

Sensitivity analysis for relaxed optimal control problems with final-state constraints

J. Frédéric BONNANS, ¹ Laurent PFEIFFER,¹ and Oana Silvia SEREA²

¹Inria-Saclay, CMAP, Ecole Polytechnique

²Université de Perpignan

Abstract

We consider a family of optimal control problems with final-state constraints parameterized by a nonnegative variable $\theta \geq 0$. The value function is denoted by $V(\theta)$. We consider bounded strong solutions to these problems, *ie*, optimal solutions in a small neighborhood in L^{∞} for trajectories and a large bounded neighborhood for the controls. Our aim is to obtain a second-order expansion of $V(\theta)$ near 0. By introducing relaxed controls, we are able to deal with a wide class of perturbations and we obtain sharp estimates.

2 Methodology of sensitivity analysis

Following [3], we describe the methodology used in an abstract framework:

 $V(\theta) - \operatorname{Min} f(r, \theta) \quad \text{st} \quad q(r, \theta) \in K \tag{P_0}$

3.2 Second-order upper estimate

all t,

Unfortunately, problem (LP) does not have necessarily solutions. We consider the linearization associated with the perturbation $\overline{u} + \theta v$. We denote by z[v]the solution of

 $\dot{z}_t[v] = f_{u,y}(\overline{u}_t, \overline{y}_t, 0)(v_t, z_t[v])$

1 Formulation of the problem

1.1 Setting

For a control u in $L^{\infty}([0,T],\mathbb{R}^m)$ and $\theta \geq 0$, consider the trajectory $y[u,\theta]$ solution of the following differential system:

 $\begin{cases} \dot{y}_t = f(u_t, y_t, \theta), & \text{for a. a. } t \text{ in } [0, T], \\ y_0 = y^0(\theta). \end{cases}$

We set $K = \{0_{n_E}\} \times \mathbb{R}^{n_I}_+$. The family of optimal control problems that we consider is the following:

 $\min_{u \in L^{\infty}([0,T],\mathbb{R}^n)} \phi(y_T[u,\theta]), \quad \text{s.t. } \Phi(y_T[u],\theta) \in K.$

A control \overline{u} is said to be a **bounded strong solution** for the reference problem (with $\theta = 0$) if for all $R > ||u||_{\infty}$, there exists $\eta > 0$ such that \overline{u} is solution to the localized problem

 $\underset{u \in L([0,T],B_R)}{\min} \phi(y_T[u,0]), \quad \text{s.t. } \Phi(y_T[u],0) \in K, \ ||y[u,0] - \overline{y}||_{\infty} \le \eta, \quad (\mathcal{P})$

where B_R is the ball of radius R and $\overline{y} = y[\overline{u}, 0]$. Now, we fix \overline{u} , R, and η .

1.2 Relaxation

Let X be a closed subset of \mathbb{R}^m , we denote by $\mathcal{P}(X)$ the set of probabilities on X. The space of Young measures $\mathcal{M}^{Y}(X)$ is the set of measurable mapping from [0, T] to $\mathcal{P}(X)$ [5]. We equip this space with:

$\mathcal{X} \subset \mathcal{H}$	V	$(0) = \underset{x \in H}{\operatorname{NIIII}}$	J(x, 0)	$g(x, v) \subset \mathbf{n},$	$(1 \ \mathbf{f})$	')
-----------------------------------	---	--	---------	-------------------------------	--------------------	----

where H is a Hilbert space and K stands for inequalities and equalities. The Lagrangian is

 $L(x,\lambda,\theta) = f(x,\theta) + \langle \lambda, q(x,\theta) \rangle.$

Let \overline{x} be an optimal solution to (P_0) and Λ be the set of Lagrange multipliers associated.

2.1 First-order upper estimate

Let d in H be such that $g'(\overline{x}, 0)(d, 1) \in T_K(g(\overline{x}, 0))$. With a regularity theorem, we construct a feasible sequence $x_{\theta} = \overline{x} + \theta d + o(\theta)$. Therefore, the linear problem

 $\underset{d \in H}{\operatorname{Min}} f'(\overline{x}, 0)(d, 1) \quad \text{s.t. } g'(\overline{x}, 0)(d, 1) \in T_K(g(\overline{x}, 0)),$ (LP)provides the upper estimate $V(x) \leq V(0) + \theta \operatorname{Val}(LP) + o(\theta)$. Moreover, the dual of (LP) is $\operatorname{Max}_{\lambda \in \Lambda} L_{\theta}(\overline{x}, \lambda, 0).$ (LD)

2.2 Second-order upper estimate

Let d be a solution to (LP). We define

 $\begin{cases} \underset{h \in H}{\operatorname{Min}} & f_x(\overline{x}, 0)h + \frac{1}{2}f''(\overline{x}, 0)(d, 1)^2 \\ \text{s.t.} & g_x(\overline{x}, 0)h + \frac{1}{2}g''(\overline{x}, 0)(d, 1)^2 \in T_K^2(g(\overline{x}, 0), g'(\overline{x}, 0)d). \end{cases}$ (QP)

The dual of this problem is

 $\underset{\lambda \in S(LD)}{\operatorname{Max}} L_{(x,\theta)^2}(\overline{x},\lambda,0)(d,1)^2.$ (QD)Finally, we obtain the upper expansion of $V(\theta)$ $V(0) + \theta \left(\operatorname{Val}(LP) \right) + \theta^2 \left(\operatorname{Min}_{d \in S(LP_{\theta})} \operatorname{Max}_{\lambda \in S(LD)} L_{(x,\theta)^2}(\overline{x},\lambda,0)(d,1)^2 \right) + o(\theta^2).$

 $z_0[v] = y_0^{\theta}(0),$

and we set $z^1[v] = z[v] + \xi^{\theta}$. This definition extends to ν in \mathcal{M}_2^Y , the space of Young measures with a finite L^2 -norm. The standard linearized problem is $\underset{\nu \in \mathcal{M}_2^Y}{\operatorname{Min}} \phi'(\overline{y}_T, 0)(z_T^1[v], 1) \text{ s.t. } \Phi'(\overline{y}_T, 0)(z_T^1[v], 1) \in T_K(\Phi(\overline{y}_T, 0)). \quad (SLP)$ Now, $\lambda \in N_K(\Phi(\overline{y}_T, 0))$ is said to be a **Lagrange multiplier** if for almost $H_u[p_t^{\lambda}](\overline{u}_t, \overline{y}_t) = 0.$ The set of Lagrange multipliers is denoted by Λ^L . Note that $\Lambda^P \subset \Lambda^L$. The dual of (SLP) is: $\operatorname{Max}_{\lambda \in \Lambda^L} L_{\theta}(\overline{u}, \overline{y}, \lambda, 0).$ (SLD)Now we assume that: $\operatorname{Val}(SLP) = \operatorname{Val}(LP).$ Consider a solution ν to (SLP). Considering a perbutation of the form $\mu^{\theta} = (1 - \theta^2)(\overline{u} + \theta v) + \theta^2 \mu,$ we obtain a second-order problem whose dual is the following: $\underset{\lambda \in S(LD)}{\operatorname{Max}} \Omega^{\theta}[\lambda](v),$ $(QD(\nu))$ where Ω^{θ} is defined by $\Omega^{\theta}[\lambda](\nu) = p_0^{\lambda} y_{\theta\theta}^0(0) + \Phi''[\lambda](\overline{y}_T, 0)(z_T^1[\nu], 1)$ $+ \int_0^{\cdot} \int_{\mathbb{R}^m} H''[p_t^{\lambda}](\overline{u}_t, \overline{y}_t, 0)(u, z_t^1[\nu], 1)^2 \,\mathrm{d}\mu_t(u) \,\mathrm{d}t.$ **Theorem.** *The following estimate holds:* $V(\theta) \leq V(0) + \theta \operatorname{Val}(LP_{\theta}) + \frac{\theta^2}{2} \Big(\operatorname{Min}_{\nu \in S(SLP)} \operatorname{Max}_{\lambda \in S(LD)} \Omega[\lambda](\nu) \Big) + o(\theta^2).$

 \triangleright the weak-* topology,

 \triangleright the narrow topology,

 \triangleright the usual L^p -distance of transportation theory, denoted by d_p .

For example, a sequence of controls oscillating increasingly fast between to values a and b converges weakly-* to $\mu_t = (\delta_a + \delta_b)/2$. We denote by $\overline{\mu}$ the Young measure such that $\overline{\mu}_t = \delta_{\overline{u}_t}$. For μ in $\mathcal{M}^Y(B_R)$, we denote by $y[\mu, \theta]$ the solution to

 $\begin{cases} \dot{y}_t = \int_{B_R} f(u, y_t, \theta) \, \mathrm{d}\mu_t(u), & \text{for a. a. } t \text{ in } [0, T], \\ y_0 = y^0(\theta). \end{cases}$

We consider the family of relaxed problems with value function $V(\theta) =$

 $\underset{\mu \in \mathcal{M}^{Y}(B_{R})}{\operatorname{Min}} \phi(y_{T}[\mu, \theta]), \quad \text{s.t. } \Phi(y_{T}[\mu], \theta) \in K, \ ||y[\mu, \theta] - \overline{y}||_{\infty} \leq \eta. \quad (\mathcal{P}^{Y})$

1.3 Pontryagin linearization

For a given μ in $M^{Y}(B_{R})$, we define the **Pontryagin linearization** $\xi[\mu]$ as follows:

$$\begin{cases} \dot{\xi_t}[\mu] = f_y(\overline{u}_t, \overline{y}_t)\xi_t[\mu] + \int_{U_R} f(u, \overline{y}_t) - f(\overline{u}_t, \overline{y}_t) \,\mathrm{d}\mu_t(u), \\ \xi_0[\mu] = 0. \end{cases}$$

We denote by ξ^{θ} the solution to

$$\begin{cases} \dot{\xi}^{\theta}_t = f_y[t]\xi^{\theta}_t + f_{\theta}[t], & \text{for a. a. } t \text{ in } [0, T], \\ \xi^{\theta} = y^0_{\theta}(0). \end{cases}$$

The following estimate holds

 $||y[\mu,\theta] - (\overline{y} + \xi[\mu] + \theta\xi^{\theta})||_{\infty} = O(d_1(\mu,\overline{\mu})^2 + \theta^2).$

1.4 Qualification

2.3 Rate of convergence of solutions

We consider a **strong sufficient second-order condition:** there exists $\alpha > 0$ such that for all h in the critical cone,

 $\sup_{\lambda \in S(LD_{\theta})} L_{xx}(\overline{x}, \lambda, 0)h^2 \ge \alpha |h|^2.$

If this condition is satisfied, then the solutions x^{θ} to (P_{θ}) are such that

 $|x^{\theta} - \overline{x}| = O(\theta).$

Moreover, the sequence $(x^{\theta} - \overline{x})/\theta$ has all its limit points in S(LP).

2.4 Second-order lower estimate A second order expansion follows from a Taylor expansion: for all λ in S(LD). $V(\theta) - V(0) = f(x^{\theta}) - f(\overline{x})$

$$\geq L(x^{\theta}, \lambda, \theta) - L(\overline{x}, \lambda, 0)$$

= $\theta L_{\theta}(\overline{x}, \lambda, 0) + \frac{\theta^2}{2} \Big(L_{(x,\theta)^2}(\overline{x}, \lambda, 0) \Big(\frac{x^{\theta} - \overline{x}}{\theta}, 1 \Big)^2 \Big) + o(\theta^2)$
$$\geq \theta L_{\theta}(\overline{x}, \lambda, 0) + \frac{\theta^2}{2} \Big(\underset{d \in S(LP)}{\operatorname{Min}} L_{(x,\theta)^2}(\overline{x}, \lambda, 0)(d, 1)^2 \Big) + o(\theta^2).$$

3 Upper estimates

3.1 First-order upper estimate

For the optimal control problems, we consider perturbations of this form:

 $\mu^{\theta} = (1 - \theta)\overline{\mu} + \theta\mu,$

4 Lower estimate

The critical cone C is the set of ν in $M^2_V(\mathbb{R}^m)$ such that

 $\phi_{y_T}(\overline{y}_T, 0) z_T[\nu] \le 0,$ $\Phi_{u_T}(\overline{y}_T, 0) z_T[\nu] \in T_K(\Phi(\overline{y}_T, 0)).$

We also define the quadratic form $\Omega[\lambda](\nu)$ by

 $\Omega[\lambda](\nu) = \Phi_{(y_T)^2}[\lambda](\overline{y}_T, 0)(z_T[\nu])$ $+ \int_0^1 \int_{\mathbb{R}^m} H_{(u,y)^2}[p_t^{\lambda}](\overline{u}_t,\overline{y}_t,0)(u,z_t[\nu])^2 \,\mathrm{d}\mu_t(u) \,\mathrm{d}t.$

The strong second-order sufficient condition is: $\exists \alpha > 0$ such that 1. For all μ in $\mathcal{M}^Y(B_R)$,

 $\sup_{\lambda \in S(LD_{\theta})} \int_0^t H[p_t^{\lambda}](u, \overline{y}_t, 0) - H[p_t^{\lambda}](\overline{u}_t, \overline{y}_t, 0) \,\mathrm{d}\mu_t(u) \,\mathrm{d}t \ge \alpha d_2(\overline{\mu}, \mu).$

2. For all ν in C, $\sup_{\lambda \in S(LD_{\theta})} \Omega[\lambda](\nu) \ge \alpha ||\nu||_2^2$. We consider solutions μ^{θ} to the perturbed problem. **Theorem.** For all sequence $\theta_k \downarrow 0$, the sequence $\frac{\mu^{\theta_k} \ominus \overline{u}}{\theta_k}$ has a limit point for the narrow topology in S(SLP). Moreover,

$$V(\theta) \ge V(0) + \theta \operatorname{Val}(LP_{\theta}) + \frac{\theta^2}{2} \Big(\operatorname{Min}_{\nu \in S(SLP)} \operatorname{Max}_{\lambda \in S(LD_{\theta})} \Omega[\lambda](\nu) \Big) + o(\theta^2).$$

Sketch of the proof. Following [1], we decompose a solution μ^k into two controls:

 $\triangleright \mu^{A,k}$, accounting for the small variations in L^{∞} -norm of the control, $\triangleright \mu^{B,k}$, accounting for the large variations in L^{∞} -norm of the control,

We set $\mathcal{R}_T = \{\xi_T[\mu], \mu \in \mathcal{M}^Y(B_R)\}$ and we denote by $\mathcal{C}(\mathcal{R}_T)$ the smallest closed cone containing \mathcal{R}_T . We assume that the following qualification **condition** holds: there exists $\varepsilon > 0$ such that

 $B_{\varepsilon} \subset \Phi(\overline{y}_T, 0) + \Phi_{y_T}(\overline{y}_T, 0)\mathcal{C}(\mathcal{R}_T) - K.$

Theorem (Metric regularity). There exist $\tilde{\theta} > 0$, $\delta > 0$ and C > 0 such that for all θ in $[0, \tilde{\theta}]$ and for all μ in $\mathcal{M}^{Y}(B_{R})$ satisfying $d_{1}(\mu, \overline{\mu}) \leq \delta$, there exists a control μ' such that

 $\Phi(y_T[\mu',\theta],\theta) \in K \quad and \quad d_1(\mu,\mu') \leq C \cdot dist(\Phi(y_T[\mu,\theta],\theta),K).$

1.5 Motivations for the relaxation

It can be checked that

 $\triangleright \mathcal{M}^{Y}(B_{R})$ is weakly-* compact

 $\triangleright L([0,T], B_R)$ is weakly-* dense in $\mathcal{M}^Y(B_R)$

 $\triangleright y[\mu, \theta]$ is weakly-* continuous.

Therefore,

 \triangleright the relaxed problems posseses optimal solutions \triangleright if $\overline{\mu}$ is the only control μ such that $y[\mu] = \overline{y}$, then problems (\mathcal{P}) and (\mathcal{P}^Y) have the same value.

where the addition is **the addition of measures**. We have

 $y[\mu^{\theta}, \theta] = \overline{y} + \theta(\xi[\mu] + \xi^{\theta}) + o(\theta).$

The equivalent of problem (LP) is now:

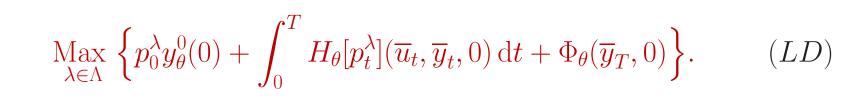
 $\underset{\xi \in \mathcal{C}(\mathcal{R}_T)}{\operatorname{Min}} \phi'(\overline{y}_T, 0)(\xi + \xi_T^{\theta}, 1) \quad \text{s.t. } \Phi'(\overline{y}_T, 0)(\xi + \xi_T^{\theta}, 1) \in T_K(\Phi(\overline{y}_T, 0)).$

Let us define:

 \triangleright the end-point Lagrangian, $\Phi[\lambda](y, \lambda, \theta) = \phi(y, \theta) + \lambda \Phi(y, \theta)$, \triangleright the Hamiltonian, $H[p](u, y, \theta) = \langle p, f(u, y, \theta) \rangle$, \triangleright the costate p^{λ} associated with λ in $N_K(\Phi(\overline{y}_T, 0))$, the solution to

 $\begin{cases} \dot{p}_t = -H_y[p_t](\overline{u}_t, \overline{y}_t) \\ p_T = \Phi_{y_T}[\lambda](\overline{y}_T, \lambda, 0). \end{cases}$

 \triangleright **Pontryagin multipliers** Λ^P , the set of λ in $N_K(\Phi(\overline{y}_T, 0))$ such that for almost all $t, u \mapsto H[p_t^{\lambda}](u, \overline{y}_t, 0)$ is minimized by \overline{u}_t . The dual of problem (LP) is



but on a small subset of $[0, T] \times B_R$. For all λ in S(LD), we have

 $\phi(y_T[\mu^{\theta}, \theta], \theta) - \phi(\overline{y}_T, 0) \ge \Phi[\lambda](y_T[\mu^{\theta}, \theta], \theta) - \Phi[\lambda](\overline{y}_T, 0).$

Then, we expand the r.h.s. and we neglect the part due to $\mu^{B,k}$.

References

- [1] J.F. Bonnans & N. Osmolovskiĭ. Second-order analysis of optimal control problems with control and initial-final state constraints. Journal of Convex Analysis, 2010.
- [2] J.F. Bonnans, L. Pfeiffer & O.S. Serea. Sensitivity analysis for relaxed optimal control problems with final-state constraints. Submitted, available as the Inria Research Report 7977, May 2012.
- [3] J.F. Bonnans & A. Shapiro. Perturbation analysis of optimization problems. Springer-Verlag, New York, 2000.

[4] M. Valadier. Young measures. *Methods of nonconvex analysis*, 1990.

[5] L.C. Young. Lectures on the calculus of variations and optimal control theory. Foreword by Wendell H. Fleming. W. B. Saunders Co., Philadelphia, 1969.