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SUMMARY

The classic objects of study in robotics are mathemetical models of wheeled mobile robots and robots-manipulators. In general, such systems are described by nonlinear nonholonomic control system linear with
respect to control q̇ =

∑n
i=1 ui(t)Xi(q), where the state space Q 3 q is a connected smooth manifold, the controls (u1, . . . , un) ∈ Rn are measurable and locally bounded, and X1, . . . ,Xn are smooth vector

fields (see [1]). An interesting case occurs when the dimension of the state space exceeds the dimension of control dim Q > n > 1. In generic case the minimal dimension of control n = 2 generates a
completely controllable system which can reach any desired configuration from any initial configuration. A two-point boundary value problem for such systems is studied. The problem also known as the motion
planning problem. The aim is to find controls (u1(t), u2(t)) which transfer the system from any given initial state q0 ∈ Q to any given terminal state q1 ∈ Q: q(0) = q0, q(T ) = q1. A method of approximate
solution based on the nilpotent approximation is used. The general method is concretized for solving the motion planning problem for five-dimensional systems with two-dimensional control:
q̇ = u1(t)X1(q) + u2(t)X2(q), dim(Q) = 5, ρ(q(T ), q1) < ε, where ρ is a distance on manifold Q. Specific systems of the type under consideration is the kinematic model of mobile robot with two trailers
and the ball rolling on a plane without slipping or twisting.

STATEMENT OF THE PROBLEM

We consider the following motion planning problem

q̇ = u1(t)X1(q) + u2(t)X2(q), (1)
q(0) = q0, x(T ) = q1, (2)

where the state space Q 3 q is a connected five-dimensional
smooth manifold, control takes values on a two-dimensional plane
(u1, u2) ∈ R2, and the smooth vector fields X1, X2 satisfy Lie
Algebra Rank condition (LARC) [2] on the manifold Q (i.e. system
(1) is completely controllable). Nowadays there are no explicit
methods to solve (1)-(2) in general case. Satisfactory solution
exists only for certain special classes of systems. However, such
problems arise in engineering, where approximate solution is
enough, if the error does not exceed a prescribed value. We
propose a method to construct the control (u1(t), u2(t)) that
translates system (1) from any initial state q0 to any terminal state
q1 with any desired precision ε > 0. That is, in such a state q̃1,
that ρ(q̃1, q1) < ε, where ρ is a distance on the manifold Q, for

example, if Q = R5, then ρ =
√∑5

i=1(q
1 − q̃1)2.

Systems of the form (1) are characterized by the fact that the
dimension of the control is less than the dimension of the state
space 2 = dim R2 < dim Q = 5 but any two points of the state
space can be connected by trajectory of the system. In control
theory such systems are called completely nonholonomic.
Nonlinear system (1), linear in controls, the number of which is
less than dimension of the state space is characterized by different
shifts in different directions. The value of displacement in the
direction of the fields X1 and X2 in a small time t is O(t), in the
direction of a commutator X3 = [X1,X2] is O(t2) in the direction
X4 = [X1,X3] and X5 = [X2,X3] is O(t3). Because of this
anisotropy of the state space the control problem for such systems
is highly nontrivial.

CONTROLLABILITY

Rashevsky-Chow theorem [2] claims that any two points q0,
q1 ∈ Q are reachable from each other if at any point q̃ ∈ Q linear
span of elements of the Lie algebra Lie(X1,X2) coincides with the
tangent space Tq̃Q (LARC): ∀q̃ ∈ Q span(Lie(X1,X2)) = Tq̃Q.
Let us fix q̃ ∈ Q and define by Ls(q̃) a vector space generated by
the values of Lie brackets X1,X2 of length ≤ s, s = 1, 2, . . . at q̃
(the fields Xi are brackets of length 1):

L1(q̃) = span(X1(q̃),X2(q̃)),

L2(q̃) = span(L1(q̃) + [X1,X2](q̃)),

. . .

Ls(q̃) = span(Ls−1(q̃)+

+ {[Xis, [Xis−1
, . . . [Xi2,Xi1] . . . ]](q̃)|i1, . . . , is ∈ {1, 2}}).

LARC ensures that for every q̃ ∈ Q there exists a smallest integer
r = r(q̃) such that dim Lr(q̃) = 5. Define Growth vector as
(n1(q̃), . . . , nr(q̃)), where ns(q̃) = dim Ls(q̃), s = 1, . . . , r . We
consider system (1) in a neighborhood of regular points, where
growth vector is equal to (2, 3, 5).

NILPOTENT APPROXIMATION

We present a method for finding approximate solutions of the
problem (1)–(2) based on nilpotent approximation. Local
approximation of a control system by another (simpler) system is
often used in control theory. Usually linearization of the control
system is used as a local approximation. However, for control
systems of the form (1) linearization gives too rough
approximation. Since the number of controls less than the
dimension of state space, the linearization can not be completely
controlled. Natural replacement of the linear approximation in this
case gives a nilpotent approximation — the most simple system
that preserves the original structure of the control system and
therefore controllability (in particular, it remains a growth vector).
We use algorithm of Bellaiche [3] to get nilpotent approximation of
original system in a neighborhood of end point q1 and then we
make a change of variables in which the nilpotent approximation
has the canonical form:

ẏ1 = u1,

ẏ2 = u2,

ẏ3 = 1
2(y1u2 − y2u1),

ẏ4 = 1
2(y

2
1 + y2

2)u2,

ẏ5 = −1
2(y

2
1 + y2

2)u1,

y ∈ R5, (3)

and boundary conditions are following:

Q(0) = Q1, Q(T ) = 0. (4)

MOTION PLANNING ITERATIVE ALGORITHM

To solve problem (1), (2) we use Iterative algorithm based on the
local approximation of the original system by nilpotent system (3),
for which the control problem must be solved exactly in each
iteration.

trajectory of approximating system

trajectory of original system

So, the problem is to find the control such that corresponding
trajectory of system (1) starts from initial state q0 and ends in a
state q̃1 that satisfied the inequality ρ(q1, q̃1) < ε for any given
ε > 0. To solve the problem we use the following iterative
algorithm:

1. building nilpotent approximation at q1 and computing the change
of variables in which nilpotent approximation has form (3);

2. finding a control (u1(t), u2(t)) in given class of functions that
solves problem (3)–(4) for nilpotent system exactly;

3. found control is applyed to the original system, and if the reached
state misses the ε-neighborhood of the target state, then the
required precision is not achieved, and the step 2 is repeated with
the new boundary condition — the state reached by the previous
iteration of the algorithm is chosen as new initial state, otherwise
calculation stops.

We developed parallel software ”MotionPlanning.m” that
implements this algorithm as a package for Wolfram Mathematica.
It solves the motion planning problem (1), (2) for sufficiently close
q0 and q1 (it means ρ(q0, q1) < δ, where δ > 0 depends on the
concrete form of the vector fields in right part of (1) and class of
function in which control are to be found). δ must be estimated to
establish convergence domain of the algorithm (work in progress).
For the present we have a results of numerical experiments.
The software ”MotionPlanning.m” solves the motion planning
problem in the classes of piece-wise constant controls and optimal
controls for nilpotent approximation.

PIECE-WISE CONSTANT CONTROL

For any Q1 ∈ R5 exist (αi, βi, γi, δi) ∈ R4, i ∈ {1, 2} and control

ui =


αi , for t ∈ [0, 1

4],

βi , for t ∈ (1
4,

1
2],

γi , for t ∈ (1
2,

3
4],

δi , for t ∈ (3
4, 1],

such that Q(0) = Q1, Q(1) = 0
I algebraic equations for parameters (αi, βi, γi, δi)
I nonunique solution
I final fixing of parameters by criterion max |ui| → min

OPTIMAL CONTROL

I (3), (4),
∫ t1

0

√
u2

1 + u2
2 dt → min

I Nilpotent sub-Riemannian problem with growth vector (2,3,5) (Yu.
Sachkov):
I extremal trajectories, bounds on cut time, global structure of exponential

mapping, symmetries, reduction to system of 3 algebraic equations in
Jacobian functions of 3 variables

I Optimal synthesis algorithm
I Genetic algorithm for numerical solution of algebraic equations

systems

CAR WITH TWO TRAILERS

I state variables
ξ = (x, y , θ, φ1, φ2)
ξ ∈ R2 × S1 × (S1 − {π})2

I control system

ẋ = cos θ u1,

ẏ = sin θ u1,

θ̇ = u2,

φ̇1 = − sinφ1 u1+

+(−1− cosφ1) u2,

φ̇2 = (sin(φ1 − φ2) + sinφ1) u1+

+(cos(φ1 − φ2) + cosφ1)u2.

SPHERE ROLLING ON A PLANE

Consider a sphere rolling on a plane whithout slipping or twisting
(see [4]). State of the system is described by the contact point
between the sphere and the plane and orientation of the sphere in
three-dimensional space. One should roll the sphere from any
initial contact configuration to any desired configuration. The
problem has application in robotics: rotation of a solid body in
robot’s hand.
Let (x, y) ∈ R2 be the contact point of the sphere and the plane.
By q = (q0, q1, q2, q3) ∈ S3 denote the unit quaternion (see [5])
representing the rotation of three-dimensional space, which
translates the current orientation of the sphere to the initial
orientation. The control system described rolling sphere has the
following form:

Q̇ = u1X1(Q) + u2X2(Q),

where X1(Q) = (1, 0, q2, q3,−q0,−q1)
T ,

X2(Q) = (0, 1,−q1, q0, q3,−q2)
T are smooth vector fields,

state space is Q = (x, y , q0, q1, q2, q3) ∈ M = R2 × S3,
and control u = (u1, u2) ∈ R2 is unbounded.
Since considered system is left-invariant problem on Lie Group
R2 × S3 the motion planning problem for any boundary conditions
is reduced to fixed initial position and arbitrary final one:

Q(0) = Q0 = (0, 0, 1, 0, 0, 0), Q(t1) = Q1.

To apply the motion planning algorithm we choose local chart

q0 =
√

1− q2
1 − q2

2 − q2
3 > 0.

MOTIONPLANNING PACKAGE: EXAMPLES

Rolling the sphere using piecewise constant control from initial
configuration Q0 = (0, 0, 0, 0, 0) to desired configuration

Q1 = (−1.525, 1.475, 0.346, 0.626, 0.242)

with precision ε = 10−5
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t

- 3
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- 1

1

x,y,

q1,q2,q3

1x - x
1y - y

q1
1 - q1

q2
1 - q2

q3
1 - q3

Iterations: 8
Transferring the car with two trailers from initial configuration

Q0 = (0, 0,
π

4
,
π

4
,−
π

4
)

to desired configuration

Q1 = (−0.252,−0.339, 1.085, 0.514,−1.281)

with precision ε = 10−3

Piecewise constant control

0.2 0.4 0.6 0.8 1.0
t
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6 iterations

Optimal Control
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CONCLUSION

We presented the iterative algorithm for solving motion planning problem (1), (2) whith any necessary precision. It has been implemented in a parallel software MotionPlaning.m. The software has been tested on
two applications (problem of rolling of a sphere on a plane without slipping and twisting and the problem of steering the mobile robot with two trailers). In cases where the boundary conditions were not too far from
each other, the software has been successfully solving the control problem. In cases of distant boundary conditions algorithm does not converge, which corresponds to the theoretical basis of the method (nilpotent
approximation is the local approximation of the original system). In the future we plan to expand the functionality for solving the tasks with distant boundary conditions through its reduction to the sequence of local
problems. Currently MotionPlaning.m is a convenient and reliable way to solve the local problem (1), (2).


