (56)

where x(t) ⇥ Rn, y(t) ⇥ R, f̃ , g are smooth vector fields, h is a smooth real-valued function, and w and v are independent
standard classical Wiener processes. As described in the Appendix B, this classical system is equivalent to Gc = (1, Lc1,Hc)�
(1, Lc2, 0), where Lc1 = �igT p � 1

2⇤T g, Lc2 = 1
2h and Hc = 1

2 (fT p + pT f). We represent the system of Figure 16 as a

network, as shown in Figure 17.
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B Lc1
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Fig. 17. Network representation of the realistic detection scheme of Figure 16.

Here, the classical noises are represented as real quadratures w = A1 + A�
1, v = A1 + A�

2. Note that since Lc1 is skew-

symmetric, only the real quadrature w = A1 + A�
1 = B̃ + B̃� affects the classical system (this captures the ideal homodyne

detection). The complete cascade system is

G = ((1, Lc1,Hc) � (1, Lq,Hq)) � (1, Lc2, 0)

= (I,

�
L1 + Lc1

Lc2

⇥
,Hq + Hc +

1

2i
(L�

c1Lq � L�
qLc1)) (57)

The quantum system is given by

Gq = (1, Lq, Hq),

and the classical detection system is given by the classical stochastic equations

dx(t) = f̃(x(t))dt + g(x(t))dw(t),

dY (t) = h(x(t))dt + dv(t),

The classical system is equivalent to

Gc = (1, Lc1, Hc) � (1, Lc2, 0)

where Lc1 = �igT p � 1
2
⇥T g, Lc2 = 1

2
h and Hc = 1

2
(fT p + pT f).

The complete cascade system is

G = ((1, Lc1, Hc) � (1, Lq, Hq)) � (1, Lc2, 0)

= (I,

�
⇤ L1 + Lc1

Lc2

⇥
⌅ , Hq + Hc +

1

2i
(L�

c1Lq � L�
qLc1))
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Quantum Hardware Description Language (QHDL)

[Mabuchi and colleagues, 2011]
Specification of photonic circuits using QHDL 5

a

b

c

d

(a+b)

(a−b)

BS1

a

b

c

d

(a+b)

(a−b)

BS2

a b

phase

Figure 2. A basic Mach-Zehnder setup.

ports (of the overall circuit), which are required in order for the circuit itself to
be callable as a composite QHDL component, as well as any numeric parameters
required for physical modeling. Note that we require that all input ports appear
before all output ports.

Listing 1. Entity declaration

entity Mach Zehnder is
generic (phi mz: real := 0);
port (In1, VacIn: in fieldmode; Out1, Out2: out fieldmode);

end Mach Zehnder;

For this entity we must then have one or more architecture declarations in the
same QHDL file. These provide alternative ways of realizing the internal structure
of the circuit. The architecture declaration consists of a head which specifies the
interfaces of all components used in the architecture body and all internal signals.
The component declarations are very similar to the entity declaration- they serve
to establish an interface for each subcomponent.

Listing 2. Architecture head

architecture structure MZ of Mach Zehnder is
component beamsplitter

port (a, b: in fieldmode; c, d: out fieldmode);
end component beamsplitter;

component phase
generic (phi: real);
port (a: in fieldmode; b: out fieldmode);

end component phase;

signal bs1 phase, bs1 bs2, phase bs2: fieldmode;

The architecture body then consists of a series of instance assignments for each
occurrence of any of the previously specified component types. Each instance assign-
ment specifies the relationship between the component-instance parameters and the
entity parameters. In addition, it specifies a port map detailing how the component-
instance is connected to the internal signals or the external ports.

Listing 3. Architecture body

begin
BS1: beamsplitter

port map (a => In1, b => VacIn, c => bs1 bs2, d => bs1 phase);
phase: phase

generic map (phi => phi mz);

Article submitted to Royal Society

MZ = BS2 / (phase � I ) / BS1
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Specification of photonic circuits using QHDL 5
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ports (of the overall circuit), which are required in order for the circuit itself to
be callable as a composite QHDL component, as well as any numeric parameters
required for physical modeling. Note that we require that all input ports appear
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generic (phi mz: real := 0);
port (In1, VacIn: in fieldmode; Out1, Out2: out fieldmode);
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same QHDL file. These provide alternative ways of realizing the internal structure
of the circuit. The architecture declaration consists of a head which specifies the
interfaces of all components used in the architecture body and all internal signals.
The component declarations are very similar to the entity declaration- they serve
to establish an interface for each subcomponent.
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occurrence of any of the previously specified component types. Each instance assign-
ment specifies the relationship between the component-instance parameters and the
entity parameters. In addition, it specifies a port map detailing how the component-
instance is connected to the internal signals or the external ports.

Listing 3. Architecture body

begin
BS1: beamsplitter

port map (a => In1, b => VacIn, c => bs1 bs2, d => bs1 phase);
phase: phase

generic map (phi => phi mz);
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ports (of the overall circuit), which are required in order for the circuit itself to
be callable as a composite QHDL component, as well as any numeric parameters
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same QHDL file. These provide alternative ways of realizing the internal structure
of the circuit. The architecture declaration consists of a head which specifies the
interfaces of all components used in the architecture body and all internal signals.
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to establish an interface for each subcomponent.
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end component beamsplitter;

component phase
generic (phi: real);
port (a: in fieldmode; b: out fieldmode);

end component phase;
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The architecture body then consists of a series of instance assignments for each
occurrence of any of the previously specified component types. Each instance assign-
ment specifies the relationship between the component-instance parameters and the
entity parameters. In addition, it specifies a port map detailing how the component-
instance is connected to the internal signals or the external ports.

Listing 3. Architecture body

begin
BS1: beamsplitter

port map (a => In1, b => VacIn, c => bs1 bs2, d => bs1 phase);
phase: phase

generic map (phi => phi mz);
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ports (of the overall circuit), which are required in order for the circuit itself to
be callable as a composite QHDL component, as well as any numeric parameters
required for physical modeling. Note that we require that all input ports appear
before all output ports.

Listing 1. Entity declaration

entity Mach Zehnder is
generic (phi mz: real := 0);
port (In1, VacIn: in fieldmode; Out1, Out2: out fieldmode);

end Mach Zehnder;

For this entity we must then have one or more architecture declarations in the
same QHDL file. These provide alternative ways of realizing the internal structure
of the circuit. The architecture declaration consists of a head which specifies the
interfaces of all components used in the architecture body and all internal signals.
The component declarations are very similar to the entity declaration- they serve
to establish an interface for each subcomponent.

Listing 2. Architecture head

architecture structure MZ of Mach Zehnder is
component beamsplitter

port (a, b: in fieldmode; c, d: out fieldmode);
end component beamsplitter;

component phase
generic (phi: real);
port (a: in fieldmode; b: out fieldmode);

end component phase;

signal bs1 phase, bs1 bs2, phase bs2: fieldmode;

The architecture body then consists of a series of instance assignments for each
occurrence of any of the previously specified component types. Each instance assign-
ment specifies the relationship between the component-instance parameters and the
entity parameters. In addition, it specifies a port map detailing how the component-
instance is connected to the internal signals or the external ports.

Listing 3. Architecture body

begin
BS1: beamsplitter

port map (a => In1, b => VacIn, c => bs1 bs2, d => bs1 phase);
phase: phase

generic map (phi => phi mz);

Article submitted to Royal Society
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port map (a => bs1 phase, b => phase bs2);
BS2: beamsplitter

port map (a => phase bs2, b => bs1 bs2, c => Out1, d => Out2);
end structure MZ;

In the port map, each internal component port is assigned to either an entity
port or a signal. Any instance in (out) port must be connected either to an entity
in (out) port or to a signal that is connected to another instance’s out (in) port.

Listing 4. Port map statement

port map (a => phase bs2, b => bs1 bs2, c => Out1, d => Out2);

Each signal therefore connects exactly two ports: one instance input and one in-
stance output or one instance input (output) and an entity input (output).

(c) Parsing a network

Here we present a simple algorithm to parse a general network into a circuit
expression. We assume that the QHDL file has been preprocessed such that we
have the lists of ports, components, instances, signals and port mappings in native
data structures accessible to our algorithm.

1. We denote the list of internal signals by S. For each instance assignment
j = 1, 2 . . .N in the architecture body:

• Generate the network triplet Qj = (Sj ,Lj , Hj) with the correct parametriza-
tion as specified in the generic map statement.

• Generate the correctly ordered† list of input port names Ij and the
correctly ordered list of output port names Oj where each portname is
entry is of the form instance-name:port-name.

2. Concatenate all triplets Q = Q1!Q2! · · ·!QN and similarly concatenate the
input and output port lists I = I1 +I2 + · · ·+IN and O = O1 +O2 + · · ·+ON

3. For each internal signal s ∈ S concatenate the full circuit triplet Q with a

single channel identity system 1 resulting in Q
(0)
f = Q ! |S|,

4. Now, each element in the full list of output ports O corresponds to an entry
of the form instance-name:port-name. Make copies of O′ = O and S′ = S and
iterate over all output ports in the following fashion:

If the output port is connected to a global output (i.e. an entity output port),
continue to the next entry.
If the output port is connected to the j-th signal in the current signal list S′,
let k be the index of the output port in the current output port O′ list and

update the model triplet Q
(n)
f → Q

(n+1)
f = [Q

(n)
f ]k→M+j , where M = |O′| is

the length of the current output port list. Then, remove the k-th entry from
O′, and the j-th entry of S′.

† As defined via the the component declaration in the architecture head.

Article submitted to Royal Society

[Mabuchi and colleagues, 2011]
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Quantum Dissipative Systems

Combine perspectives from

quantum physics - damping, commutation relations
- quantum noise (e.g. Gardiner-Collett, 1985, etc)

control engineering - signals, disturbances, uncertainty
- passivity, gain (e.g. Zames, 1965, Willems, 1972, 1997, etc)

in order to develop analysis and design tools.
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Quantum Dissipative Systems

The plant is the system of interest, interacting with its environment.
The plant is the system of interest, interacting with its 
environment.

Environment can include infinite heat baths, as well as 
other systems - a network.

Environment can include infinite heat baths, as well as other systems
- a network.
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Quantum Dissipative Systems

Given two reducible systems P = �jPj and W = �j ′Wj ′ , an interaction
Hamiltonian

K = −i
∑

k

(N∗kMk −M∗kNk),

where Nk ∈ AP, Mk ∈ AG, and a list of series connections

S = {Wk / Pj , Pk ′ /Wj ′},

one can form a network
N = P ∧W.

We call W an exosystem, and keeping the interconnection structure fixed,
we let W vary in a class W of exosystems.
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Quantum Dissipative Systems

Lindblad generator for a system G = (S,L,H):

GG(X ) = LL(X )− i [X ,H]

where

LL(X ) =
1

2
L†[X ,L] +

1

2
[L†,X ]L.

Then

Es [X (t)] = X (s) +

∫ t

s
Es [GG(X (r))] dr

for all t ≥ s.
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Quantum Dissipative Systems

Plant
P = (S,L,H)

Exosystem
W = (R,w,D) ∈ W

Supply rate
rP(W) ∈ AP ⊗Aex

a self-adjoint symmetrically ordered function of the exosystem parameters,
depending on the plant parameters.

We say that the plant P is dissipative with supply rate r with respect to a
class W of exosystems if there exists a non-negative system observable
V ∈ AP such that

E0

[
V (t)− V −

∫ t

0
r(W)(s)ds

]
≤ 0

for all exosystems W ∈ W and all t ≥ 0.
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Quantum Dissipative Systems

Infinitesimal characterization
The plant P is dissipative with supply rate r with respect to a class W of
exosystems if and only if there exists a non-negative system observable
V ∈ AP such that

GP∧W(V )− r(W) ≤ 0

for all exosystem parameters W ∈ W .

Special case from now on:

P ∧W = P /W

and
W = (I,L,H)
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Quantum Dissipative Systems

Consider
W = (R,w,−i(v†K−K†v))

where v commutes with plant variables and KP ∈ AP.
Open quantum systems are dissipative with respect to the “natural”
supply rate

r0(W) = GP/W(V0)

= Lw(V0) + LL(V0) +
(
w† v†

)
Z + Z†

(
w
v

)
,

where V0 ≥ 0 commutes with H.

Z = [V0,

(
L
K

)
]
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Quantum Dissipative Systems

Transformation under series product
Let P1 and P2 be dissipative with respect to supply rates rP1(W) and
rP2(W), storage functions V1 and V2, and exosystem classes W1 and W2

respectively.
The series system P2 / P1 is dissipative with storage function V1 + V2 and
supply rate

rP2/P1(W) = rP1(P′2 /W) + rP2(P1 /W),

with respect to the exosystem class

W = {W : P′2 /W ∈ W1 and P1 /W ∈ W2},

where

P′2 = (S†1S2S1, S
†
1 (S2 − 1)L1+S†1L2, H2+Im

{
L†2 (S2 + 1)L1 − L†1S2L1

}
).
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Quantum Dissipative Systems

Example
Open harmonic oscillator (e.g optical cavity)

P = (1,
√
γa, ωa∗a)

Let V0 = H/ω = a∗a.

r0(W) = GP/W(V0) = −γa∗a−√γ(w∗a + a∗w) + Lw (V0)− i [V0,D]

By completion of squares the supply rate can be re-written

r0(W) = −(
√
γ a + w)∗(

√
γ a + w) + w∗w + Lw (V0)− i [V0,D]

and hence the system has gain 1 relative to the output quantity
√
γ a + w

and commuting inputs w .
Note that if we include ground state energy and write
V = a∗a + 1

2 = q2 + p2 (here q = a + a∗, p = −i(a− a∗), then passivity
and gain holds but with λ = γ > 0.
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Quantum Feedback Control by Interconnection

Quantum Feedback Control by Interconnection

Inspired by energy-based design methods for classical mechanical
systems (e.g. robotics) (e.g. Ortega and Spong, 1989, etc)

Control design as network design

Controller may be classical, quantum, or a mixture of the two

Design focusses on the physical structure

Interconnections can be field-mediated and/or direct interactions

Covers standard problems of stabilization, regulation, robustness
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Quantum Feedback Control by Interconnection

The plant and the controller may interact with their environment.

The plant and the controller may interact with their 
environment.
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Quantum Feedback Control by Interconnection

Methodology
Specify the control objectives by encoding them in

a non-negative observable Vd ∈ AP ⊗AC,

a supply rate rd(W),

and a class of exosystems Wd for which a network (P∧C)∧W is well
defined.

One then seeks to find, if possible, a controller C such that

G(P∧C)∧W(Vd)− rd(W) ≤ 0

for all exosystem parameters W ∈ Wd .
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Quantum Feedback Control by Interconnection

Example
Cavity P = (1, a, 0) with vacuum input.
Wish to maintain steady-state photon number α∗α.
Consider simple direct plant-controller interaction

C = (1, 0,−i(K ∗Pν − ν∗KP)) ,

where Kp is a plant operator and ν is a complex number, both to be
chosen.
Closed loop system

P ∧ C = P� C.

We set
Vd = (a− α)∗(a− α) = a∗a− α∗a− a∗α + α∗α,

and for a positive real number c ,

rd(W) = −cVd ,

with Wd = {( , , 0)}, which consists only of the trivial exosystem.
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Quantum Feedback Control by Interconnection

The design problem is to select, if possible, KP , a plant operator, and ν, a
complex number, such that

GP�C(Vd) + cVd ≤ 0

for suitable c > 0. We choose KP = a.
Evaluate LHS, and set c = 1/2, ν = −α/2.

Physically, this control design corresponds to a classical energy source
connected to the cavity, such as when the vacuum field is replaced by a
coherent field (signal plus noise), i.e. a laser beam.
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Linear Quantum Systems

Linear Quantum Systems

We consider noncommutative stochastic systems of the form

dx(t) = Ax(t)dt + Bdw(t)

dz(t) = Cx(t)dt + Ddw(t)

where A, B, C and D are real matrices, and

x(t) =




x1(t)
...

xn(t)




is a vector of possibly noncommutative plant variables.
[James, Nurdin and Petersen, 2008]

[General Ito algebra theory: Belavkin]
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Linear Quantum Systems

The initial system variables x(0) are Gaussian with state ρ, and satisfy the
commutation relations

[xj(0), xk(0)] = C xx
jk = 2iΘjk , j , k = 1, . . . , n,

where Θ is a real antisymmetric matrix.
For example, a system with one classical variable and two conjugate
quantum variables is characterized by

Θ =




0 0 0
0 0 1
0 −1 0


 .
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Linear Quantum Systems

The vector quantity w describes input channels and is assumed to admit
the decomposition

dw(t) = βw (t)dt + dw̃(t)

where βw (t) is the self-adjoint finite variation part, and w̃(t) is the
(Gaussian) noise part of w(t) with Ito table

dw̃(t)dw̃T (t) = Fw̃dt,

where Fw̃ is a non-negative Hermitian matrix.

Fw̃ =




1 0 0
0 1 i
0 −i 1




describes a noise vector with one classical component and a pair of
conjugate quantum Gaussian noises.
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Linear Quantum Systems

Physical systems
Physical systems impose constraints on the matrices A,B,C ,D, e.g.:

JA + A†J + C †JC = 0

B = −JC †J

for the case where Θ = J and F = I + iJ (non-degenerate case).

We say that A,B,C ,D are physically realizable if the corresponding
equations correspond to those arising from a system of quantum harmonic
oscillators coupled to boson fields in the vacuum state.

The degenerate extension of this allows for mixed quantum-classical
situations.
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H∞ robust control
The control objective is to reduce the gain from input w to output z by an
appropriate choice of controller C.

13

We use a simple plant-controller network

P ⌃C = (1,
 
⇥2 ⌅�, 0) ⌥ C ⌥ (1,

 
⇥1 ⌅�,

1

2
⌃⌅z),

and set Vd = ⌅1. We choose rd(W) = �cVd, with c ⌅ 0 to be chosen as small as possible, and Wd = {(1, 0, 0)}. Our
objective is then

GP⇧C(Vd) + cVd ⇤ 0.

If we simply set

C = (�1, 0, 0),

i.e. a 180⇤ phase shift, then we have
GP⇧C(⌅1) = �(⇥ � 2

 
⇥1⇥2)⌅1,

so that c = ⇥ � 2
 
⇥1⇥2 ⇤ ⇥. Therefore the energy decay has been reduced, and can be eliminated if ⇥1 = ⇥2 = ⇥/2. This

controller simply effects a destructive interference which reduces the energy flowing out. 2

The next example shows that care must be exercised when attempting to use classical control design methods. Difficulties

can arise due to the presence of quantum noise and the fact that physical quantities do not in general commute.

Example 4.5: (Stabilization) Suppose we wish to stabilize the plant of Example 3.12, which is not asymptotically stable,

using the standard method from classical control theory for stabilizing Hamiltonian systems, [25, sec. 4.1]. We set D = 0
to illustrate what happens when one uses field-mediated couplings, and for simplicity ⇤ = 1. The classical Hamiltonian
stabilization procedure is to use negative feedback

w = �k(a⇥ + a). (71)

We will explain the physical meaning of this feedback shortly.

Now from (64) with V0 = a⇥a, we have

GP�W(V0)|w=�k(a�+a) = 1� 2k(a� a⇥)(a⇥ � a) + k2

= 1� 2k(2a⇥a + 1� a2 � (a⇥)2) + k2 (72)

which is not in general negative, and so stabilization is not assured, in contrast to the classical case.

The physical meaning of the control law (76) is that one is implementing a closed loop system

P ⌃C = P ⌥ (1,�k(a⇥ � a), 0),

which means that it must be physically possible to introduce a field coupling �k(a⇥ � a) to the system. The controller
C = (1,�k(a⇥ � a), 0) is simply implementing this coupling.
A preferable method of stabilization for this system would be to introduce a coupling

 
⇥ a, if possible, which would allow

the system to loose energy to a heat bath. The plant-controller system in this case is simply

P ⌃C = P � (1,
 
⇥ a, 0).

Other methods like this could also be considered where energy can be lost via a controller, using direct or field-mediated

interactions. 2

Linear open quantum systems are those for which the conjugate variables for position and momentum satisfy linear stochastic

differential equations. Such systems include many examples in quantum optics. The next example illustrates how the H⌅

synthesis results of [15] fit into the present network design framework by considering one of the examples from that paper,

where both the plant and controller were optical cavities.

Example 4.6: (H⌅ robust control, [15, sec. VII-A]) Consider the plant-controller network of Figure 2. The control objective

is to reduce the gain from input w to output z by an appropriate choice of controller C.
The plant is a cavity with annihilation operator a and three mirrors (three field channels)

P = P1 � P2 � P3

= (1,
 
⇤1 a, 0) � (1,

 
⇤2 a, 0) � (1,

 
⇤3 a, 0),

and the controller is assumed to have the form

C = C1 � C2 � C3.

The plant-controller network is

P ⌃C = P1 � (C3 ⌥ P2) � (P3 ⌥ C1) � C2.

The supply rate is

r(W) = g2w⇥w � (
 
⇤3 a + w)⇥(

 
⇤3 a + w)
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Fig. 2. A plant-controller network for H� control.

for exosystems W ⇧ Wd, where

Wd = {W = (1, 0, 0) � (1, w, 0) � (1, 0, 0) � (1, 0, 0) : w commutes with AP ⇥AC} .

The control objective is now in the form (67).

For the plant parameters ⇤1 = 2.6, ⇤2 = 0.2, ⇤3 = 0.2, a controller was found in [15, sec. VII-A] for a gain value of
g = 0.1. It was realized as a cavity with annihilation operator b:

C = (�1,�
 

0.2 b, 0) � (1,
 

1.8 b, 0) � (1,
 

0.2 b, 0).

2

APPENDIX

A. Orderings

In this appendix we review some definitions and results concerning operator ordering.

Let A and B be self-adjoint operators on a Hilbert space h.
Then by definition A ⌅ 0 means ⌥⇧, A⇧� ⌅ 0 for all vectors ⇧ ⇧ h. Using this, we say A ⌅ B to mean A�B ⌅ 0.
Now suppose

w⇥Aw ⇤ B + w⇥C + C⇥w (73)

for all operators w acting on h. We claim that A ⇤ 0.
To verify this claim, suppose by contradiction there exists ⇧0 ⇧ h such that

⌥⇧0, A⇧0� > 0. (74)

Now set w = �I , where � is an arbitrary real number. Then (73) implies

�2⌥⇧0, A⇧0� ⇤ ⌥⇧0, B⇧0�+ �⌥⇧0, (C + C⇥)⇧0�. (75)

Since � is arbitrary, this contradicts (74), establishing the claim.

B. Superoperators/quadratic forms

Consider the quadratic form �V defined by (51). We say that �V ⌅ 0 if w†�V w ⌅ 0 for all w. The meaning of this second
inequality is the operator ordering of Appendix A.

??????????? comment to JG

At present I am not sure how to construct ��1
V , or at least y†��1

V y. Looks like a non-commutative quadratic equation is
involved.

I’m happy enough to drop the bits that need this inverse, although in the bounded real lemma it is nice to have an equation

independent of the exosystem variables.

??????? end comment

Example

H-Infinity Control

Example

H� robust control

The control objective is to reduce the gain from input w to output z by an

appropriate choice of controller C.

23

[James-Nurdin-Petersen, 2006]
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Plant

P = P1 � P2 � P3

= (1,
√
κ1 a, 0) � (1,

√
κ2 a, 0) � (1,

√
κ3 a, 0),

Controller
C = C1 � C2 � C3.

The plant-controller network is

P ∧ C = P1 � (C3 / P2) � (P3 / C1) � C2.

The supply rate is

r(W) = g2w∗w − (
√
κ3 a + w)∗(

√
κ3 a + w)

for exosystems W ∈ Wd , where

Wd = {W = (1, 0, 0) � (1,w , 0) � (1, 0, 0) � (1, 0, 0) : w commutes with AP ⊗AC} .
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Example
The plant is an optical cavity:

Plant, an optical cavity.

16

�3 = 0.2

@
@
@@

⇧

⇤
⇤
⇤
⇤
⇤⇤⌅�

�
�
�
�� 

⇧

⌃

�
��⇥ �

�� 

⇧⌥v

w

a

y

uz

�1 = 2.6 �2 = 0.2

�
�
��

Fig. 1. An optical cavity (plant).

v(t) = (v1(t), v2(t))
T , w(t) = (w1(t), w2(t))

T , u(t) = (u1(t), u2(t))
T . The quantum noises v, w̃ have Hermitian

Ito matrices Fv = Fw̃ = I + iJ . This leads to a system of the form (21) with the following system matrices:

A = ��

2
I; B0 = �⇥

⇥1I; B1 = �⇥
⇥2I; B2 = �⇥

⇥3I;

(� = ⇥1 + ⇥2 + ⇥3)

C1 =
⇥
⇥3I; D12 = I;

C2 =
⇥
⇥2I; D21 = I. (40)

In this model, the boson commutation relation [a, a⇥] = 1 holds. This means that the commutation matrix for this

plant is �P = J .

In our example, we will choose the total cavity decay rate ⇥ = 3 and the coupling coefficients ⇥1 = 2.6,

⇥2 = ⇥3 = 0.2. With a disturbance attenuation constant of g = 0.1, it was found that the Riccati equations (27) and

(28) have stabilizing solutions satisfying Assumption 5.2. These Riccati solutions were as follows: X = Y = 02�2.

Then, it follows from Theorem 4.2 that if a controller of the form (23) is applied to this system with matrices AK ,

BK , CK defined as in (29) then the resulting closed loop system will be strictly bounded real with disturbance

attenuation g. In our case, these matrices are given by

AK = �1.1I, BK = �0.447I, CK = �0.447I.

In this case, the controller (23) can be implemented with another optical cavity with annihilation operator aK

(with quadratures ⇤1 = qK = aK + a⇥
K , ⇤2 = pK = (aK � a⇥

K)/i, ⇤ = (qK , pK)T ), corresponding to �K = J ,

connected at the output with a 180o phase shifter (see Remark 3.6). The controller cavity has coupling coefficients

⇥K1 = 0.2, ⇥K2 = 1.8, ⇥K3 = 0.2, and ⇥K = 2.2 and is a physically realizable system with dynamics:

d⇤(t) = AK⇤(t)dt + [ BK1 BK ][ dvT
K dyT ]T

dũ(t) = �CK⇤(t)dt + [ I2�2 02�4 ][ dvT
K dyT ]T ,

May 3, 2007 DRAFT
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For the plant parameters κ1 = 2.6, κ2 = 0.2, κ3 = 0.2, a controller was
realized as a cavity with annihilation operator b:

C = (−1,−
√

0.2 b, 0) � (1,
√

1.8 b, 0) � (1,
√

0.2 b, 0).

This construction had two steps:

1 Evaluation of quadratic forms with respect to Gaussian states, and
using some classical results. This gives part, not all, of the solution.

2 Completing the design by adding field couplings to ensure
commutation relations preserved. This is algebraic.

Matt James (ANU) Quantum Feedback Control - Lecture 3 44 / 47



Linear Quantum Systems

Controller, specified to be quantum, realized as a cavity:

17

where BK1 = [ �0.447I �1.342I ], vK(t) = (vK11(t), vK12(t), vK21(t), vK22(t)y(t))T are the quadratures of

two independent canonical quantum noise sources, and ũ(t) is the output of the cavity. The overall output of the

controller is u(t), given by u(t) = Ksũ(t), where Ks = �I2⇥2. Here Ks models the 180o phase shift at the output

of the cavity. Thus, the overall controller (an optical cavity cascaded with a 180o phase shifter) is of the form (23)

with BK0 = [� I 0 ] and BK1 as given before. This controller is illustrated in Figure 2.
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Fig. 2. An optical cavity quantum realization of the controller (�K = J) for the plant shown in Figure 1.

B. Robust Stability in Quantum Optics

We now modify the above example to allow for uncertainty in one of the optical cavity parameters using the

results of Section VI. Indeed, we consider the same set up as in Figure 1 and assume that there is uncertainty in

the value of the coupling coefficient ⇤1 corresponding to the optical channel v. In this case, the equations (21)

describing the optical cavity now have matrices

A = �� + ⇥

2
I; B0 =

�
⇤1 + ⇥I; B1 = �⇤

⇤2I; B2 = �⇤
⇤3I;

C1 =
⇤
⇤3I; D12 = I;

C2 =
⇤
⇤2I; D21 = I. (41)

This is our true system which depends on the unknown parameter ⇥.

In order to apply our H⇤ theory together with the results of Section VI to this system, we must overbound the

uncertainty in the matrix A. Indeed, let S be any non-singular matrix. If |⇥| ⇥ µ, then we can write � �
2I = B̃1�C̃1

where B̃1 = µ
2 S, C̃1 = S�1 and � = � �

µI satisfies �T� ⇥ I . Hence, if we consider a family of systems of the

May 3, 2007 DRAFT

Controller, specified to be quantum, 
realized as a cavity.
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Fig. 7. Quantum-classical controller (�K = diag(J, 02�2)) for the plant of Figure 6.

VIII. CONCLUSION

In this paper we have formulated and solved an H⇤ synthesis problem for a class of non-commutative stochastic

models. Models important to quantum technology, such as those arising in quantum optics, are included in this class.

We have provided results for the physical realization of the controllers. Our results are illustrated with examples from

quantum optics, which demonstrate the synthesis of quantum, classical and quantum-classical controllers. Future

work will include further development of the approach initiated here, and application of the synthesis methods to

particular problems in quantum technology.

APPENDIX A

PROOFS

Proof of Theorem 2.1. To preserve the commutation relations for all i, j = 1, . . . , n and all t ⇥ 0, we must

have d[xi, xj ] = 0 for all i, j = 1, . . . , n. We now develop a general expression for d[xi, xj ]. Indeed, let ek =

[ 0 . . . 0 1 0 . . . 0 ]T , where the 1 is in the k-th row. It is easy to see that for any i, j ⇤ {1, . . . , n},
[xi, xj ] = eT

i xxT ej � eT
j xxT ei. Therefore, d[xi, xj ] = eT

i d(xxT )ej � eT
j d(xxT )ei. Now, we expand d(xxT ) using

May 3, 2007 DRAFT

Here, the controller, specified to have quantum and 
classical degrees of freedom.

Another example, plant 
(not shown) was an 
optical amplifier in 
series with a cavity.

Here, the controller was specified to have quantum and classical degrees of
freedom.
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‘...the most fruitful areas for growth of sciences were those ...
between various established fields.’

‘It is these boundary regions of science which offer the richest
opportunities to the qualified investigator.’

Norbert Wiener, Cybernetics, 1948

Thanks for your attention!
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