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Motivations

I Self-propulsion at micro-scales?
I Applications on fertility, on human

diagnosis and therapy...

I Physicians and biologists noticed
that micro-swimmers as
Spermatozoid are attracted by the
wall.
([H. Winet et al., Reproduction,
1984]).

I Does the boundary have an effect on the controllability of the
swimmer?

Controllability issues

I Is it possible to control the state of the system?
I Does the boundary impact the controllability of the swimmer?
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Model swimmer/fluid

The swimmer is described by the vector (ξ, p) such as :
I ξ is a function which defines the shape of the swimmer.
I p = (c,R) ∈ R3 × SO(3) parametrizes the swimmer’s position.

The swimmer changes its shape =⇒ ξ(t) pushes the fluid.
The fluid reacts, under the Stokes Equation[

−ν∆u +∇q = f ,
divu = 0.

Self-propulsion constraints =⇒
{∑

Forces = 0
Torque = 0

⇐⇒





∫
∂Ω DNp,ξ

(
(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0

∫
∂Ω x0 × DNp,ξ

(
(∂pΦ)ṗ + (∂ξΦ)ξ̇

)
dx0 = 0.

As a result the swimmer moves, under the ODE,

ṗ = V (p, ξ)ξ̇ .

The swimmers

I The swimmer that we consider consists of n spheres connected by the
swimmer’s arm.

where S := ( 2a√
3
,+∞)3, the lower bound being chosen in order to avoid overlaps of

the balls, P = R2 × R, and the functions Xi are now defined as

Xi(ξ, c,α, r) = c + Rθ(ξiti + r) ∀i ∈ {1, 2, 3} .

Notice that the functions Xi are still analytic in (ξ, c, θ), and we use them to compute
the instantaneous velocity on the sphere Bi

vi =
∂Xi

∂t
(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.
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Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
(ξ, c,R, r) = ċ + ω × (ξiti + r) + Rtiξ̇i
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[Golestanian, Najafi 2004]

I The change of the swimmer’s shape consists in changing the length of its
arms (ξi)i .

Example of stroke

Controllability’s result in R3 - [Alouges, DeSimone, Heltai, Lefevbre, Merlet]
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The 4-sphere swimmer is globally controllable on R3.

I The 3-sphere swimmer is globally controllable on R.

Influence of a plane wall - Joint work with F. Alouges
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(ξ, c, θ, r) = ċ + θ̇e3 × (ξiti + r) + Rθtiξ̇i ,

where e3 is the vertical unit vector. Eventually, due to the symmetries of the system,
the swimmer stays in the horizontal plane.

2.3. The four sphere swimmer moving in space (4S). We now turn to
the more difficult situation of a swimmer able to move in the whole three dimensional
space and rotate in any direction. In this case, we fix N = 4 and we consider a regular
reference tetrahedron (S1, S2, S3, S4) with center O ∈ R3 such that dist(O,Si) = 1

and as before, we call ti = �OSi for i = 1, 2, 3, 4.
The position and orientation in the three dimensional space of the tetrahedron

are described by the coordinates of the center c ∈ R3 and a rotation R ∈ SO(3), in
such a way that d = 6.

We place the center of the ball Bi at xi = c + ξiRti with ξi > 0 for i = 1, 2, 3, 4
as depicted in Fig. 2.3 and forbid possible rotation of the spheres around the axes. A
global rotation (R �= Id) of the swimmer is however allowed.

The four ball cluster is now completely described by the list of parameters X =

(ξ, c,R) ∈ S × P, where S := (
�

3
2 ,+∞)4 and P = R3 × SO(3). Again, the lower

bound for ξi is chosen in order to avoid overlaps of the balls.

x4

e1,4

x1

x2

x3

r1,2

Fig. 2.3. The four sphere swimmer (4S).

Furthermore, the function Xi are now defined as

Xi(ξ, c,R, r) = c + R(ξiti + r) ∀i ∈ {1, 2, 3, 4} ,

which are still analytic in (ξ, c,R), from which we compute the instantaneous velocity
on the sphere Bi

vi =
∂Xi

∂t
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The 4-sphere swimmer is controllable
on an dense open set.

I

θ

θ =
π

2

y

y

For almost (x0, y0, θ0) such that θ0 6=
π
2, the 3-sphere swimmer is locally con-
trollable on (x0, y0, θ0).
If θ0 = π

2 then it moves along a vertical
line.

Outline of the proofs

The proofs are based on the study of the subspace Lie(p,ξ)((Vi)i=1..M),
where (Vi)i are the vector fields of the motion equation,

ṗ =
M∑

i=1

Vi(p, ξ)ξ̇ .

I By using the limit and the case without wall

I The orbit with a 3 dimensional Lie space (if θ0 = π
2).

. By symmetry.
I The others such that the dimension is equal to 5.
. By using an integral representation of the solution of the Stokes problem,

we get an expansion of the Neumann-To-Dirichlet map for large arm and
small spheres.

. Calculation of the Lie brackets and application of Chow Theorem.

. Application of the Nagano Theorem.

Rough no slip wall - Work in Progress with D. Gérard-Varet

I The 4-sphere remain controllable on an dense open set.
I The dimension of the reachable set of the 3-sphere is greater than or equal

to 5.
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Outline of the proof

I The Green function of the Stokes problem is implicitly defined.
I Analyticity of the Green Function.
I Analyticity of the Neumann-to-Dirichlet map.
I Expansion of the Neumann-to-Dirichlet map for small ε.
I By using the limit of the family of vector-fields which defines the equation

of motion,
. when the altitude of the swimmer is large
. when the parameter ε is small

I Application of the preceding results.
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