A semi-Lagrangian scheme for a first order Mean Field Game problem

F. Camilli, E. Carlini and F. J. Silva

Dipartimento di Matematica Guido Catelnuovo, Universita La Sapienza.

1 Introduction

We consider the following first order Mean Field Game problem

$$
-\partial_{t} v(x, t)+\frac{1}{2}|D v(x, t)|^{2}=F(x, m(t)), \text { in } \mathbb{R}^{d} \times(0, T),
$$

$$
\begin{gathered}
\partial_{t} m(x, t)-\operatorname{div}(D v(x, t) m(x, t))=0, \quad \text { in } \mathbb{R}^{d} \times(0, T), \\
v(x, T)=G(x, m(T)) \text { for } x \in \mathbb{R}^{d}, m(0)=m_{0} \in L^{\infty}\left(\mathbb{R}^{d}\right) .
\end{gathered}
$$

The above equations have been introduced by J.M. Lasry and P. L. Lions in [4, 3] in players. The main assumption is that the players are indistinguishable and ea one of them has a small influence on the overall system. Existence of a solution, where the first equation is satisfied in the viscosity sense and the second one in the distributional sense, can be proved under rather general assumptions. The uniqueness is also satisfied if the following assumption holds true

$$
\left.\begin{array}{ll}
\int_{\mathbb{R}^{d}}\left[F\left(x, m_{1}\right)-F\left(x, m_{2}\right)\right] \mathrm{d}\left[m_{1}-m_{2}\right](x)>0 & \text { for all } m_{1}, m_{2} \in \mathcal{P}_{1}, m_{1} \neq m_{2} \\
\int_{\mathbb{R}^{d}}\left[G\left(x, m_{1}\right)-G\left(x, m_{2}\right)\right] \mathrm{d}\left[m_{1}-m_{2}\right](x)>0 & \text { for all } m_{1}, m_{2} \in \mathcal{P}_{1}, m_{1} \neq m_{2} .
\end{array}\right\}
$$

- The semi-discrete in time scheme introduced in [1] (joint work with F. Camilli),
- A fully-discrete semi-Lagrangian scheme introduced in [2] (joint work with E. Carlini) which depends on the discretization parameters $\rho>0$ and $h>0$ for the state and time, respectively, and a regularization parameter $\varepsilon>0$.
- An existence result for the fully discrete scheme.
- In the case $d=1$ a convergence result.

A numerical simulation.
For precise assumptions over the data, see [1, 2].

2 The semi-discrete scheme [1] (with F. Camilli)

For $h>0$ and $N \in \mathbb{N}$, with $N h=T$, and $t_{k}:=k h$ for $k=0, \ldots, N$, we set

$$
\mathcal{K}_{h}:=\left\{\mu=\left(\mu\left(t_{k}\right)\right)_{k=0}^{N}: \text { such that } \mu\left(t_{k}\right) \in \mathcal{P}_{1} \quad \text { for all } k=0, \ldots, N\right\}
$$

For $\mu \in \mathcal{K}_{h}$ and $n=[t / h]$, we define recursively the sequence

$$
v_{h}[\mu]\left(x, t_{k}\right)=\inf _{\alpha \in \mathbb{R}^{d}}\left\{v_{h}[\mu]\left(x-h \alpha, t_{k+1}\right)+\frac{1}{2} h|\alpha|^{2}\right\}+h F\left(x, \mu\left(t_{k}\right)\right),
$$

$$
v_{h}[\mu](x, T)=G(x, \mu(T)) \text {. }
$$

Given $x \in \mathbb{R}^{d}$ and $t_{n_{1}} \leq t_{n_{2}}$, the discrete flow $\Phi_{h}[\mu]\left(\cdot, t_{n_{1},},\right)$ is defined recursively as

$$
\Phi_{h}[\mu]\left(x, t_{n_{1}}, t_{n_{2}+1}\right):=\Phi_{h}[\mu]\left(x, t_{n_{1}}, t_{n_{2}}\right)-h \alpha_{h}[\mu]\left(x, t_{n_{2}}\right),
$$

$$
\Phi_{h}[\mu]\left(x, t_{n_{1}}, t_{n_{1}}\right):=x,
$$

where for every $\left(x, t_{k}\right)$, the discrete control $\alpha_{h}[\mu]\left(x, t_{k}\right)$ solves (2). It can be proved
that $\Phi_{b}[\mu]\left(x, t_{n}\right) \cdot$) is uniquely defined a.e. in \mathbb{R}^{d}. Now, we define that $\Phi_{h}[\mu]\left(x, t_{n_{1}}, \cdot\right)$ is uniquely defined a.e. in \mathbb{R}^{d}. Now, we define

$$
m_{h}[\mu]\left(t_{n}\right):=\Phi_{h}[\mu]\left(\cdot, 0, t_{n}\right) \sharp m_{0} .
$$

The semi-discrete approximation of (1) is defined as
Find $m_{h} \in \mathcal{K}_{h}$ such that $m_{h}\left(t_{n}\right)=\Phi_{h}\left[m_{h}\right](\cdot, 0, t) \sharp m_{0}$ for all $n=0, \ldots, N$. (3)

Theorem 1 Problem (3) admits at least one solution m_{h}. Moreover, if (M) holds then the solution is unique.
We also have the following convergence result, which, in particular, provides another proof for the existence of a solution of problem (1).

Theorem 2 Every limit point of m_{h} (there exists at least one) solves (1). In particular,
if (M) holds we have that $m_{h} \rightarrow m$ (the unique solution of (1)) in $C\left([0, T] ; \mathcal{P}_{1}\right)$ and in if (\mathbf{M}) holds we have that $m_{h} \rightarrow m$ (the unique solution of (1)) in $C\left([0, T] ; \mathcal{P}_{1}\right)$ and in
$L^{\infty}\left(\mathbb{R}^{d} \times[0, T)\right.$-weak-* [
The key elements in the proof are optimal control techniques and the fact that m_{0} is absolutely continuous w.r.t. the Lebesgue measure.

3 The fully-discrete scheme [2] (with E. Carlini)

For $h, \rho>0$, let $\mathcal{G}_{\rho}:=\left\{x_{i}=i \rho, i \in \mathbb{Z}^{d}\right\}$ and $\mathcal{G}^{\rho, h}:=\left\{t_{n}\right\}_{n=0}^{N} \times \mathcal{G}_{\rho}$ be the time-space grid.
 $x \in Q\left(x_{i}\right)$ and 0 if not. Given $\mu \in C\left([0, T], \mathcal{P}_{1}\right)$, define

$$
v_{i}^{n}=S^{\rho, h}[\mu]\left(v^{n+1}, i, n\right) \quad \text { and } \quad v_{i}^{N}=G\left(x_{i}, \mu(T)\right) \text {, }
$$

where $S^{p, h}[\mu]$ is defined as

$$
S^{\rho, h}[\mu](w, i, n):=\inf _{\alpha \in \mathbb{R}^{d}}\left[\sum_{j \in \mathbb{Z}^{d}} \beta_{j}\left(x_{i}-h \alpha\right) w_{j}+\frac{1}{2} h|\alpha|^{2}\right]+h F\left(x_{i}, \mu\left(t_{n}\right)\right) .
$$

We set

$$
\left.v^{o, h}[\mu](x, t):=\sum_{i \in \mathbb{Z}^{d}} \beta_{i}(x) v_{i}^{[t]} \text { it }^{[}\right] \text {for all }(x, t) \in \mathbb{R}^{d} \times[0, T] .
$$

Let $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\rho \geq 0$ and $\int_{\mathbb{R}^{d}} \rho(x) \mathrm{d} x=1$. For $\varepsilon>0$, we consider the mollifier $\rho_{\varepsilon}(x):=\frac{c}{\varepsilon^{\varphi}} \rho\left(\frac{x}{\varepsilon}\right)$ and define

$$
v_{\varepsilon}^{\rho, h}[\mu](\cdot, t):=\rho_{\varepsilon} * v^{\rho, h}[\mu](\cdot, t) \text { for all } t \in[0, T] \text {. }
$$

Consider the set

$$
\mathcal{S}:=\left\{\left(z_{i}\right)_{i \in \mathbb{Z}^{d}} ; z_{i} \in \mathbb{R}_{+} \text {and } \sum_{i \in \mathbb{Z}^{d}} z_{i}=1\right\}
$$

The coordinates of $\mu \in \mathcal{S}^{N}$ are denoted as μ_{e}^{k}, with $i \in \mathbb{Z}^{d}$ and $k=0, \ldots, N$. Each
$\mu \in \mathcal{S}^{N}$ is identified with $\mu \in C\left([0, T] ; \mathcal{P}_{1}\right)$ defined as

$$
\mu(x, t):=\frac{1}{\rho^{d}}\left[\frac{t_{k+1}-t}{h} \sum_{i \in \mathbb{Z}^{d}} \mu_{\mathbb{i}}^{k} \mathbb{I}_{E_{i}}(x)+\frac{t-t_{k}}{h} \sum_{i \in \mathbb{Z}^{d}} \mu_{i}^{k+1} \mathbb{I}_{E_{i}}(x)\right] \text { if } t \in\left[t_{k}, t_{k+1}\right],
$$

where $E_{i}:=\left[x_{i} \pm \frac{1}{2} \rho e_{1}\right] \times \ldots \times\left[x_{i} \pm \frac{1}{2} \rho e_{d}\right]$. Let us define

$$
\Phi_{\varepsilon}^{\rho, h}[\mu]\left(x_{i}, t_{k}, t_{k+1}\right):=x_{i}-h D v_{\varepsilon}^{\rho, h}[\mu]\left(x_{i}, t_{k}\right) .
$$

We define $m_{\varepsilon}^{\rho}[\mu] \in \mathcal{S}^{N+1}$ recursively as

$$
\begin{aligned}
\left(m_{\varepsilon}^{\rho, h}[\mu]\right)_{i}^{k+1} & :=\sum_{j} \beta_{i}\left(\Phi_{\varepsilon}^{\rho, h}[\mu]\left(x_{i}, t_{k}, t_{k+1}\right)\right)\left(m_{\varepsilon}^{\rho, h}[\mu)_{j}^{k}, \text { for } i \in \mathbb{Z}^{d},\right. \\
\left(m_{\varepsilon}^{\rho, h}[\mu]\right)_{i}^{0} & :=\int_{E_{i}} m_{0}(x) \mathrm{d} x, \text { for } i \in \mathbb{Z}^{d}
\end{aligned}
$$

and $m_{\varepsilon}^{p, h}[\mu](x, t)$ is defined as we did with μ above. The key property for our main result, which we are able to prove only in dimension 1 , is

Lemma 3.1 Suppose that $d=1$. Then, there exists $C>0$ (independent of $(\rho, h, \varepsilon, \mu)$) such that for any $i \in \mathbb{Z}^{d}$ and $k=0, \ldots, N-1$, we have that

$$
\sum_{j \in \mathbb{Z}^{d}} \beta_{i}\left(\Phi_{\varepsilon}^{\rho, h}\left(x_{j}, t_{k}, t_{k+1}\right)\right) \leq 1+C h .
$$

Consequently, $m_{\varepsilon}^{p, h}[\mu](\cdot, \cdot)$ is bounded in L^{∞} independently of $(\rho, h, \varepsilon, \mu)$.

We consider the following fully-discretization of (1):

$$
\text { Find } \mu \in \mathcal{S}^{N+1} \text { such that } \mu_{i}^{k}=\left(m_{\varepsilon}^{\rho, h} h \mu\right)_{i}^{k} \text { for all } i \in \mathbb{Z}^{d} \text { and } k=0, \ldots, N .
$$ We have the following existence result:

Theorem 3 The fully-discrete problem admits at least one solution
Our main result is that we can prove convergence in dimension 1.
Theorem 4 Suppose that $d=1$ and consider a sequence of positive numbers $\rho_{n}, h_{n}, \varepsilon_{n}$ satisfying that $\rho_{n}=o\left(h_{n} \varepsilon_{n}\right), h_{n}=o\left(\varepsilon_{n}\right)$ and $\varepsilon_{n} \rightarrow 0$. Then every limit point of $m_{n}^{p_{n}, h_{n}}$
(thery exists at least one) is a solution of (1) In particular if (\mathbf{M}) holds we have that

4 A numerical example

Example: [People willing to go to the center but not together] - Space-time domain: $\Omega \times[0, T]=[0,1] \times[0,0.05]$

- $F(x, m)=(x-0.5)^{2}+h *(h * m)$, where

$$
h(x)=\frac{\hat{h}(x)}{\int_{0}^{1} \hat{h}(y) \mathrm{d} y} \text { and } \hat{h}(x)=e^{-x^{2} / 8 \mathbb{I}_{\left[-\frac{1}{4} \frac{1}{4},{ }^{2}\right.} .}
$$

- $G(x, m)=0$.
- toll $=10^{-3}, \rho=2.5 \cdot 10^{-2}$ and $h=0.01$.

References

[1] F. Camilli and F.J. Silva A semi-discrete in time approximation for a first order-finite mean field game problem Network and Heterogeneous Media 7-2 order-finite me
263-277, 2012.
2] E. Carlini and FJ. Silva A fully-discrete semi-Lagrangian scheme for a first order-finite Mean Field Game problem Preprint, to appear, 2012.
[3] J.-M. Lasry and P.-L. Lions. Jeux à champ moyen II. Horizon fini et contrôle [3] J.--M. Lasry and P.-L. Lions. Jeux à champ moyen II. H
optimal C. R. Math. Acad. Sci. Paris, 343:679-684, 2006.
[4]J.-M. Lasry and P.-L. Lions. Mean field games Jpn. J. Math., 2: 229-260, 2007

