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SUMMARY

The left–invariant sub-Riemannian problem on the Engel group is considered. This problem is very important as nilpotent approximation of nonholonomic systems in four–dimensional space with two–dimensional
control (see [1,2]), for instance of a system which describes movement of mobile trailer robot.
Parameterization of extremal curves by elliptic Jacobi’s functions was obtained. Discrete symmetries of Exponential mapping were considered and the corresponding Maxwell sets were constructed. Thus global
bound of the cut time (i. e., the time of loss of global optimality) was found which gives necessary optimality conditions for extremal curves. The first conjugate time (i. e., the time of loss of local optimality) was
investigated. It was shown that the function that gives the upper bound of the cut time provides the lower bound of the first conjugate time.
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 , q ∈ R4, u ∈ R2,

(1)
q(0) = q0 = (x0, y0, z0, v0), q(t1) = q1 = (x1, y1, z1, v1), (2)
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Since the problem is invariant under left shifts on the Engel group,
we can assume that the initial point is identity of the group
q0 = (x0, y0, z0, v0) = (0, 0, 0, 0).

HAMILTONIAN SYSTEM

Existence of optimal solutions of problem (1)–(3) is implied by
Filippov’s theorem [4]. By Cauchy–Schwarz inequality, it follows
that sub-Riemannian length minimization problem (3) is equivalent
to action minimization problem:∫ t1

0

u2
1 + u2

2
2

dt → min . (4)

Pontryagin’s maximum principle [3,4] was applied to the resulting
optimal control problem (1), (2), (4). Abnormal extremals were
parameterized. Denote vector fields at the controls in the
right-hand side of system (1):

X1 = (1, 0,−
y
2
, 0)T , X2 = (0, 1,

x
2
,

x2 + y2

2
)T ,

and the corresponding linear on fibers of the cotangent bundle
T∗M Hamiltonians hi(λ) = 〈λ,Xi(q)〉, λ ∈ T∗M , i = 1, 2.
Normal extremals satisfy the Hamiltonian system

λ̇ = ~H(λ), λ ∈ T∗M, (5)

where H = 1
2

(
h2

1 + h2
2

)
.

The normal Hamiltonian system (5) is given, in certain natural
coordinates, as follows on a level surface

{
λ ∈ T∗M | H = 1

2

}
:

θ̇ = c, ċ = −α sin θ, α̇ = 0, (6)
q̇ = cos θ X1(q) + sin θ X2(q), q(0) = q0.

PARAMETERIZATION OF NORMAL EXTREMAL
TRAJECTORIES

The family of all normal extremals is parameterized by points of
the phase cylinder of pendulum

C =

{
λ ∈ T∗q0

M | H(λ) =
1
2

}
=
{
(θ, c, α) | θ ∈ S1, c, α ∈ R

}
,

and is given by the exponential mapping

Exp : N = C × R+→ M,
Exp(λ, t) = qt = (xt, yt, zt, vt).

Energy integral of pendulum (6) is expressed by
E = c2

2 − α cos θ. The cylinder C has the following stratification
corresponding to the particular type of trajectories of the
pendulum:

C = ∪7
i=1Ci, Ci ∩ Cj = ∅, i 6= j, λ = (θ, c, α),

C1 = {λ ∈ C | α 6= 0,E ∈ (−|α|, |α|)},
C2 = {λ ∈ C | α 6= 0,E ∈ (|α|,+∞)},
C3 = {λ ∈ C | α 6= 0,E = |α|, c 6= 0},
C4 = {λ ∈ C | α 6= 0,E = −|α|},
C5 = {λ ∈ C | α 6= 0,E = |α|, c = 0},
C6 = {λ ∈ C | α = 0, c 6= 0},
C7 = {λ ∈ C | α = c = 0}.
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Extremal trajectories were parameterized by elliptic Jacobi’s
functions for any λ ∈ C in the paper [5]. This parameterization
was obtained in natural coordinates (ϕ, k , α), which rectify the
equations of pendulum: ϕ̇ = 1, k̇ = 0, α̇ = 0.

CUT TIME

In order to investigate the optimality question for discovered
extremal trajectories descrete group of symmetries of exponential
mapping were considered:
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Figure: Action of the symmetries: εi(γ) = γ i, i = 1 . . . 7

Thus the corresponding Maxwell sets were constructed. The point
of sub-Riemannian geodesic is called Maxwell point if two different
extremal trajectories come to this point at the same time called
Maxwell time t1

MAX : C → (0,+∞]:

λ ∈ C1 ⇒ t1
MAX = min(2p1

z , 4K )/σ,

λ ∈ C2 ⇒ t1
MAX = 2Kk/σ,

λ ∈ C6 ⇒ t1
MAX =

2π
|c|
,

λ ∈ C3 ∪ C4 ∪ C5 ∪ C7 ⇒ t1
MAX = +∞.

where σ =
√
|α|; K (k) =

∫ π
2

0

dt√
1− k2 sin2 t

;

p1
z(k) ∈ (K (k), 3K (k)) is the first positive root of the function

fz(p, k) = dn p sn p + (p − 2 E(p)) cn p; E(p) =
∫ p

0 dn2 t dt ;
sn p, cn p and dn p are Jacobi’s functions [6].
It is well known that geodesic cannot be optimal after Maxwell
point. Thus Maxwell time gives upper bound of the cut time:

tcut(λ) = sup{t > 0 | Exp(λ, s) is global optimal for s ∈ [0, t]}.

THEOREM (1)

For any λ ∈ C

tcut(λ) ≤ t1
MAX(λ). (7)

The bound of the cut time obtained in the Theorem (1) is sharp for
the equilibrium of the pendulum, i.e. the corresponding trajectories
are optimal to infinity. Analysis of the global structure of the
exponential map shows that found estimate is not exact in general
case.

CONJUGATE TIME

The local optimality of extremal trajectories was studied. A point
qt = Exp(λ, t) is called a conjugate point for q0 if ν = (λ, t) is a
critical point of the exponential mapping and that is why qt is the
corresponding critical value:

dν Exp : TνN → TqtM is degenerate,

i. e.,
∂(x, y , z, v)

∂(θ, c, α, t)
(ν) = 0.

Note that t in this case is called a conjugate time along extremal
trajectory qs = Exp(λ, s), s ≥ 0.
Due to the strong Legendre condition, for any normal extremal
there exists a countable family of conjugate points. Besides,
conjugate times are separated from each other. The first conjugate
time along the trajectory Exp(λ, s) is denoted by

t1
conj = min {t > 0 | t is a conjugate time along Exp(λ, s), s ≥ 0} .

The trajectory Exp(λ, s) loses local optimality at the moment
t = t1

conj(λ) (see [4]). The following lower bound of the first
conjugate time was proved.

THEOREM (2)

For any λ ∈ C
t1
conj(λ) ≥ t1

MAX(λ). (8)

Using the estimate of cut time, Theorem (1), and the estimate of
conjugate time, Theorem (2), the global structure of the
exponential map in sub-Riemannian problem on the Engel group
was described. So this problem was reduced to solving the system
of algebraic equations.

SYSTEM OF ALGEBRAIC EQUATIONS

In order to compute the optimal trajectory for a given terminal point
(x1, y1, z1, v1), the following system of algebraic equations should
be solved: 

x(u1, u2, k , α) = x1,
y(u1, u2, k , α) = y1,
z(u1, u2, k , α) = z1,
v(u1, u2, k , α) = v1.

(9)

Using one symmetry (dilations) the system (9) was reduced to the
system with three algebraic equations in three unknowns variables:

Y (u1, u2, k) = Y1, Z(u1, u2, k) = Z1, V (u1, u2, k) = V1,
(10)

where Y = y
x , Z = z

x2,V = v
x3.

Upper bound of cut time gives decomposition of the preimage
C = ∪8

i=1Di of exponential map Exp into subdomains Di .
The image of the exponential mapping was decomposed into
subdomains respectively:

M = ∪4
i=1Mi, (11)

M1 = {(x, y , z, v) ∈ R4 | x > 0, z > 0}, (12)
M2 = {(x, y , z, v) ∈ R4 | x < 0, z < 0}, (13)
M3 = {(x, y , z, v) ∈ R4 | x > 0, z < 0}, (14)
M4 = {(x, y , z, v) ∈ R4 | x < 0, z > 0}. (15)

There is a conjecture that restriction Exp : Di → Mi ,
Exp : Di+4→ Mi of the exponential map for these subdomains is
a diffeomorphism, i. e. ∀q1 ∈ Mi ∃!(λ, t) ∈ Di,Exp(λ, t) = q1
and ∀q1 ∈ Mi ∃!(λ, t) ∈ Di+4,Exp(λ, t) = q1, i ∈ {1, . . . , 4}.
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Figure: Hybrid method for solving system of algebraic equations (10)
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CONCLUSION

On the basis of these results, software for numerical computation of a global solution to the sub-Riemannian problem on a group of Engel was developed. So solution of the path-planning problem for mobile trailer
robot via nilpotent approximation will be developed (this work is in progress).
The method for estimating a conjugate time used in this work was successfully applied earlier to Euler’s elastic problem [7] and sub-Riemannian problem on the group of rototranslations [8]. There is no doubt that
this method is also valid for nilpotent sub-Riemannian problem with the growth vector (2,3,5) [9, 10, 11, 12]. The method can be used for other invariant sub-Riemannian problems on Lie groups of low-dimensional
integrable in non-elementary functions. The first natural step in this direction is investigation of invariant sub-Riemannian problem on 3D Lie groups which are classified by A.A. Agrachev and D.Barilari [13].


