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1 Introduction
We consider the following first order Mean Field Game problem

−∂tv(x, t) + 1
2|Dv(x, t)|2 = F (x,m(t)), in Rd × (0, T ),

∂tm(x, t)− div
(
Dv(x, t)m(x, t)

)
= 0, in Rd × (0, T ),

v(x, T ) = G(x,m(T )) for x ∈ Rd , m(0) = m0 ∈ L∞(Rd).

(1)

The above equations have been introduced by J.M. Lasry and P. L. Lions in [4, 3] in
order to model a deterministic differential game with an infinite number of
players. The main assumption is that the players are indistinguishable and each
one of them has a small influence on the overall system. Existence of a solution,
where the first equation is satisfied in the viscosity sense and the second one in the
distributional sense, can be proved under rather general assumptions. The
uniqueness is also satisfied if the following assumption holds true

∫
Rd [F (x,m1)− F (x,m2)] d[m1 −m2](x) > 0 for all m1, m2 ∈ P1, m1 6= m2,∫
Rd [G(x,m1)−G(x,m2)] d[m1 −m2](x) > 0 for all m1, m2 ∈ P1, m1 6= m2.

}
(M)

In this poster we present
• The semi-discrete in time scheme introduced in [1] (joint work with F. Camilli).
•A fully-discrete semi-Lagrangian scheme introduced in [2] (joint work with E.

Carlini) which depends on the discretization parameters ρ > 0 and h > 0 for the
state and time, respectively, and a regularization parameter ε > 0.
•An existence result for the fully discrete scheme.
• In the case d = 1 a convergence result.
•A numerical simulation.

For precise assumptions over the data, see [1, 2].

2 The semi-discrete scheme [1] (with F. Camilli)
For h > 0 and N ∈ N, with Nh = T , and tk := kh for k = 0, . . . , N , we set

Kh :=
{
µ = (µ(tk))

N
k=0 : such that µ(tk) ∈ P1 for all k = 0, . . . , N

}
.

For µ ∈ Kh and n = [t/h], we define recursively the sequence

vh[µ](x, tk) = infα∈Rd

{
vh[µ](x− hα, tk+1) + 1

2h|α|
2
}

+ hF (x, µ(tk)),

vh[µ](x, T ) = G(x, µ(T )).
(2)

Given x ∈ Rd and tn1 ≤ tn2, the discrete flow Φh[µ](·, tn1, ·) is defined recursively as

Φh[µ](x, tn1, tn2+1) := Φh[µ](x, tn1, tn2)− hαh[µ](x, tn2),

Φh[µ](x, tn1, tn1) := x,

where for every (x, tk), the discrete control αh[µ](x, tk) solves (2). It can be proved
that Φh[µ](x, tn1, ·) is uniquely defined a.e. in Rd. Now, we define

mh[µ](tn) := Φh[µ](·, 0, tn)]m0.

The semi-discrete approximation of (1) is defined as

Find mh ∈ Kh such that mh(tn) = Φh[mh](·, 0, t)]m0 for all n = 0, . . . , N. (3)

Theorem 1 Problem (3) admits at least one solution mh. Moreover, if (M) holds then the
solution is unique.

We also have the following convergence result, which, in particular, provides
another proof for the existence of a solution of problem (1).

Theorem 2 Every limit point of mh (there exists at least one) solves (1). In particular,
if (M) holds we have that mh→ m (the unique solution of (1)) in C([0, T ];P1) and in
L∞
(
Rd × [0, T ]

)
-weak-∗.

The key elements in the proof are optimal control techniques and the fact that
m0 is absolutely continuous w.r.t. the Lebesgue measure.

3 The fully-discrete scheme [2] (with E. Carlini)

For h, ρ > 0, let Gρ := {xi = iρ, i ∈ Zd} and Gρ,h := {tn}Nn=0 × Gρ be the time-space grid.
Given the hypercube Q(xi) := [xi ± ρe1]× ...× [xi ± ρed], set βi(x) = 1− ‖x−xi‖1ρ if
x ∈ Q(xi) and 0 if not. Given µ ∈ C([0, T ],P1), define

vni = Sρ,h[µ](vn+1, i, n) and vNi = G(xi, µ(T )),

where Sρ,h[µ] is defined as

Sρ,h[µ](w, i, n) := inf
α∈Rd

∑
j∈Zd

βj(xi − hα)wj + 1
2h|α|

2

 + hF (xi, µ(tn)).

We set
vρ,h[µ](x, t) :=

∑
i∈Zd

βi(x)v
[ th]
i for all (x, t) ∈ Rd × [0, T ].

Let ρ ∈ C∞c (Rd) with ρ ≥ 0 and
∫
Rd ρ(x)dx = 1. For ε > 0, we consider the mollifier

ρε(x) := 1
εd
ρ
(
x
ε

)
and define

vρ,hε [µ](·, t) := ρε ∗ vρ,h[µ](·, t) for all t ∈ [0, T ].

Consider the set

S :=

(zi)i∈Zd ; zi ∈ R+ and
∑
i∈Zd

zi = 1

 .

The coordinates of µ ∈ SN are denoted as µki , with i ∈ Zd and k = 0, ..., N . Each
µ ∈ SN is identified with µ ∈ C([0, T ];P1) defined as

µ(x, t) :=
1

ρd

tk+1 − t
h

∑
i∈Zd

µki IEi(x) +
t− tk
h

∑
i∈Zd

µk+1
i IEi(x)

 if t ∈ [tk, tk+1],

where Ei := [xi ± 1
2ρe1]× ...× [xi ± 1

2ρed]. Let us define

Φρ,h
ε [µ](xi, tk, tk+1) := xi − hDvρ,hε [µ](xi, tk).

We define mρ,h
ε [µ] ∈ SN+1 recursively as

(mρ,h
ε [µ])k+1

i :=
∑

j βi
(
Φρ,h
ε [µ](xi, tk, tk+1)

)
(mρ,h

ε [µ])kj , for i ∈ Zd,

(mρ,h
ε [µ])0

i :=
∫
Ei
m0(x)dx, for i ∈ Zd

and mρ,h
ε [µ](x, t) is defined as we did with µ above. The key property for our

main result, which we are able to prove only in dimension 1, is

Lemma 3.1 Suppose that d = 1. Then, there exists C > 0 (independent of (ρ, h, ε, µ))
such that for any i ∈ Zd and k = 0, . . . , N − 1, we have that∑

j∈Zd
βi
(
Φρ,h
ε (xj, tk, tk+1)

)
≤ 1 + Ch.

Consequently, mρ,h
ε [µ](·, ·) is bounded in L∞ independently of (ρ, h, ε, µ).

We consider the following fully-discretization of (1):

Find µ ∈ SN+1 such that µki = (mρ,h
ε [µ])ki for all i ∈ Zd and k = 0, . . . , N.

We have the following existence result:

Theorem 3 The fully-discrete problem admits at least one solution.

Our main result is that we can prove convergence in dimension 1.

Theorem 4 Suppose that d = 1 and consider a sequence of positive numbers ρn, hn, εn
satisfying that ρn = o (hnεn), hn = o(εn) and εn→ 0. Then every limit point of mρn,hn

εn
(there exists at least one) is a solution of (1). In particular, if (M) holds we have that
mρn,hn
εn
→ m (the unique solution of (1)) in C([0, T ];P1) and in L∞ (R× [0, T ])-weak-∗.

4 A numerical example

Example: [People willing to go to the center but not together]
• Space-time domain: Ω× [0, T ] = [0, 1]× [0, 0.05]

• F (x,m) = (x− 0.5)2 + h ∗ (h ∗m), where

h(x) =
ĥ(x)∫ 1

0
ĥ(y)dy

and ĥ(x) = e−x
2/8I[−1

4,
1
4].

•G(x,m) = 0.

•m0 ≡ 1 in [0, 1].
• toll= 10−3, ρ = 2.5 · 10−2 and h = 0.01.
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