Extension of Chronological Calculus for Dynamical Systems on Manifolds

Robert J. Kipka and Yuri S. Ledyaev

Abstract:

We present an extension of Chronological Calculus to the case of infinite-dimensional *C^m*-smooth manifolds. The original Chronological Calculus was developed by Agrachev and Gamkrelidze for the study of dynamical systems on C^{∞} -smooth finite-dimensional manifolds. The extension of this calculus allows for the study of control systems with merely measurable controls and may be applied to C^m-smooth manifolds modeled over Banach spaces. We apply our extension to establish a formula of Mauhart and Michor for the generation of Lie brackets of vector fields and we present a proof of the Chow-Rashevskii theorem on C^m-smooth manifolds modeled over Banach spaces.

Classical Chronological Calculus:

The $C^{\infty}(M)$ algebra: A central object of study in the Chronological Calculus of Agrachev and Gamkrelidze is the algebra $C^{\infty}(M)$ of C^{∞} -smooth functions $f: M \to \mathbb{R}$. An important observation is that inherently nonlinear objects such as diffeomorphisms of manifolds give rise to inherently linear objects such as automorphisms of this algebra. Indeed, given a diffeomorphism $A:M \to M$, one obtains an automorphism $\hat{A}: C^{\infty}(M) \to C^{\infty}(M)$ by $\hat{A}(f) = f \circ A$. There are similar correspondences for points in M, for tangent vectors, and for vector fields. These correspondences provide a means to study many of the nonlinear objects of control theory in a setting where they behave linearly.

The Whitney Topology: Agrachev and Gamkrelidze place a topology on $C^{\infty}(M)$ in which $f_n \rightarrow f$ if and only for any compact subset K of M, one has the uniform convergence over K of f_n and derivatives of all orders to f. The precise meaning of this statement can be formulated through the Whitney embedding theorem. Equipped with this topology, $C^{\infty}(M)$ has the structure of a Fréchet space and the correspondences described above lead to the study of nonlinear objects as linear operators on this space.

Challenges: The classic chronological calculus is unable to handle control problems in which the dynamics are merely C^m-smooth, or are merely measurable in time, or which take place on a manifold whose local structure is infinite dimensional. In addition, the use of Fréchet space structure seems to complicate proofs for a number of important results.

 $o(t^n) + o(t^n) = o(t^n)$

 $O(t^n) \circ O(t^m) = O(t^{n+m})$ 2.

For vector fields V_t and W_t with locally bounded derivatives, $V_t \circ o(t^n) \circ W_t = o(t^n)$ If P_t and Q_t are families of operators arising from flows of vector fields, $P_t \circ o(t^n) \circ Q_t = o(t^n)$

These properties lead to simplified proofs of important results such as the bracket formula of Mauhart and Michor.

Using the above properties, one may check that if P_t and Q_t are differentiable at t with derivatives A_t and B_t , respectively, then the

of V_t . This is done in a general setting which allows the study of manifolds which are merely measurable in time.

Bracket Formula: Mauhart and Michor define a *bracket of flows* as $[P_t, Q_t] = P_t \circ Q_t \circ P_t \circ Q_t \circ I$. The calculus of remainder terms gives us an algebraic proof of the following formula of Mauhart and Michor: $B(P_t^1, P_t^2, ..., P_t^k) = Id + t^k B(X_1, X_2, ..., X_k) + o(t^k)$ where *B* is a bracket expression.

Chow-Rashevskii Theorem: We apply the bracket formula of Mauhart and Michor, along with some nonsmooth analysis for manifolds, to prove a variant of the Chow-Rashevskii Theorem on Banach Manifolds. In particular, we prove that if M is modeled over a smooth Banach space, then a smooth affine control system is globally approximately controllable when the Lie algebra of the associated vector fields spans $T_{a}M$ for any q.

Main Results

Extension of Chronological Calculus: Given a C^m-smooth manifold M modeled over a Banach space E, let C^r(M,E) denote the vector space of rtimes differentiable functions $f: M \rightarrow E$. The principle setting for our extension is the study of families of operators on these vector spaces. In this way, we are able to develop results for C^m -smooth dynamics on manifolds modeled over Banach spaces. For example, the local flow $P_{s,t}$ of a nonautonomous vector field V, gives rise under appropriate assumptions to a family of operators $C^r(M,E) \rightarrow C^r(M,E)$.

Calculus of Little o's: In order to facilitate use of the calculus, we have developed a calculus of remainder terms, so that one is able to refer to a family of operators Q_t as being differentiable with derivative V_t whenever one has $Q_{t+h} = Q_t + hV_t + o(h)$. This rule is satisfied, for example, when Q_t is the flow of an autonomous vector field V. We establish the following useful properties for these operators:

Product Rule for Composition of Operators: We say that a family of operators is differentiable at t with derivative A_t if $P_{t+h} = P_t + h A_t + o(h)$. composition $P_t \circ Q_t$ is differentiable with derivative $A_t \circ Q_t + P_t \circ B_t$.

Flows of Perturbed Vector Fields: Given vector fields V_t and W_t we derive a formula for the flow of their sum as a correction to the flow perturbations to nonautomomous C^m -smooth vector fields on Banach operators. In particular, we say that A_t is absolutely continuous if

$$A_t$$

measurable in time then the flow P_t satisfies

$$P_t =$$

We are able to prove that the composition of such operators is again absolutely continuous and that

$$\int_{t_0}^{t_1} \frac{d}{dt} (A_t \circ B_t) dt = \int_{t_0}^{t_1} \left(\frac{dA_t}{dt} \circ B_t + A_t \circ \frac{dB_t}{dt} \right) dt$$

Absolute Continuity: Given a family B_t of operators, we define its integral in a weak sense through its action on functions – a definition similar to the Dunford-Pettis integral of functional analysis. This in turn provides a definition of a *weak* or *distributional* derivative which is appropriate for an absolutely continuous family of

$$=A_{t_0}+\int_{t_0}^t B_s ds$$

And we then say that A_t has derivative B_t in a weak or distributional sense. For example, if V_t is a nonautonomous vector field which is

$$P_{t_0} + \int_{t_0}^t P_s \circ V_s ds$$