
Sensitivity analysis for

relaxed optimal control problems

with final-state constraints
J. Frédéric Bonnans, 1 Laurent Pfeiffer,1 and Oana Silvia Serea

2

1Inria-Saclay, CMAP, Ecole Polytechnique
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Abstract

We consider a family of optimal control problems with final-state constraints
parameterized by a nonnegative variable θ ≥ 0. The value function is denoted
by V (θ). We consider bounded strong solutions to these problems, ie, optimal
solutions in a small neighborhood in L∞ for trajectories and a large bounded
neighborhood for the controls. Our aim is to obtain a second-order expansion
of V (θ) near 0. By introducing relaxed controls, we are able to deal with a
wide class of perturbations and we obtain sharp estimates.

1 Formulation of the problem

1.1 Setting

For a control u in L∞([0, T ],Rm) and θ ≥ 0, consider the trajectory y[u, θ]
solution of the following differential system:

{

ẏt = f (ut, yt, θ), for a. a. t in [0, T ],

y0 = y0(θ).

We set K = {0nE
} × R

nI
+ . The family of optimal control problems that we

consider is the following:

Min
u∈L∞([0,T ],Rn)

φ(yT [u, θ]), s.t. Φ(yT [u], θ) ∈ K.

A control u is said to be a bounded strong solution for the reference
problem (with θ = 0) if for all R > ||u||∞, there exists η > 0 such that u is
solution to the localized problem

Min
u∈L([0,T ],BR)

φ(yT [u, 0]), s.t. Φ(yT [u], 0) ∈ K, ||y[u, 0]− y||∞ ≤ η, (P)

where BR is the ball of radius R and y = y[u, 0]. Now, we fix u, R, and η.

1.2 Relaxation

Let X be a closed subset of Rm, we denote by P(X) the set of probabilities
on X . The space of Young measures MY (X) is the set of measurable
mapping from [0, T ] to P(X) [5]. We equip this space with:

⊲ the weak-∗ topology,

⊲ the narrow topology,

⊲ the usual Lp−distance of transportation theory, denoted by dp.

For example, a sequence of controls oscillating increasingly fast between to
values a and b converges weakly-∗ to µt = (δa + δb)/2. We denote by µ the
Young measure such that µt = δut. For µ in MY (BR), we denote by y[µ, θ]
the solution to

{

ẏt =
∫

BR
f (u, yt, θ) dµt(u), for a. a. t in [0, T ],

y0 = y0(θ).

We consider the family of relaxed problems with value function V (θ) =

Min
µ∈MY (BR)

φ(yT [µ, θ]), s.t. Φ(yT [µ], θ) ∈ K, ||y[µ, θ]− y||∞ ≤ η. (PY )

1.3 Pontryagin linearization

For a given µ in MY (BR), we define the Pontryagin linearization ξ[µ]
as follows:

{

ξ̇t[µ] = fy(ut, yt)ξt[µ] +
∫

UR
f (u, yt)− f (ut, yt) dµt(u),

ξ0[µ] = 0.

We denote by ξθ the solution to
{

ξ̇θt = fy[t]ξ
θ
t + fθ[t], for a. a. t in [0, T ],

ξθ = y0θ(0).

The following estimate holds

||y[µ, θ]− (y + ξ[µ] + θξθ)||∞ = O(d1(µ, µ)
2 + θ2).

1.4 Qualification

We set RT = {ξT [µ], µ ∈ MY (BR)} and we denote by C(RT ) the smallest
closed cone containing RT . We assume that the following qualification

condition holds: there exists ε > 0 such that

Bε ⊂ Φ(yT , 0) + ΦyT(yT , 0)C(RT )−K.

Theorem (Metric regularity).There exist θ̃ > 0, δ > 0 and C > 0 such

that for all θ in [0, θ̃] and for all µ in MY (BR) satisfying d1(µ, µ) ≤ δ,
there exists a control µ′ such that

Φ(yT [µ
′, θ], θ) ∈ K and d1(µ, µ

′) ≤ C · dist(Φ(yT [µ, θ], θ),K).

1.5 Motivations for the relaxation

It can be checked that

⊲ MY (BR) is weakly-∗ compact

⊲ L([0, T ], BR) is weakly-∗ dense in MY (BR)

⊲ y[µ, θ] is weakly-∗ continuous.

Therefore,

⊲ the relaxed problems posseses optimal solutions

⊲ if µ is the only control µ such that y[µ] = y, then problems (P) and
(PY ) have the same value.

2 Methodology of sensitivity analysis

Following [3], we describe the methodology used in an abstract framework:

V (θ) = Min
x∈H

f (x, θ) s.t. g(x, θ) ∈ K, (Pθ)

where H is a Hilbert space and K stands for inequalities and equalities. The
Lagrangian is

L(x, λ, θ) = f (x, θ) + 〈λ, g(x, θ)〉.

Let x be an optimal solution to (P0) and Λ be the set of Lagrange multipliers
associated.

2.1 First-order upper estimate

Let d in H be such that g′(x, 0)(d, 1) ∈ TK(g(x, 0)). With a regularity
theorem, we construct a feasible sequence xθ = x+ θd+ o(θ). Therefore, the
linear problem

Min
d∈H

f ′(x, 0)(d, 1) s.t. g′(x, 0)(d, 1) ∈ TK(g(x, 0)), (LP )

provides the upper estimate V (x) ≤ V (0) + θVal(LP ) + o(θ). Moreover, the
dual of (LP ) is

Max
λ∈Λ

Lθ(x, λ, 0). (LD)

2.2 Second-order upper estimate

Let d be a solution to (LP ). We define






Min
h∈H

fx(x, 0)h + 1
2f

′′(x, 0)(d, 1)2

s.t. gx(x, 0)h + 1
2g

′′(x, 0)(d, 1)2 ∈ T 2
K(g(x, 0), g

′(x, 0)d).
(QP )

The dual of this problem is

Max
λ∈S(LD)

L(x,θ)2(x, λ, 0)(d, 1)
2. (QD)

Finally, we obtain the upper expansion of V (θ)

V (0) + θ
(

Val(LP )
)

+ θ2
(

Min
d∈S(LPθ)

Max
λ∈S(LD)

L(x,θ)2(x, λ, 0)(d, 1)
2
)

+ o(θ2).

2.3 Rate of convergence of solutions

We consider a strong sufficient second-order condition: there exists
α > 0 such that for all h in the critical cone,

sup
λ∈S(LDθ)

Lxx(x, λ, 0)h
2 ≥ α|h|2.

If this condition is satisfied, then the solutions xθ to (Pθ) are such that

|xθ − x| = O(θ).

Moreover, the sequence (xθ − x)/θ has all its limit points in S(LP ).

2.4 Second-order lower estimate

A second order expansion follows from a Taylor expansion: for all λ in S(LD),

V (θ)− V (0) = f (xθ)− f (x)

≥ L(xθ, λ, θ)− L(x, λ, 0)

= θLθ(x, λ, 0) +
θ2

2

(

L(x,θ)2(x, λ, 0)
(xθ − x

θ
, 1
)2
)

+ o(θ2)

≥ θLθ(x, λ, 0) +
θ2

2

(

Min
d∈S(LP )

L(x,θ)2(x, λ, 0)(d, 1)
2
)

+ o(θ2).

3 Upper estimates

3.1 First-order upper estimate

For the optimal control problems, we consider perturbations of this form:

µθ = (1− θ)µ + θµ,

where the addition is the addition of measures. We have

y[µθ, θ] = y + θ(ξ[µ] + ξθ) + o(θ).

The equivalent of problem (LP ) is now:

Min
ξ∈C(RT )

φ′(yT , 0)(ξ + ξθT , 1) s.t. Φ′(yT , 0)(ξ + ξθT , 1) ∈ TK(Φ(yT , 0)).

Let us define:

⊲ the end-point Lagrangian, Φ[λ](y, λ, θ) = φ(y, θ) + λΦ(y, θ),

⊲ the Hamiltonian, H [p](u, y, θ) = 〈p, f (u, y, θ)〉,

⊲ the costate pλ associated with λ in NK(Φ(yT , 0)), the solution to
{

ṗt = −Hy[pt](ut, yt)

pT = ΦyT [λ](yT , λ, 0).

⊲ Pontryagin multipliers ΛP , the set of λ in NK(Φ(yT , 0)) such that
for almost all t, u 7→ H [pλt ](u, yt, 0) is minimized by ut.

The dual of problem (LP ) is

Max
λ∈Λ

{

pλ0y
0
θ(0) +

∫ T

0

Hθ[p
λ
t ](ut, yt, 0) dt + Φθ(yT , 0)

}

. (LD)

3.2 Second-order upper estimate

Unfortunately, problem (LP ) does not have necessarily solutions. We consider
the linearization associated with the perturbation u+ θv. We denote by z[v]
the solution of

{

żt[v] = fu,y(ut, yt, 0)(vt, zt[v]),

z0[v] = yθ0(0),

and we set z1[v] = z[v] + ξθ. This definition extends to ν in MY
2 , the space of

Young measures with a finite L2−norm. The standard linearized problem is

Min
ν∈MY

2

φ′(yT , 0)(z
1
T [v], 1) s.t. Φ

′(yT , 0)(z
1
T [v], 1) ∈ TK(Φ(yT , 0)). (SLP )

Now, λ ∈ NK(Φ(yT , 0)) is said to be a Lagrange multiplier if for almost
all t,

Hu[p
λ
t ](ut, yt) = 0.

The set of Lagrange multipliers is denoted by ΛL. Note that ΛP ⊂ ΛL. The
dual of (SLP ) is:

Max
λ∈ΛL

Lθ(u, y, λ, 0). (SLD)

Now we assume that:
Val(SLP ) = Val(LP ).

Consider a solution ν to (SLP ). Considering a perbutation of the form

µθ = (1− θ2)(u + θv) + θ2µ,

we obtain a second-order problem whose dual is the following:

Max
λ∈S(LD)

Ωθ[λ](v), (QD(ν))

where Ωθ is defined by

Ωθ[λ](ν) = pλ0y
0
θθ(0) + Φ′′[λ](yT , 0)(z

1
T [ν], 1)

+

∫ T

0

∫

Rm

H ′′[pλt ](ut, yt, 0)(u, z
1
t [ν], 1)

2 dµt(u) dt.

Theorem.The following estimate holds:

V (θ) ≤ V (0) + θVal(LPθ) +
θ2

2

(

Min
ν∈S(SLP )

Max
λ∈S(LD)

Ω[λ](ν)
)

+ o(θ2).

4 Lower estimate

The critical cone C is the set of ν in M 2
Y (R

m) such that

φyT(yT , 0)zT [ν] ≤ 0,

ΦyT(yT , 0)zT [ν] ∈ TK(Φ(yT , 0)).

We also define the quadratic form Ω[λ](ν) by

Ω[λ](ν) = Φ(yT )2[λ](yT , 0)(zT [ν])

+

∫ T

0

∫

Rm

H(u,y)2[p
λ
t ](ut, yt, 0)(u, zt[ν])

2 dµt(u) dt.

The strong second-order sufficient condition is: ∃α > 0 such that

1. For all µ in MY (BR),

sup
λ∈S(LDθ)

∫ T

0

H [pλt ](u, yt, 0)−H [pλt ](ut, yt, 0) dµt(u) dt ≥ αd2(µ, µ).

2. For all ν in C, sup
λ∈S(LDθ)

Ω[λ](ν) ≥ α||ν||22.

We consider solutions µθ to the perturbed problem.

Theorem.For all sequence θk ↓ 0, the sequence µθk⊖u
θk

has a limit point

for the narrow topology in S(SLP ). Moreover,

V (θ) ≥ V (0) + θVal(LPθ) +
θ2

2

(

Min
ν∈S(SLP )

Max
λ∈S(LDθ)

Ω[λ](ν)
)

+ o(θ2).

Sketch of the proof. Following [1], we decompose a solution µk into two
controls:

⊲ µA,k, accounting for the small variations in L∞−norm of the control,

⊲ µB,k, accounting for the large variations in L∞−norm of the control,
but on a small subset of [0, T ]× BR.

For all λ in S(LD), we have

φ(yT [µ
θ, θ], θ)− φ(yT , 0) ≥ Φ[λ](yT [µ

θ, θ], θ)− Φ[λ](yT , 0).

Then, we expand the r.h.s. and we neglect the part due to µB,k.
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