Sensitivity analysis for relaxed optimal control problems with final-state constraints

J. Frédéric Bonnans, ${ }^{1}$ Laurent Pfeiffer, ${ }^{1}$ and Oana Silvia Serea ${ }^{2}$
${ }^{1}$ Inria-Saclay, CMAP, Ecole Polytechnique
${ }^{2}$ Université de Perpignan

Abstract

\section*{Abstract}

We consider a family of optimal control protlems with final-state constraints parameterized by a nonnegative variable $\theta \geq 0$. The value function is denoted by $V(\theta)$. We consider bounded strong solutions to these problems, ie, optimal solutions in a small neighborhood in L^{∞} for trajectories and a large bounded neighborhood for the controls. Our aim is to obtain a second-order expansion of $V(\theta)$ near 0 . By introducing relaxed controls, we are able to deal with a wide class of perturbations and we obtain sharp estimates.

1 Formulation of the problem

1.1 Setting

For a control u in $L^{\infty}\left([0, T], \mathbb{R}^{m}\right)$ and $\theta \geq 0$, consider the trajectory $y[u, \theta]$ solution of the following differential system:

$$
\left\{\begin{array}{l}
\dot{y_{t}}=f\left(u_{t}, y_{t}, \theta\right), \quad \text { for a. a. } t \text { in }[0, T], \\
y_{0}=y^{0}(\theta) .
\end{array}\right.
$$

We set $K=\left\{0_{n_{E}}\right\} \times \mathbb{R}_{+}^{n_{I}}$. The family of optimal control problems that we consider is the following

$$
\operatorname{Min}_{\left.u \in L^{\infty}(0, T], \mathbb{R}^{n}\right)} \phi\left(y_{T}[u, \theta]\right) \text {, s.t. } \Phi\left(y_{T}[u], \theta\right) \in K \text {. }
$$

A control \bar{u} is said to be a bounded strong solution for the reference problem (with $\theta=0$) if for all $R>\|u\|_{\infty}$, there exists $\eta>0$ such that \bar{u} is solution to the localized problem
$\underset{u \in L\left([0, T], B_{B}\right)}{\operatorname{Min}} \phi\left(y_{T}[u, 0]\right), \quad$ s.t. $\Phi\left(y_{T}[u], 0\right) \in K,\|y[u, 0]-\bar{y}\|_{\infty} \leq \eta, \quad(\mathcal{P})$
where B_{R} is the ball of radius R and $\bar{y}=y[\bar{u}, 0]$. Now, we fix \bar{u}, R, and η.

1.2 Relaxation

Let X be a closed subset of \mathbb{R}^{m}, we denote by $\mathcal{P}(X)$ the set of probabilities on X. The space of Young measures $\mathcal{M}^{Y}(X)$ is the set of measurable mapping from $[0, T]$ to $\mathcal{P}(X)[5]$. We equip this space with:
\triangleright the weak-* topology,
\triangleright the narrow topology
\triangleright the usual L^{p}-distance of transportation theory, denoted by d_{p}. For example, a sequence of controls oscillating increasingly fast between to values a and b converges weakly- $*$ to $\mu_{t}=\left(\delta_{a}+\delta_{b}\right) / 2$. We denote by $\bar{\mu}$ the Young measure such that $\bar{\mu}_{t}=\delta_{\bar{u}_{t}}$. For μ in $\mathcal{M}^{Y}\left(B_{R}\right)$, we denote by $y[\mu, \theta]$ the solution to

$$
\left\{\begin{array}{l}
\dot{y}_{t}=\int_{B_{R}} f\left(u, y_{t}, \theta\right) \mathrm{d} \mu_{t}(u), \quad \text { for a. a. } t \text { in }[0, T], \\
y_{0}=y^{0}(\theta) .
\end{array}\right.
$$

We consider the family of relaxed problems with value function $V(\theta)=$
$\operatorname{Min}_{\mu \in \mathcal{M}^{\Upsilon}\left(B_{R}\right)} \phi\left(y_{T}[\mu, \theta]\right), \quad$ s.t. $\Phi\left(y_{T}[\mu], \theta\right) \in K,\|y[\mu, \theta]-\bar{y}\|_{\infty} \leq \eta . \quad\left(\mathcal{P}^{Y}\right)$

1.3 Pontryagin linearization

For a given μ in $M^{Y}\left(B_{R}\right)$, we define the Pontryagin linearization $\xi[\mu]$ as follows:

```
\(\left\{\begin{array}{l}\dot{\xi}_{t}[\mu]=f_{y}\left(\bar{u}_{t}, \bar{y}_{t}\right) \xi_{t}[\mu]+\int_{U_{R}} f\left(u, \bar{y}_{t}\right)-f\left(\bar{u}_{t}, \bar{y}_{t}\right) \mathrm{d} \mu_{t}(u),\end{array}\right.\) \(\xi_{0}[\mu]=0\).
```

We denote by ξ^{θ} the solution to

$$
\left\{\begin{array}{l}
\dot{\xi}_{t}^{\theta}=f_{y}[t] \xi_{t}^{\theta}+f_{\theta}[t], \quad \text { for a. a. } t \text { in }[0, T], \\
\xi^{\theta}=y_{\theta}^{0}(0) .
\end{array}\right.
$$

The following estimate holds

$$
\left\|y[\mu, \theta]-\left(\bar{y}+\xi[\mu]+\theta \xi^{\theta}\right)\right\|_{\infty}=O\left(d_{1}(\mu, \bar{\mu})^{2}+\theta^{2}\right)
$$

1.4 Qualification

We set $\mathcal{R}_{T}=\left\{\xi_{T}[\mu], \mu \in \mathcal{M}^{Y}\left(B_{R}\right)\right\}$ and we denote by $\mathcal{C}\left(\mathcal{R}_{T}\right)$ the smallest closed cone containing \mathcal{R}_{T}. We assume that the following qualification condition holds: there exists $\varepsilon>0$ such that

$$
B_{\varepsilon} \subset \Phi\left(\bar{y}_{T}, 0\right)+\Phi_{y_{T}}\left(\bar{y}_{T}, 0\right) \mathcal{C}\left(\mathcal{R}_{T}\right)-K
$$

Theorem (Metric regularity). There exist $\tilde{\theta}>0, \delta>0$ and $C>0$ such that for all θ in $[0, \hat{\theta}]$ and for all μ in $\mathcal{M}^{Y}\left(B_{R}\right)$ satisfying $d_{1}(\mu, \bar{\mu}) \leq \delta$, there exists a control μ^{\prime} such that
$\Phi\left(y_{T}\left[\mu^{\prime}, \theta\right], \theta\right) \in K \quad$ and $\quad d_{1}\left(\mu, \mu^{\prime}\right) \leq C \cdot \operatorname{dist}\left(\Phi\left(y_{T}[\mu, \theta], \theta\right), K\right)$.
1.5 Motivations for the relaxation

It can be checked that
$\triangleright \mathcal{M}^{Y}\left(B_{R}\right)$ is weakly-* compact
$\triangleright L\left([0, T], B_{R}\right)$ is weakly- $*$ dense in $\mathcal{M}^{Y}\left(B_{R}\right)$
$\triangleright y[\mu, \theta]$ is weakly-* continuous.
Therefore,
\triangleright the relaxed problems posseses optimal solutions
\triangleright if $\bar{\mu}$ is the only control μ such that $y[\mu]=\bar{y}$, then problems (\mathcal{P}) and ${ }^{\left(\mathcal{P}^{Y}\right)}$ have the same value.

2 Methodology of sensitivity analysis

Following [3], we describe the methodology used in an abstract framework: $V(\theta)=\operatorname{Min}_{x \in H} f(x, \theta) \quad$ s.t. $g(x, \theta) \in K, \quad\left(P_{\theta}\right)$
where H is a Hilbert space and K stands for inequalities and equalities. The Lagrangian is

$$
L(x, \lambda, \theta)=f(x, \theta)+\langle\lambda, g(x, \theta)\rangle .
$$

Let \bar{x} be an optimal solution to $\left(P_{0}\right)$ and Λ be the set of Lagrange multipliers associated.

2.1 First-order upper estimate

Let d in H be such that $g^{\prime}(\bar{x}, 0)(d, 1) \in T_{K}(g(\bar{x}, 0))$. With a regularity theorem, we construct a feasible sequence $x_{\theta}=\bar{x}+\theta d+o(\theta)$. Therefore, the linear problem
$\operatorname{Min}_{d \in H} f^{\prime}(\bar{x}, 0)(d, 1) \quad$ s.t. $g^{\prime}(\bar{x}, 0)(d, 1) \in T_{K}(g(\bar{x}, 0)), \quad(L P)$ provides the upper estimate $V(x) \leq V(0)+\theta \operatorname{Val}(L P)+o(\theta)$. Moreover, the dual of $(L P)$ is

$$
\operatorname{Max}_{\lambda \in \Lambda} L_{\theta}(\bar{x}, \lambda, 0) .
$$

(LD)

2.2 Second-order upper estimate

Let d be a solution to $(L P)$. We define
$\begin{cases}\operatorname{Min}_{h \in H} & f_{x}(\bar{x}, 0) h+\frac{1}{2} f^{\prime \prime}(\bar{x}, 0)(d, 1)^{2} \\ \text { s.t. } & g_{x}(\bar{x}, 0) h+\frac{1}{2} g^{\prime \prime}(\bar{x}, 0)(d, 1)^{2} \in T_{K}^{2}\left(g(\bar{x}, 0), g^{\prime}(\bar{x}, 0) d\right) .\end{cases}$
The dual of this problem is

$$
\operatorname{Max}_{\lambda \in S(L D)} L_{(x, \theta)^{2}}(\bar{x}, \lambda, 0)(d, 1)^{2} .
$$

(QD)
Finally, we obtain the upper expansion of $V(\theta)$
$V(0)+\theta(\operatorname{Val}(L P))+\theta^{2}\left(\operatorname{Min}_{d \in S\left(L P_{\theta}\right)} \operatorname{Max}_{\lambda \in S(L D)} L_{(x, \theta)^{2}}(\bar{x}, \lambda, 0)(d, 1)^{2}\right)+o\left(\theta^{2}\right)$

2.3 Rate of convergence of solutions

We consider a strong sufficient second-order condition: there exists. $\alpha>0$ such that for all h in the critical cone

```
\mp@subsup{\operatorname{sup}}{\lambda\inS(LD\mp@subsup{D}{f}{})}{}\mp@subsup{L}{xx}{}(\overline{x},\lambda,0)\mp@subsup{h}{}{2}\geq\alpha|h\mp@subsup{|}{}{2}
```

If this condition is satisfied, then the solutions x^{θ} to $\left(P_{\theta}\right)$ are such that

$$
\left|x^{\theta}-\bar{x}\right|=O(\theta)
$$

Moreover, the sequence $\left(x^{\theta}-\bar{x}\right) / \theta$ has all its limit points in $S(L P)$
2.4 Second-order lower estimate

A second order expansion follows from a Taylor expansion: for all λ in $S(L D)$,
$V(\theta)-V(0)=f\left(x^{\theta}\right)-f(\bar{x})$

$$
\begin{aligned}
& \geq L\left(x^{\theta}, \lambda, \theta\right)-L(\bar{x}, \lambda, 0) \\
& =\theta L_{\theta}(\bar{x}, \lambda, 0)+\frac{\theta^{2}}{2}\left(L_{(x, \theta)^{2}}(\bar{x}, \lambda, 0)\left(\frac{x^{\theta}-\bar{x}}{\theta}, 1\right)^{2}\right)+o\left(\theta^{2}\right) \\
& \geq \theta L_{\theta}(\bar{x}, \lambda, 0)+\frac{\theta^{2}}{2}\left(\operatorname{Min}_{d \in S(L P)} L_{(x, \theta)^{2}}(\bar{x}, \lambda, 0)(d, 1)^{2}\right)+o\left(\theta^{2}\right) .
\end{aligned}
$$

3 Upper estimates

3.1 First-order upper estimate

For the optimal control problems, we consider perturbations of this form:

$\mu^{\theta}=(1-\theta) \bar{\mu}+\theta \mu$,

where the addition is the addition of measures. We have

$$
y\left[\mu^{\theta}, \theta\right]=\bar{y}+\theta\left(\xi[\mu]+\xi^{\theta}\right)+o(\theta) .
$$

The equivalent of problem $(L P)$ is now:
$\operatorname{Min}_{\xi \in \mathcal{C}\left(\mathcal{R}_{T}\right)} \phi^{\prime}\left(\bar{y}_{T}, 0\right)\left(\xi+\xi_{T}^{\theta}, 1\right) \quad$ s.t. $\Phi^{\prime}\left(\bar{y}_{T}, 0\right)\left(\xi+\xi_{T}^{\theta}, 1\right) \in T_{K}\left(\Phi\left(\bar{y}_{T}, 0\right)\right)$
Let us define:
\triangleright the end-point Lagrangian, $\Phi[\lambda](y, \lambda, \theta)=\phi(y, \theta)+\lambda \Phi(y, \theta)$,
\triangleright the Hamiltonian, $H[p](u, y, \theta)=\langle p, f(u, y, \theta)\rangle$,
\triangleright the costate p^{λ} associated with λ in $N_{K}\left(\Phi\left(\bar{y}_{T}, 0\right)\right)$, the solution to

$$
\begin{cases}\dot{p}_{t}= & -H_{y}\left[p_{t}\right]\left(\bar{u}_{t}, \bar{y}_{t}\right) \\ p_{T}= & \Phi_{y_{T}}[\lambda]\left(\bar{y}_{T}, \lambda, 0\right)\end{cases}
$$

$>$ Pontryagin multipliers Λ^{P}, the set of λ in $N_{K}\left(\Phi\left(\bar{y}_{T}, 0\right)\right)$ such that for almost all $t, u \mapsto H\left[p_{t}^{\lambda}\right]\left(u, \bar{y}_{t}, 0\right)$ is minimized by \bar{u}_{t}.
The dual of problem $(L P)$ is

3.2 Second-order upper estimate

Unfortunately, problem $(L P)$ does not have necessarily solutions. We consider the linearization associated with the perturbation $\bar{u}+\theta v$. We denote by $z[v]$ the solution of

$$
\left\{\begin{array}{l}
\dot{z}_{t}[v]=f_{u, y}\left(\bar{u}_{t}, \bar{y}_{t}, 0\right)\left(v_{t}, z_{t}[v]\right), \\
z_{0}[v]=y_{0}^{\theta}(0),
\end{array}\right.
$$

and we set $z^{1}[v]=z[v]+\xi^{\theta}$. This definition extends to ν in \mathcal{M}_{2}^{Y}, the space of Young measures with a finite $L^{2}-$ norm. The standard linearized problem is
$\operatorname{Min}_{\nu \in \mathcal{M}_{2}^{\gamma}} \phi^{\prime}\left(\bar{y}_{T}, 0\right)\left(z_{T}^{1}[v], 1\right)$ s.t. $\Phi^{\prime}\left(\bar{y}_{T}, 0\right)\left(z_{T}^{1}[v], 1\right) \in T_{K}\left(\Phi\left(\bar{y}_{T}, 0\right)\right) . \quad(S L P)$
Now, $\lambda \in N_{K}\left(\Phi\left(\bar{y}_{T}, 0\right)\right)$ is said to be a Lagrange multiplier if for almost all t,
$H_{u}\left[p_{t}^{\lambda}\right]\left(\bar{u}_{t}, \bar{y}_{t}\right)=0$.
The set of Lagrange multipliers is denoted by Λ^{L}. Note that $\Lambda^{P} \subset \Lambda^{L}$. The dual of $(S L P)$ is:
$\operatorname{Max}_{\lambda \in \Lambda^{I}} L_{\theta}(\bar{u}, \bar{y}, \lambda, 0)$.
(SLD)
Now we assume that

$$
\operatorname{Val}(S L P)=\operatorname{Val}(L P) .
$$

Consider a solution ν to $(S L P)$. Considering a perbutation of the form
$\mu^{\theta}=\left(1-\theta^{2}\right)(\bar{u}+\theta v)+\theta^{2} \mu$,
we obtain a second-order problem whose dual is the following
$\underset{\lambda \in S(L D)}{\operatorname{Max}} \Omega^{\theta}[\lambda](v)$,
$(Q D(\nu)$
where Ω^{θ} is defined by
$\Omega^{\theta}[\lambda](\nu)=p_{0}^{\lambda} y_{\theta \theta}^{0}(0)+\Phi^{\prime \prime}[\lambda]\left(\bar{y}_{T}, 0\right)\left(z_{T}^{1}[\nu], 1\right)$
$+\int_{0}^{T} \int_{\mathbb{R}^{m}} H^{\prime \prime}\left[p_{t}^{\lambda}\right]\left(\bar{u}_{t}, \bar{y}_{t}, 0\right)\left(u, z_{t}^{1}[\nu], 1\right)^{2} \mathrm{~d} \mu_{t}(u) \mathrm{d} t$.
Theorem. The following estimate holds:
$V(\theta) \leq V(0)+\theta \operatorname{Val}\left(L P_{\theta}\right)+\frac{\theta^{2}}{2}(\underset{\nu \in S(S L P)}{\operatorname{Min}} \underset{\lambda \in S(L D)}{\operatorname{Max}} \Omega[\lambda](\nu))+o\left(\theta^{2}\right)$.

4 Lower estimate

The critical cone C is the set of ν in $M_{Y}^{2}\left(\mathbb{R}^{m}\right)$ such that
$\phi_{y_{T}\left(\bar{y}_{T}, 0\right) z_{T}[\nu] \leq 0,}$
$\Phi_{y_{T}}\left(\bar{y}_{T}, 0\right) z_{T}[\nu] \in T_{K}\left(\Phi\left(\bar{y}_{T}, 0\right)\right)$.
We also define the quadratic form $\Omega[\lambda](\nu)$ by
$\Omega[\lambda](\nu)=\Phi_{\left(y_{T}\right)}[\lambda]\left(\bar{y}_{T}, 0\right)\left(z_{T}[\nu]\right)$
$\left.\int_{0}^{T} \int_{\mathbb{R}^{m}} H_{(u, y)^{2}\left[p_{t}^{\lambda}\right]}\right]\left(\bar{u}_{t}, \bar{y}_{t}, 0\right)\left(u, z_{t}[\nu]\right)^{2} \mathrm{~d} \mu_{t}(u) \mathrm{d} t$.
The strong second-order sufficient condition is: $\exists \alpha>0$ such that 1. For all μ in $\mathcal{M}^{Y}\left(B_{R}\right)$,
$\sup _{\lambda \in S\left(L D_{\theta}\right)} \int_{0}^{T} H\left[p_{t}^{\lambda}\right]\left(u, \bar{y}_{t}, 0\right)-H\left[p_{t}^{\lambda}\right]\left(\bar{u}_{t}, \bar{y}_{t}, 0\right) \mathrm{d} \mu_{t}(u) \mathrm{d} t \geq \alpha d_{2}(\bar{\mu}, \mu)$.
2. For all ν in $C, \sup _{\lambda \in S\left(L D_{\theta}\right)} \Omega[\lambda](\nu) \geq \alpha\|\nu\|_{2}^{2}$.

We consider solutions μ^{θ} to the perturbed problem.
Theorem. For all sequence $\theta_{k} \downarrow 0$, the sequence $\frac{\mu_{k}{ }^{\theta^{\prime}} \bar{\theta}_{k}}{\theta_{k}}$ has a limit point for the narrow topology in $S(S L P)$. Moreover,
$V(\theta) \geq V(0)+\theta \operatorname{Val}\left(L P_{\theta}\right)+\frac{\theta^{2}}{2}\left(\underset{\nu \in S(S L P)}{\operatorname{Min}} \underset{\lambda \in S\left(L D_{\theta}\right)}{\operatorname{Max}} \Omega[\lambda](\nu)\right)+o\left(\theta^{2}\right)$.
Sketch of the proof. Following [1], we decompose a solution μ^{k} into two controls:
$\triangleright \mu^{A, k}$, accounting for the small variations in $L^{\infty}-$ norm of the control,
$\triangleright \mu^{B, k}$, accounting for the large variations in $L^{\infty}-$ norm of the control, but on a small subset of $[0, T] \times B_{R}$
For all λ in $S(L D)$, we have
$\phi\left(y_{T}\left[\mu^{\theta}, \theta\right], \theta\right)-\phi\left(\bar{y}_{T}, 0\right) \geq \Phi[\lambda]\left(y_{T}\left[\mu^{\theta}, \theta\right], \theta\right)-\Phi[\lambda]\left(\bar{y}_{T}, 0\right)$.
Then, we expand the r.h.s. and we neglect the part due to $\mu^{B, k}$.

References

[1] J.F. Bonnans \& N. Osmolovskiǐ. Second-order analysis of optimal control problems with control and initial-final state constraints. Journal of Convex Analysis, 2010.
[2] J.F. Bonnans, L. Pfeiffer \& O.S. Serea. Sensitivity analysis for relaxed optimal control problems with final-state constraints. Submitted, available as the Inria Research Report 7977, May 2012.
[3] J.F. Bonnans \& A. Shapiro. Perturbation analysis of optimization problems. Springer-Verlag, New York, 2000.
[4] M. Valadier. Young measures. Methods of nonconvex analysis, 1990.
[5] L.C. Young. Lectures on the calculus of variations and optimal contro theory. Foreword by Wendell H. Fleming. W. B. Saunders Co., Philadelphia,

