Motivations

- Self-propulsion at micro-scales?
- Applications on fertility, on human diagnosis and therapy...
- Physicians and biologists noticed that micro-swimmers as Spermatozoid are attracted by the wall.
([H. Winet et al., Reproduction, 1984]).

- Does the boundary have an effect on the controllability of the swimmer?

Controllability issues

- Is it possible to control the state of the system?
- Does the boundary impact the controllability of the swimmer?

Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as

- ξ is a function which defines the shape of the swimmer.
- $p=(c, R) \in \mathbb{R}^{3} \times S O(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\Longrightarrow \xi(t)$ pushes the fluid.
The fluid reacts, under the Stokes Equation

$$
\left[\begin{array}{l}
-\nu \Delta u+\nabla q=f \\
\operatorname{div} u=0
\end{array}\right.
$$

Self-propulsion constraints $\Longrightarrow\left\{\begin{array}{c}\sum_{\text {Forces }}=0 \\ \text { Torque }=0\end{array}\right.$

$$
\Longleftrightarrow\left\{\begin{array}{l}
\int_{\partial \Omega} D N_{p, \xi}\left(\left(\partial_{p} \Phi\right) \dot{p}+\left(\partial_{\xi} \Phi\right) \dot{\xi}\right) d x_{0}=0 \\
\int_{\partial \Omega} x_{0} \times D N_{p, \xi}\left(\left(\partial_{p} \Phi\right) \dot{p}+\left(\partial_{\xi} \Phi\right) \dot{\xi}\right) d x_{0}=0
\end{array}\right.
$$

As a result the swimmer moves, under the ODE,

$$
\dot{p}=V(p, \xi) \dot{\xi}
$$

The swimmers

- The swimmer that we consider consists of n spheres connected by the swimmer's arm.

4-sphere swimmer

3-sphere swimmer
[Golestanian, Najafi 2004]

- The change of the swimmer's shape consists in changing the length of its $\operatorname{arms}\left(\xi_{i}\right)_{i}$.

$$
\text { Controllability's result in } \mathbb{R}^{3} \text { - [Alouges, DeSimone, Heltai, Lefevbre, Merlet] }
$$

The 4-sphere swimmer is globally controllable on \mathbb{R}^{3}.

The 3-sphere swimmer is globally controllable on \mathbb{R}.

The 4-sphere swimmer is controllable on an dense open set.

For almost $\left(x_{0}, y_{0}, \theta_{0}\right)$ such that $\theta_{0} \neq$ $\frac{\pi}{2}$, the 3 -sphere swimmer is locally controllable on (x_{0}, y_{0}, θ_{0}).
If $\theta_{0}=\frac{\pi}{2}$ then it moves along a vertical line.

Outline of the proofs

The proofs are based on the study of the subspace $\operatorname{Lie}_{(p, \xi)}\left(\left(\mathbf{V}_{i}\right)_{i=1 . . M}\right)$, where $\left(\mathbf{V}_{i}\right)_{i}$ are the vector fields of the motion equation,

$$
\dot{p}=\sum_{i=1}^{M} \mathbf{V}_{i}(p, \xi) \dot{\xi}
$$

- By using the limit and the case without wall
- The orbit with a 3 dimensional Lie space (if $\theta_{0}=\frac{\pi}{2}$)
\triangleright By symmetry.
- The others such that the dimension is equal to 5 .
\triangleright By using an integral representation of the solution of the Stokes problem, we get an expansion of the Neumann-To-Dirichlet map for large arm and small spheres.
\triangleright Calculation of the Lie brackets and application of Chow Theorem.
\triangleright Application of the Nagano Theorem.

Rough no slip wall - Work in Progress with D. Gérard-Varet

- The 4-sphere remain controllable on an dense open set.
- The dimension of the reachable set of the 3-sphere is greater than or equal to 5 .

Outline of the proof

- The Green function of the Stokes problem is implicitly defined.
- Analyticity of the Green Function.
- Analyticity of the Neumann-to-Dirichlet map.
- Expansion of the Neumann-to-Dirichlet map for small ϵ.
- By using the limit of the family of vector-fields which defines the equation of motion,
\triangleright when the altitude of the swimmer is large
\triangleright when the parameter ϵ is small
- Application of the preceding results.

References

- F. Alouges, A. Desimone, L. Heltai, A. Lefebvre, and B. Merlet.

Optimally swimming stokesian robots, arXiv :1007.4920v1 [math.OC], 2010.

- F Alouges, A. DeSimone, and A. Lefebvre.

Optimal strokes for low reynolds number swimmers : an exemple. Journal of Nonlinear Science, 2008.

- Blake, J.R.

A note on image system for a stokeslet in a no-slip boundary, Proc.
Camb. Phil. Soc. (1971), 70, 303.
A. Najafi and R. Golestanian.

Simple swimmer at low Reynolds number: Three linked spheres. Phys. Rev. E (2004).

