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Lecture 1 Introduction and basic concepts
Quantum technology, quantum control, postulates of
quantum mechanics, quantum probability.

Lecture 2 Measurement feedback quantum control

Open quantum systems, quantum stochastic models,
quantum filtering, optimal measurement feedback control,
risk-sensitive quantum control.

Lecture 3 Coherent feedback quantum control
Quantum feedback networks, quantum dissipative systems,
control by interconnection, linear quantum systems.
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Lecture 3 - Outline

© Quantum Feedback Networks
© Quantum Dissipative Systems
© Quantum Feedback Control by Interconnection

@ Linear Quantum Systems
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Quantum Feedback Networks

Quantum Feedback

Networks

@ Quantum information is lost when measurements are made.
@ Coherent feedback loops need not involve measurements, and so
allow for the flow of quantum information. The controller is another

quantum system.

quantum system

quantum
control
actions

direct couplings quantum
information

quantum
controller
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Quantum Feedback Networks

@ Exchange of quantum information may occur via
o direct physical couplings
e indirect couplings using freely travelling quantum fields serving as
‘quantum wires’.

@ According to Mabuchi 2008:

“...gives rise to a genuinely new category of
control-theoretic problems as it encompasses
non-commutative signals and quantum-dynamical
transformations thereof’ and "“... relatively little is yet
known about the systematic control theory of coherent

feedback”.
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[James-Nurdin-Petersen 2007, Mabuchi 2008]
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Quantum Feedback Networks

Circuit diagrams are widely used in classical engineering.
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Quantum Feedback Networks

Some basic requirements of quantum network models:

Capture the quantum physics
Be capable of representing classical components
Include dissipative mechanisms - noise, uncertainty, decoherence

Preserve canonical structure - e.g. commutation relations, energy

Network of interconnected components should also be a quantum
system - recursive

Efficient methods for representation, interconnection, manipulation,
and physical realization

Seamlessly integrates classical components.

Efficient methods for analysis, design, and synthesis
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Quantum Feedback Networks

Basic ideas
Classical: series connection of resistors.

Rl R2

__J\/\/\__/\/\/\___

R=Ri+ Ry

___/\/\/\__

The simple algebraic formula R = Ry + R» is based on underling physics
(electromagnetism).
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Quantum Feedback Networks

Quantum: series connection of open systems.

B E— G=G2<IG1 B E—

The simple algebraic formula
GG = (5251, Lo+ Sy, H; + H> + Im[L;SQL]_])

is based on underlying physics (quantum mechanics).
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Quantum Feedback Networks

Where does this come from?

dBl,out = let + SldBI,in
dBs oyt = Lodt 4 52dBy i
327;,,(1') = Bl,,'n(t — T), T J/ 0.

dBs oyt = (Lo + Sol1)dt + 5251dBy i

[Gardiner, 1994; Carmichael, 1994; Gough-James, 2009]
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Quantum Feedback Networks

Network components - open quantum systems
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Elementary network constructs

concatenation product

_ S, 0 L 7,
GlEGz—(( 0 52)7<L2 )"(Z2>"H1+H2)

series product

Quantum Feedback Networks

[Gough and James, 2008, 2010]
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Quantum Feedback Networks

direct connection product

Hy + Hy + ZYZy + Z1Z5)

linear fractional transformation (LFT) ittt
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Quantum Feedback Networks

Reducible networks in quantum optics
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[Wiseman-Milburn, 1994]
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Quantum Feedback Networks

Non-reducible networks in quantum optics

beamsplitter

bs

[Yanagisawa-Kimura, 2003]

N=F(BSBABB)aT))
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Quantum Feedback Networks

Direct measurement feedback [Wiseman, 1994]
Controlled Hamiltonian
Ho + Fc

Before feedback, the quantum system is described by
G =(1,L,Hp)E (S5,0,0)

where S = e~ F is unitary (describes the classical input as an equivalent
field input that models photodetection).

input field output field i(t)
A(t) —_—> PD
uantum system
e(t) q Y
> G
control signal photocurrent

k|

feedback gain
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Quantum Feedback Networks

After feedback, we have

GC/ = (Sv 07 0) < (17 Lv HO) = (57 SL; HO)
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S
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Quantum Feedback Networks

Realistic detection [Warszawski-Wiseman-Mabuchi, 2002]
The quantum system is given by

Gq = (1’ qu Hq)a

and the classical detection system is given by the classical stochastic
equations

dx(t) = F(x(t))dt + g(x(t))dw(t).
dY(t) = h(x(t))dt + dv(t),

+
classical system —O—» Yy

quantum system

GQ

r

detection system G.
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Quantum Feedback Networks

The classical system is equivalent to
GC = (17 LCla HC) H (17 LC270)

where Loy = —ig'p — %VTg, Lo = %h and H. = %(pr—i—pr).

The complete cascade system is
G = ((1,La,He)<(1,Lg,Hg)) B (1, Lc2,0)

Li+L Los *

i
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Quantum Feedback Networks

The unnormalized quantum filter for the cascade system is

do(X) = o(—i[X,Hq+ Hc + Z( calqg — LqLcl)]
) (X))dt 4+ o+(LisX + XLeo)dy.

+,;<

L1 +La
Lc2

For instance, X = X; ® ¢, where ¢ is a smooth real valued function on R".

Filtered estimate of quantum variables:
me(Xq) = 0e(Xq)/0e(1)

Matt James (ANU)
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Quantum Feedback Networks

Quantum Hardware Description Language (QHDL)

[Mabuchi and colleagues, 2011]
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MZ = BS, <« (phase B 1) < BS;
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uantum Feedback Networks

entity Mach_Zehnder is

generic (phi_mz: real := 0);

port (Inl, VacIn: in fieldmode; Outl, Out2: out fieldmode);
end Mach_Zehnder;

architecture structure_MZ of Mach_Zehnder is
component beamsplitter
port (a, b: in fieldmode; ¢, d: out fieldmode);
end component beamsplitter;

component phase

generic (phi: real);

port (a: in fieldmode; b: out fieldmode);
end component phase;

signal bsl_phase, bs1_bs2, phase_bs2: fieldmode;

begin
BS1: beamsplitter
port map (a => Inl, b => Vacln, ¢ => bsl_bs2, d => bsl_phase);
phase: phase
generic map (phi => phi_mz);
port map (a => bsl_phase, b => phase_bs2);
BS2: beamsplitter
port map (a => phase_bs2, b => bs1_bs2, ¢ => Outl, d => Out2);
end structure_MZ;

[Mabuchi and colleagues, 2011]
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Quantum Dissipative Systems

Quantum Dissipative Systems

Combine perspectives from

@ quantum physics - damping, commutation relations
- quantum noise (e.g. Gardiner-Collett, 1985, etc)

@ control engineering - signals, disturbances, uncertainty
- passivity, gain (e.g. Zames, 1965, Willems, 1972, 1997, etc)

in order to develop analysis and design tools.

Matt James (ANU) Quantum Feedback Control - Lecture 3 23 / 47



Quantum Dissipative Systems

The plant is the system of interest, interacting with its environment.

Environment can include infinite heat baths, as well as other systems
- a network.
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Quantum Dissipative Systems

Given two reducible systems P = H;P; and W = W, an interaction
Hamiltonian

K=—iY (NiMg— M;N),
k

where Ny € ap, M € /g, and a list of series connections
S = {Wk < Pj, Pk/ <1Wj/},

one can form a network
N=PAW.

We call W an exosystem, and keeping the interconnection structure fixed,
we let W vary in a class # of exosystems.
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Quantum Dissipative Systems

Lindblad generator for a system G = (S, L, H):

Ga(X) = LL(X) — i[X, H]

e Lu(X) = %LT[X, L]+ %[LT,X]L.
Then

EX(O] = X(9)+ [ E.[Ga(X()]dr
for all t > s.
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Quantum Dissipative Systems

Plant
P=(S,L,H)

Exosystem
W= (R,w,D) e

Supply rate
rp(W) € Dp R Doy

a self-adjoint symmetrically ordered function of the exosystem parameters,

depending on the plant parameters.

We say that the plant P is dissipative with supply rate r with respect to a
class # of exosystems if there exists a non-negative system observable
V € ap such that

Eq [V(t) V- /Otr(W)(s)ds] <0

for all exosystems W € # and all t > 0.
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Quantum Dissipative Systems

Infinitesimal characterization

The plant P is dissipative with supply rate r with respect to a class #  of
exosystems if and only if there exists a non-negative system observable

V € @ such that

Gpaw(V) —r(W) <0

for all exosystem parameters W € #.

Special case from now on:
PAW=P<«W

and
W = (l,L, H)
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Consider
W = (R,w, —i(vIK — KTv))

where v commutes with plant variables and Kp € .
Open quantum systems are dissipative with respect to the “natural”
supply rate

ro(W) = gPdW(VO)
— Lu(Vo)+ Lo(Vo) + (w! V*)“ZT(VVV)’

where Vg > 0 commutes with H.

2= )l
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Quantum Dissipative Systems

Transformation under series product
Let P; and Py be dissipative with respect to supply rates rp, (W) and
rp, (W), storage functions V4 and V5, and exosystem classes #; and #5

respectively.
The series system P, < Py is dissipative with storage function V; 4+ V5 and

supply rate
rP2<1P1(W) - rP1(P/2 4 W) + er(Pl <]W)7

with respect to the exosystem class
W ={W : PLaW € #; and P; <W € %5},
where

P} = (S{S,S1, S} (S2 — 1) L1+S{ Ly, Ho-+Im {L; (Sp+1)L; — L{S2L1}).
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Quantum Dissipative Systems

Example
Open harmonic oscillator (e.g optical cavity)

P = (1, \/7a, wa*a)
Let Vo = H/w = a*a.
(W) =Gpaw(Vo) = —va*a— y(w*a+a*w)+ L, (Vo) — i[Vo, D]
By completion of squares the supply rate can be re-written
n(W)=—-(Vva+w) (Vya+w)+ww+ L,(Vo) — i[Vo, D]

and hence the system has gain 1 relative to the output quantity \/ya+ w
and commuting inputs w.

Note that if we include ground state energy and write

V=a%+ % = q?+ p? (here g = a+ a*, p= —i(a — a*), then passivity
and gain holds but with A =~ > 0.
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Quantum Feedback Control by Interconnection

Quantum Feedback Control by Interconnection

Inspired by energy-based design methods for classical mechanical
systems (e.g. robotics) (e.g. Ortega and Spong, 1989, etc)

Control design as network design

Controller may be classical, quantum, or a mixture of the two
Design focusses on the physical structure

Interconnections can be field-mediated and/or direct interactions

Covers standard problems of stabilization, regulation, robustness
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Quantum Feedback Control by Interconnection

The plant and the controller may interact with their environment.
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Quantum Feedback Control by Interconnection

Methodology
Specify the control objectives by encoding them in

@ a non-negative observable V, € op ® o/,
@ a supply rate rg(W),

@ and a class of exosystems # for which a network (P A C) AW is well
defined.

One then seeks to find, if possible, a controller C such that

Gprcyw(Va) — ra(W) <0

for all exosystem parameters W € #.
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Quantum Feedback Control by Interconnection

Example

Cavity P = (1, a,0) with vacuum input.

Wish to maintain steady-state photon number a*a.
Consider simple direct plant-controller interaction

C = (1,0, —i(Kiv — *Kp))

where K, is a plant operator and v is a complex number, both to be
chosen.

Closed loop system
PAC=PHC.

We set
Vg=(a—a)'(a—a)=a"a—a"a—a‘a+a‘a,

and for a positive real number c,

ra(W) = —cVq,

with #4 = {(-, -, 0)}, which consists only of the trivial exosystem.
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Quantum Feedback Control by Interconnection

The design problem is to select, if possible, Kp, a plant operator, and v, a
complex number, such that

Gpac(Vy) +cVy <0

for suitable ¢ > 0. We choose Kp = a.
Evaluate LHS, and set c =1/2, v = —a/2.

Physically, this control design corresponds to a classical energy source
connected to the cavity, such as when the vacuum field is replaced by a
coherent field (signal plus noise), i.e. a laser beam.
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Linear Quantum Systems

Linear Quantum Systems

We consider noncommutative stochastic systems of the form

dx(t) = Ax(t)dt+ Bdw(t)
dz(t) = Cx(t)dt+ Ddw(t)

where A, B, C and D are real matrices, and

x1(t)
x(t)=|
Xn(t)
is a vector of possibly noncommutative plant variables.

[James, Nurdin and Petersen, 2008]

[General Ito algebra theory: Belavkin]
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Linear Quantum Systems

The initial system variables x(0) are Gaussian with state p, and satisfy the
commutation relations

[xi(0), xc(0)] = Ci& = 2i©@p, j,k=1,...,n,

where © is a real antisymmetric matrix.
For example, a system with one classical variable and two conjugate
quantum variables is characterized by

0
0

0 0
©=10 1
0 -1 0
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Linear Quantum Systems

The vector quantity w describes input channels and is assumed to admit
the decomposition

dw(t) = Bu(t)dt + dw(t)

where 3, (t) is the self-adjoint finite variation part, and Ww(t) is the
(Gaussian) noise part of w(t) with lto table

dw(t)dw' (t) = Fydt,
where Fj is a non-negative Hermitian matrix.
0 0
1

1
Fa=10
0 —i 1

describes a noise vector with one classical component and a pair of
conjugate quantum Gaussian noises.
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Linear Quantum Systems

Physical systems
Physical systems impose constraints on the matrices A, B, C, D, e.g.:

JA+AJ+ClUc = 0
B=—JCty

for the case where © = J and F = | 4 iJ (non-degenerate case).

We say that A, B, C, D are physically realizable if the corresponding
equations correspond to those arising from a system of quantum harmonic
oscillators coupled to boson fields in the vacuum state.

The degenerate extension of this allows for mixed quantum-classical
situations.
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Linear Quantum Systems

H®® robust control
The control objective is to reduce the gain from input w to output z by an
appropriate choice of controller C.
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Linear Quantum Systems

Plant

P = P,EP,BP;
(1,/F1a, 0) @ (1,/rza, 0) B (1,/r3 a, 0),

Controller
C=CiHGC HCs.

The plant-controller network is
PAC=P;1H(C3<Py)HE (P3<C;)HC,.
The supply rate is
r(W) = g2w'w — (/A3 2+ w)' (Vi3 a+ w)
for exosystems W € %, where
Wy ={W = (1,0,0)H(1,w,0)EH(1,0,0)H(1,0,0) : w commutes with .
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Linear Quantum Systems

Example
The plant is an optical cavity:
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Linear Quantum Systems

For the plant parameters k1 = 2.6, ko = 0.2, k3 = 0.2, a controller was
realized as a cavity with annihilation operator b:

C=(-1,—-V0.2b,0)H(1,v/1.8b, 0) B (1,v/0.2 b, 0).

This construction had two steps:
@ Evaluation of quadratic forms with respect to Gaussian states, and
using some classical results. This gives part, not all, of the solution.

@ Completing the design by adding field couplings to ensure
commutation relations preserved. This is algebraic.
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Linear Quantum Systems

Controller, specified to be quantum, realized as a cavity:

KKgo = 1.8
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Linear Quantum Systems

Another example, plant " Y
(not shown) was an
optical amplifier in 180°
. . . pphase shift
series with a Ca.VIt)’.
VK1
kK1 =02 Kia =02
aK
Nq \ / Cq
Kz = 2.1788T l rxcs = 0.2
VK2
Nel
e -V2 classical system
v dé. = —0.25¢.dt — 0.1355dn,
50 - 50 beam homodyne classical
splitter detection

Here, the controller was specified to have quantum and classical degrees of
freedom.
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Linear Quantum Systems

"...the most fruitful areas for growth of sciences were those ...
between various established fields.’

‘It is these boundary regions of science which offer the richest
opportunities to the qualified investigator.’

Norbert Wiener, Cybernetics, 1948

Thanks for your attention!
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