
The vanishing viscosity limit for Hamilton-Jacobi
equations on networks

Fabio Camilli (“Sapienza" Univ. di Roma)

joint with Claudio Marchi (Padova) and Dirk Schieborn
(Tübingen).

Fabio Camilli (“Sapienza" Univ. di Roma) HJ on networks Ravello, September 9, 2012 1 / 31



Hamilton-Jacobi equations on networks

Three different approaches to HJ equation on networks
Achdou, Camilli, Cutrì,Tchou: Hamilton-Jacobi equations
constrained on networks, hal-00503910 (NoDea)
Imbert, Monneau, Zidani: A Hamilton-Jacobi approach to

junction problems and application to traffic flows, arXiv:1107.3250,
2011 (ESAIM Cocv).
Camilli, Schieborn: Viscosity solutions of eikonal equations on

topological networks, arXiv:1103.4041v1 (CVPDE)

All the previous papers aim to extend the concept of viscosity solution
to networks, but they differ for the assumptions made on the
Hamiltonian at the vertices.
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Vanishing Viscosity Approximation

In many problems, the vanishing viscosity method arises as a natural
selection principle of the physical admissible solution in the class of
weak solutions

Goal
Show that viscosity solution of the Hamilton-Jacobi equation

H(x ,u, ∂u) = 0, x ∈ Γ,

given in Camilli-Schieborn can be obtained as limit of solutions to the
viscous approximation

−ε∂2uε + H(x ,uε, ∂uε) = 0, x ∈ Γ,

letting the viscosity ε→ 0+
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The definition of Network

A network is a connected set Γ consisting of vertices V := {vi}i∈I and
edges E := {ej}j∈J connecting the vertices.
We assume that the network is imbedded in the Euclidian space so
that any two edges can only have intersection at a vertex.
A coordinate πj : [0, lj ]→ RN , j ∈ J is chosen on the edge ej .

(a) An example of network
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Some Notations

Inci := {j ∈ J : ej incident to vi} is the set of arcs incident the
vertex vi .
A vertex vi is a boundary vertex if it has only one incident edge.
We denote by ∂Γ = {vi , i ∈ IB} the set of boundary vertices.
A vertex vi is a transition vertex if it has more than one incident
edge. We denote by ΓT = {vi , i ∈ IT} the set of transition vertices
The graph is not oriented. The parametrization of the arcs ej
induces an orientation on the edges, expressed by the signed
incidence matrix A = {aij}i∈I,j∈J

aij :=


1 if vi ∈ ēj and πj(0) = vi ,
−1 if vi ∈ ēj and πj(lj) = vi ,

0 otherwise.
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−1 if vi ∈ ēj and πj(lj) = vi ,

0 otherwise.

Fabio Camilli (“Sapienza" Univ. di Roma) HJ on networks Ravello, September 9, 2012 5 / 31



Some Notations

Inci := {j ∈ J : ej incident to vi} is the set of arcs incident the
vertex vi .
A vertex vi is a boundary vertex if it has only one incident edge.
We denote by ∂Γ = {vi , i ∈ IB} the set of boundary vertices.
A vertex vi is a transition vertex if it has more than one incident
edge. We denote by ΓT = {vi , i ∈ IT} the set of transition vertices
The graph is not oriented. The parametrization of the arcs ej
induces an orientation on the edges, expressed by the signed
incidence matrix A = {aij}i∈I,j∈J

aij :=
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The network is an imbedded subset of Rn. It follows that the problem is
intrinsically 1-dimensional and we can always work with the variable
giving the parametrization of the edges
Given u : Γ→ R, uj : [0, lj ]→ R denotes the restriction of u to ēj , i.e.
uj(y) = u(πj(y)) for y ∈ [0, lj ]

u is continuous (u ∈ C0(Γ)) if uj ∈ C([0, lj ]) for any j ∈ J and

uj(π−1
j (vi)) = uk (π−1

k (vi)) for any i ∈ I, j , k ∈ Inci

For α ∈ N, differentiation is defined with respect to the parameter
variable

∂αj u(x) :=
dα

dyα
uj(y), for x ∈ ej , y = π−1

j (x)

and at a vertex vi by

∂αj u(x) :=
dα

dyα
uj(y) for x = vi , y = π−1

j (x), j ∈ Inci .
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H(x,u, ∂u) = 0 x ∈ Γ

where Hamiltonian H : Γ× R× R→ R is a family {H j}j∈J with
H j : [0, lj ]× R× R→ R satisfying

(H1) H j ∈ C0([0, lj ]× R× R) for j ∈ J
(H2) H j(x , r ,p) is non decreasing in r for p ∈ R, x ∈ [0, lj ], j ∈ J
(H3) H j(x , r , ·) is convex, coercive in p for any x ∈ [0, lj ], j ∈ J

(H4) H j(π−1
j (vi), r ,p) = Hk (π−1

k (vi), r ,p) for any p ∈ R, i ∈ I, j , k ∈ Inci

(H5) H j(π−1
j (vi), r ,p) = H j(π−1

j (vi), r ,−p) for any p ∈ R i ∈ I, j ∈ Inci

(H1)- (H3) are standard conditions for HJ equation. Assumptions
(H4)-(H5) are continuity at the vertices and independence of the
orientation of the incident edge.
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Example
Consider the eikonal equation

λu + |∂u|2 − f (x) = 0, x ∈ Γ.

where λ ≥ 0, f ≥ 0 and f ∈ C0(Γ̄), i.e. f (x) = f j(π−1
j (x)) for x ∈ ēj ,

f j ∈ C0([0, lj ]), and f j(π−1
j (vi)) = f k (π−1

k (vi)) for any i ∈ I, j , k ∈ Inci .
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In the theory of viscosity solution, the class of test functions is a crucial
point.

Test functions
ϕ is a test function at x ∈ ej , if ϕj := ϕ ◦ πj : [0, lj ]→ R is
differentiable at y = π−1

j (x).

ϕ is (j,k)-test function at x = vi if ∂jϕj(π
−1
j (x)) and ∂kϕk (π−1

k (x))
exist. Moreover

aij∂jϕj(π
−1
j (x)) + aik∂kϕk (π−1

k (x)) = 0, (1)

where (aij ) is the incidence matrix.

Remark
Condition (1) says that, taking into account the orientation, the function
ϕ is differentiable at vi along the direction given by the couple of edges
ej and ek (no condition, except continuity, along the other incident
edges)
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An u.s.c. function u is called a viscosity subsolution if
• for any x ∈ ej and any test function ϕ at x for which u − ϕ attains a
local maximum at x , then

H j(y ,uj(y), ∂jϕj(y)) ≤ 0, y := π−1
j (x) (2)

• for any x = vi , i ∈ IT , and for any j , k ∈ Inci , any (j , k)-test function ϕ
at x for which u − ϕ attains a local maximum at x , then

H j(y ,uj(y), ∂jϕ
j(y)) ≤ 0, y := π−1

j (vi) (3)

A l.s.c. function u is called a viscosity supersolution if
• for any x ∈ ej , any test function ϕ at x for which u − ϕ attains a local
minimum at x , then

H j(y ,uj(y), ∂jϕ
j(y)) ≥ 0, y := π−1

j (x) (4)

• for any x = vi , i ∈ IT , and for any j ∈ Inci , there exists k ∈ Inci , k 6= j
such that for any (j , k)-test function ϕ at x for which u − ϕ attains a
local minimum at x , then

H j(y ,uj(y), ∂jϕ
j(y)) ≥ 0, y := π−1

j (vi) (5)
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If supersolutions would be defined similarly to subsolutions, the
distance function from the boundary could not be a supersolution (note
that the edge e1 giving the shortest path to the boundary is admissible
for the other two edges).

Figure: The distance function
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Three basic results for HJ equations

Perron
Let w ∈ USC(Γ) be a subsolution and W ∈ LSC(Γ) a supersolution of
(HJ) such that w ≤W and w∗(x) = W ∗(x) = g(x) for x ∈ ∂Γ. Set
u(x) := sup{v(x) : v is a subsol. of (HJ) with w ≤ v ≤W on Γ}
Then, u∗ and u∗ are respectively a subsolution and a supersolution to
(HJ) in Γ with u = g on ∂Γ.

Comparison
Let u1 and u2 be a subsolution and a supersolution of (HJ) such that
u1(vi) ≤ u2(vi) for all vi ∈ ∂Γ. Then u ≤ v in Γ.

Stability
Assume Hn(x , r ,p)→ H(x , r ,p) locally uniformly for n→∞. Let un be
a solution of Hn(x ,u, ∂u) = 0 for x ∈ Γ. Assume un → u uniformly in Γ
for n→∞. Then u is a solution of (HJ).
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Remark
While we do not need to assume convexity of H for the previous
results, instead coercivity of H seems to be necessary for this theory.
Coercivity gives Lipschitz continuity of the viscosity subsolutions, a
regularity that allows to control the behavior of the viscosity solution
near the transition vertices when there are several incident edges.
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An example

{
|∂u|2 = f (x) x ∈ Γ
u = 0 x ∈ ∂Γ

(a) Network (b) Numerical solution

The solution is the distance from the boundary and it is computed via
the numerical scheme in:
F.Camilli, A.Festa e D.Schieborn, Shortest paths and Eikonal
equations on a graph, preprint, arXiv:1105.5725, 2011
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The viscous HJ equation

Definition
We say that a function u ∈ C2

K (Γ), if
u ∈ C0(Γ)

uj ∈ C2([0, lj ]) for any j ∈ J
for any i ∈ IT , u satisfies the

Kirchhoff condition: S(u) :=
∑

j∈Inci

aij∂ju(vi) = 0

We look for a solution u ∈ C2
K (Γ) of the viscous HJ equation{

−ε∂2
j u + H(x ,u, ∂u) = 0 x ∈ ej , j ∈ J

u(vi) = gi i ∈ IB
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For second order problems, we consider the equation inside the edges
and the Kirchhoff condition at the nodes. It is known from the theory of
linear elliptic PDE on networks that the Kirchhoff condition (or other
transition conditions) is necessary for the maximum principle.

Fabio Camilli (“Sapienza" Univ. di Roma) HJ on networks Ravello, September 9, 2012 16 / 31



The role of the Kirchhoff condition for the maximum principle
Assume that the function w satisfies

∂2w(x) ≥ 0, x ∈ ej , j ∈ J, and S(w) :=
∑

j∈Inci

aij∂jw(vi) ≥ 0, i ∈ IT

Then w cannot attain a maximum in Γ \ ∂Γ.

Proof.: Assume first ∂2w > 0 and S(w) > 0 and there exists
x0 ∈ Γ \ ∂Γ such that w attains a maximum at x0. If x0 ∈ ej for some
j ∈ J, then it follows that ∂jw(x0) = 0 and ∂2

j w(x0) ≤ 0, a contradiction
to ∂2w > 0.
If x0 = vi for some i ∈ IT , then aij∂jw(vi) ≤ 0 for all j ∈ Inci , hence
Sw(vi) ≤ 0, a contradiction to S(w) > 0.

For the general case, we prove that there exists ϕ ∈ C2(Γ) such that
∂2ϕ(x) > 0 for x ∈ ej , j ∈ J and Sϕ(vi) > 0 for i ∈ IT and we consider
wδ = w + δϕ, δ > 0. Then wδ cannot attain a maximum in Γ \ ∂Γ and
we conclude sending δ → 0+.
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The Kirchhoff condition is a first order condition for a second order
problem. What about Kirchhoff conditions for the HJ equation?

Is it sufficient to assume only the continuity of the solution at the
vertices to characterize the viscosity solution? No, there are infinite
many a.e. solutions satisfying this condition

Can we use the Kirchhoff condition to characterize the viscosity
solution of the HJ equation? No, it is not satisfied by the distance
function from the boundary.
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The viscous eikonal equation

Form now on, we consider{
−ε∂2

j u + |∂u|2 − f (x) = 0 x ∈ ej , j ∈ J
u(vi) = gi i ∈ IB

Remark
Only for the existence of a solution to the second order problem we
are forced to consider the particular case of the eikonal equation. The
problem is that a complete theory for nonlinear elliptic PDE on network
is still not available. Hence to prove existence of a solution to the
second order problem we need to resume, via the Hopf-Cole
transformation, to the linear case.
For uniqueness, a priori estimates and vanishing viscosity limit
we can consider the general case −ε∂2uε + H(x ,uε, ∂uε) = 0.
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The Hopf-Cole transform

Let uε ∈ C2
K (Γ) be a solution of{
−ε∂2

j u + |∂u|2 − f (x) == 0 x ∈ ej , j ∈ J
u(vi) = gi i ∈ IB

and set wε = e−
uε
ε − 1. Then wε ∈ C2

K (Γ) (the Hopf-Cole transform
preserves the Kirchhoff’s cond.) is a solution of the linear problem{

ε∂2
j u + f (x)wε − f (x) = 0 x ∈ ej , j ∈ J

wε(vi) = e−gi/ε − 1 i ∈ IB
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The linear problem

We consider a linear operator L defined on Γ by

Ljw(x) := aj(x)∂2
j w(x) + bj(x)∂jw(x)− c j(x)w(x)

with aj ,bj , c j ,g j ∈ C((0, lj)), j ∈ J, and

aj(x) ≥ λ > 0 and c j(x) ≥ 0 ∀x ∈ (0, lj), j ∈ J

Theorem
There exists a unique solution w ∈ C2

K (Γ) of{
Ljw(x) + g j(x) = 0 x ∈ ej , j ∈ J
w(vi) = γi i ∈ IB.
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Idea of the proof

Uniqueness: Consequence of the maximum principle
Existence: Freidlin-Wentzell (Ann.Prob., 1993):

u(x) = Ex{
∫ τ

0
e−c(Y (s))g(Y (s))ds + e−c(Y (τ))γi(τ)}

where Y (s) is a Markov process defined on the graph which on each
edge ej solves the stochastic differential equation

dY (s) = bj(Y (s))ds + aj(Y (s))dW (s)

τ = inf{t > 0 : Y (t) ∈ ∂Γ}, i(τ) ∈ IB is such that Y (τ) = vi(τ) ∈ ∂Γ.
In the probabilistic interpretation the Kirchhoff condition implies that
the process almost surely spends zero time at each vertex vi , i ∈ IT .
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By the previous result we get via Hopf-Cole transform

Corollary

For any ε > 0, there exists a unique solution uε ∈ C2
K (Γ) of{

−ε∂2
j u + |∂ju|2 − f (x) = 0 x ∈ ej , j ∈ J

u(vi) = gi i ∈ IB
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A comparison result for the semilinear problem

The following comparison result is a key ingredient to get a-priori
estimates for the solution of the second order problem

Theorem
Assume that H(x , r ,p) is strictly increasing in r . Let w1,w2 ∈ C2(Γ) be
such that
−ε∂2

j w1 + H(x ,w1, ∂jw1) ≥ −ε∂2
j w2 + H(x ,w2, ∂jw2) x ∈ ej , j ∈ J,

Si
βw1 ≤ Si

βw2 i ∈ IT
w1(vi) ≥ w2(vi) i ∈ IB

Then w1 ≥ w2 on Γ.
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A priori estimates

Theorem
Assume that for each ε, there is a solution uε ∈ C2

k (Γ) of{
−ε∂2

j wε + H(x ,wε, ∂jwε) = 0 x ∈ ej , j ∈ J,
wε(vi) = gi i ∈ IB

Then there is ε̄ sufficiently small such that for any 0 < ε < ε̄, the
functions uε are uniformly bounded and equi-Lipschitz continuous on Γ.

Remark: The estimates are first obtained at the vertices using the
boundary condition and the Kirchhoff condition and, then, inside the
edges using the estimate at the vertices.
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The vanishing viscosity limit

Theorem
Let un := uεn ∈ C2

K (Γ) be a sequence of solutions of{
−ε∂2

j uε + H(x ,uε, ∂juε) = 0 x ∈ ej , j ∈ J,
uε(vi) = gi i ∈ IB

such that un and ∂un are uniformly bounded on Γ. If un converges
uniformly to a function u ∈ C(Γ), then u is a solution of{

H(x ,u, ∂u) = 0 x ∈ ej , j ∈ J,
u(vi) = gi i ∈ IB

Fabio Camilli (“Sapienza" Univ. di Roma) HJ on networks Ravello, September 9, 2012 26 / 31



Idea of the proof

To prove the supersolution condition we use the following idea:
consider i ∈ IT . The Kirchhoff condition

∑
j∈Inci

aij∂jun(vi) = 0
says that we can find a subsequence unk and an index j ∈ Inci s.t.
(assume aij = 1)

∂junk (vi) ≤ 0 ∀n

Formally, at the limit, ∂ju(vi) ≤ 0, hence the function u is
decreasing along the edge ej . This means that ej is a minimizing
edge for the “distance” from the boundary, hence it is admissible
for all the other edges ek , k ∈ Inci

Note that the Kirchhoff condition is used only in the proof of the
supersolution property of the limit.
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Corollary

Let un := uεn ∈ C2
K (Γ) be the sequence of solutions of{

−ε∂2
j uε + |∂u|2 − f (x) = 0 x ∈ ej , j ∈ J,

uε(vi) = gi i ∈ IB

Then un converges uniformly to the solution u ∈ C(Γ) of{
|∂u|2 − f (x) = 0 x ∈ ej , j ∈ J,
u(vi) = gi i ∈ IB
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Remark:
The method of the semi-relaxed limits, which avoids the use of a-priori
estimates, does not work with this definition of viscosity solution.
Suppose that we want to test u∗(x) = lim sup∗xε→x , ε→0 uε(xε) at a
vertex x by means of (j , k)-admissible test function ϕ. We cannot
exclude that the possibility that the approximating sequence of points
xε which defines u∗(x) belongs to a third different edge (em in the
figure ) and we cannot test uε at xε by means of ϕ.
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Conclusions

Various transition conditions are introduced in the literature
depending on the model problem (linear or nonlinear, dynamical
or static, dissipative or non-dissipative, etc). Does the vanishing
viscosity limit work with other transition conditions?
Prove that the various definitions of viscosity solutions for HJ on
networks are equivalent, at least under some regularity
assumptions.
Establish a connection between HJ equation and conservation
laws on networks (some results are available in
Imbert-Monneau-Zidani) .
Generalize the classical and the viscosity solution theory to fully
nonlinear second order problems on networks.
Various applications: MFG on networks, homogenization, stability
and asymptotic behavior of dynamical systems on networks, etc
(some of these problems are discussed in the probabilistic
literature)
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Thank You!

Everything should be made as simple as possible, but not simpler
(A.Einstein)

Fabio Camilli (“Sapienza" Univ. di Roma) HJ on networks Ravello, September 9, 2012 31 / 31


