Influence of boundary on the motility of micro-swimmers Laetitia Giraldi*

- Self-propulsion at micro-scales?
- Applications on fertility, on human diagnosis and therapy...
- Physicians and biologists noticed that micro-swimmers as Spermatozoid are attracted by the wall.
 - ([H. Winet et al., Reproduction, 1984]).

Influence of a plane wall - Joint work with F. Alouges

Outline of the proofs

The proofs are based on the study of the subspace $\text{Lie}_{(p,\xi)}((\mathbf{V}_i)_{i=1..M})$,

with F. Alouges

The 4-sphere swimmer is controllable on an dense open set.

For almost (x_0, y_0, θ_0) such that $\theta_0 \neq \frac{\pi}{2}$, the 3-sphere swimmer is locally controllable on (x_0, y_0, θ_0) . If $\theta_0 = \frac{\pi}{2}$ then it moves along a vertical line.

Does the boundary have an effect on the controllability of the swimmer?

Controllability issues

- ► Is it possible to control the state of the system?
- Does the boundary impact the controllability of the swimmer?

Model swimmer/fluid

- The swimmer is described by the vector (ξ, p) such as :
- $\blacktriangleright \xi$ is a function which defines the shape of the swimmer.
- ▶ $p = (c, R) \in \mathbb{R}^3 \times SO(3)$ parametrizes the swimmer's position.

The swimmer changes its shape $\implies \xi(t)$ pushes the fluid. The fluid reacts, under the Stokes Equation

$$\begin{bmatrix} -\nu \Delta u + \nabla q = f, \\ \operatorname{div} u = 0. \end{bmatrix}$$

Self-propulsion constraints $\Longrightarrow \begin{cases} \sum \operatorname{Forces} = 0 \\ \operatorname{Torque} &= 0 \end{cases}$

where $(\mathbf{V}_i)_i$ are the vector fields of the motion equation,

$$\dot{p} = \sum_{i=1}^M \mathbf{V}_i(p,\xi) \dot{\xi}$$
 .

- ► By using the limit and the case without wall
- ► The orbit with a 3 dimensional Lie space (if θ₀ = π/2).
 ▷ By symmetry.
- ► The others such that the dimension is equal to 5.
 - By using an integral representation of the solution of the Stokes problem, we get an expansion of the Neumann-To-Dirichlet map for large arm and small spheres.
 - ▷ Calculation of the Lie brackets and application of Chow Theorem.
 - ▷ Application of the Nagano Theorem.

Rough no slip wall - Work in Progress with D. Gérard-Varet

- ► The 4-sphere remain controllable on an dense open set.
- The dimension of the reachable set of the 3-sphere is greater than or equal to 5.

$$\iff \begin{cases} \int_{\partial\Omega} DN_{p,\xi} \left((\partial_p \Phi) \dot{p} + (\partial_{\xi} \Phi) \dot{\xi} \right) dx_0 = 0 \\ \int_{\partial\Omega} x_0 \times DN_{p,\xi} \left((\partial_p \Phi) \dot{p} + (\partial_{\xi} \Phi) \dot{\xi} \right) dx_0 = 0. \end{cases}$$

As a result the swimmer moves, under the ODE,

 $\dot{p} = V(p,\xi)\dot{\xi}$.

The swimmers

The swimmer that we consider consists of n spheres connected by the swimmer's arm.

3-sphere swimmer

4-sphere swimmer

For the swimmer's shape consists in changing the length of its

Outline of the proof

- ► The Green function of the Stokes problem is implicitly defined.
- Analyticity of the Green Function.
- Analyticity of the Neumann-to-Dirichlet map.
- Expansion of the Neumann-to-Dirichlet map for small ϵ .
- By using the limit of the family of vector-fields which defines the equation of motion,
 - ▷ when the altitude of the swimmer is large
- \triangleright when the parameter ϵ is small
- Application of the preceding results.

References

Example of stroke

Controllability's result in \mathbb{R}^3 - [Alouges, DeSimone, Heltai, Lefevbre, Merlet]

The 4-sphere swimmer is globally controllable on \mathbb{R}^3 .

The 3-sphere swimmer is globally controllable on \mathbb{R} .

F. Alouges, A. Desimone, L. Heltai, A. Lefebvre, and B. Merlet. Optimally swimming stokesian robots, arXiv :1007.4920v1 [math.OC], 2010.

■ F Alouges, A. DeSimone, and A. Lefebvre.

Optimal strokes for low reynolds number swimmers : an exemple. Journal of Nonlinear Science, 2008.

Blake, J.R.

A note on image system for a stokeslet in a no-slip boundary, Proc. Camb. Phil. Soc. (1971), **70**, 303.

A. Najafi and R. Golestanian.

Simple swimmer at low Reynolds number: Three linked spheres. Phys. Rev. E (2004).

*CMAP, École Polytechnique CNRS, Route de Saclay, 91128 Palaiseau Cedex, France

giraldi@cmap.polytechnique.fr