On exit-time optimal control problems with a vanishing Lagrangian

Monica Motta (joint work with C. Sartori)

Università di Padova

September 2-7, 2012, Ravello SADCO Workshop 2012

The exit-time control problem

Consider the nonlinear control system

$$\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & t > 0, \\ y(0) = x \ (\in \mathbb{R}^n) \end{cases}$$

The exit-time control problem

Consider the nonlinear control system

$$\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & t > 0, \\ y(0) = x \in \mathbb{R}^n \end{cases}$$

• $\alpha(t) \in A \subset \mathbb{R}^m$, where

either

A IS COMPACT

or

A IS A CONVEX CONE

The exit-time control problem

Consider the nonlinear control system

$$\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & t > 0, \\ y(0) = x \in \mathbb{R}^n \end{cases}$$

• $\alpha(t) \in A \subset \mathbb{R}^m$, where

either

A IS COMPACT

or

A IS A CONVEX CONE

▶ For any x, α , let $y(\cdot) \doteq y_x(\cdot, \alpha)$ denote the solution

▶ Target $C \subset \mathbb{R}^n$, nonempty closed set with compact boundary.

- ▶ **Target C** \subset \mathbb{R}^n , nonempty closed set with compact boundary.
- Exit-time

$$t_{\mathsf{x}}(\alpha) = \inf\{t \geq 0 : y(t) \in \mathbf{C}\}\$$

- ▶ **Target C** \subset \mathbb{R}^n , nonempty closed set with compact boundary.
- Exit-time

$$t_x(\alpha) = \inf\{t \ge 0 : y(t) \in \mathbf{C}\}$$

Payoff

$$\mathcal{J}(x,\alpha) = \int_0^{t_x(\alpha)} I(y(t),\alpha(t)) dt$$

Degeneracy

▶ We assume $I(x, a) \ge 0 \ \forall (x, a)$ and we may have

$$\{x:\ I(x,a)=0\ \text{ for some }a\in A\}\neq\emptyset.$$

Degeneracy

▶ We assume $I(x, a) \ge 0 \ \forall (x, a)$ and we may have

$$\{x: \ I(x,a)=0 \ \text{ for some } a\in A\}\neq \emptyset.$$

▶ Notice that if $\inf_{(x,a)} I(x,a) \ge \mu > 0$, then

$$t_{x}(\alpha) = +\infty \Longrightarrow J(t_{x}(\alpha), \alpha) = +\infty$$

Degeneracy

▶ We assume $I(x, a) \ge 0 \ \forall (x, a)$ and we may have

$$\{x: \ I(x,a)=0 \ \text{ for some } a\in A\}\neq\emptyset.$$

▶ Notice that if $\inf_{(x,a)} I(x,a) \ge \mu > 0$, then

$$t_{x}(\alpha) = +\infty \Longrightarrow J(t_{x}(\alpha), \alpha) = +\infty$$

• We may have instead finite cost even if $t_x(\alpha) = +\infty$

▶ WE CONSIDER the asymptotic value function

$$\mathcal{V}(x) \doteq \inf_{\{\alpha: \ \liminf_{t \to t_x^-(\alpha)} \mathbf{d}(y(t)) = 0\}} \mathcal{J}(t_x(\alpha), \alpha)$$

WE CONSIDER the asymptotic value function

$$\mathcal{V}(x) \doteq \inf_{\{\alpha: \ \liminf_{t \to t_x^-(\alpha)} \mathbf{d}(y(t)) = 0\}} \mathcal{J}(t_x(\alpha), \alpha)$$

Remark. The asymptotic exit-time problem is strictly related to the infinite horizon problem. For instance, in the INFINITE HORIZON LINEAR QUADRATIC PROBLEM:

$$\begin{cases} \mathcal{V}^{\infty} = \inf_{\alpha} \int_{0}^{+\infty} [yPy + \alpha Q\alpha] dt, \\ y' = f_{0}(y) + \sum_{i=1}^{m} f_{i}(y)\alpha_{i}, \quad y(0) = x \quad (\alpha(t) \in \mathbb{R}^{m}) \end{cases}$$

where P, Q are symmetric, positive definite matrices and $f_0(0) = 0$:

$$\mathcal{V}^{\infty} \equiv \mathcal{V} \text{ if } \mathbf{C} = \{0\}.$$

▶ The continuity of $\mathcal V$ on $\partial \mathbf C$ implies only USC on $\mathbb R^n \setminus \mathbf C$

- ▶ The continuity of $\mathcal V$ on $\partial \mathbf C$ implies only USC on $\mathbb R^n \setminus \mathbf C$
- lack of uniqueness for the associated PDE:

$$-\max_{a\in A}\left\{\langle Du(x,a),f(x,a)\rangle+I(x,a)\right\}=0$$

[Bardi, Capuzzo-D.,97], [Camilli, Siconolfi, 99], [Soravia,99] [Malisoff,04], [Motta,04]

- ▶ The continuity of $\mathcal V$ on $\partial \mathbf C$ implies only USC on $\mathbb R^n \setminus \mathbf C$
- lack of uniqueness for the associated PDE:

$$-\max_{a\in A}\left\{\langle Du(x,a),f(x,a)\rangle+I(x,a)\right\}=0$$

[Bardi, Capuzzo-D.,97], [Camilli, Siconolfi, 99], [Soravia,99] [Malisoff,04], [Motta,04]

Lavrentiev" phenomenon: regularized problems (e.g., $\overline{I_n > 0 \rightarrow I}$), may fail to converge to the original minimization problem.

- ▶ The continuity of $\mathcal V$ on $\partial \mathbf C$ implies only USC on $\mathbb R^n \setminus \mathbf C$
- lack of uniqueness for the associated PDE:

$$-\max_{a\in A}\left\{\langle Du(x,a),f(x,a)\rangle+I(x,a)\right\}=0$$

[Bardi, Capuzzo-D.,97], [Camilli, Siconolfi, 99], [Soravia,99] [Malisoff,04], [Motta,04]

- ▶ "Lavrentiev" phenomenon: regularized problems (e.g., $I_n > 0 \rightarrow I$), may fail to converge to the original minimization problem.
- "ill posedness" for impulsive problems (if *A* is unbounded)
 [Guerra, Sarychev,09]

Goals

GIVE general and explicit sufficient conditions in order to have

- $\triangleright \mathcal{V}$ continuous in its domain (when continuous on $\partial \mathbf{C}$);
- ightharpoonup penalized problems converging to $\mathcal V$ (including coercive approximations of non coercive problems);
- ightharpoonup characterization of $\mathcal V$ as unique non negative viscosity solution of a suitable boundary value problem;
- well-posedness for impulsive problems.

Basic hypotheses

FROM NOW ON, A IS A CONVEX CONE.

▶ We assume: the dynamics f continuous and

Basic hypotheses

FROM NOW ON, A IS A CONVEX CONE.

- ▶ We assume: the dynamics *f* continuous and
- ▶ $\exists p \geq 1$, M > 0 and $\forall R > 0$ $\exists L_R > 0$:

$$|f(x_1, a) - f(x_2, a)| \le L_R(1 + |a|^p)|x_1 - x_2|$$
 if $|x_1|, |x_2| \le R$,
 $|f(x, a)| \le M(1 + |a|^p)(1 + |x|)$.

Basic hypotheses

FROM NOW ON, A IS A CONVEX CONE.

- ▶ We assume: the dynamics *f* continuous and
- ▶ $\exists p \geq 1$, M > 0 and $\forall R > 0$ $\exists L_R > 0$:

$$|f(x_1, a) - f(x_2, a)| \le L_R(1 + |a|^p)|x_1 - x_2|$$
 if $|x_1|, |x_2| \le R$,
 $|f(x, a)| \le M(1 + |a|^p)(1 + |x|)$.

▶ $\forall x$ and $\forall \alpha \in L_{loc}^p$, $y_x(\cdot, \alpha)$ is the unique, global solution.

► The Lagrangian / is non negative and continuous;

- ▶ The Lagrangian / is non negative and continuous;
- ▶ $\exists q \geq p \geq 1$ and $\forall R > 0$ $\exists M_R > 0$ and a modulus $\omega(\cdot, R)$:

$$|I(x_1, a) - I(x_2, a)| \le (1 + |a|^q) \,\omega(|x_1 - x_2|, R)$$

$$0 \le I(x, a) \le M_R(1 + |a|^q) \quad \text{if } |x_1|, \, |x_2|, \, |x| \le R.$$

- ▶ The Lagrangian / is non negative and continuous;
- ▶ $\exists q \geq p \geq 1$ and $\forall R > 0$ $\exists M_R > 0$ and a modulus $\omega(\cdot, R)$:

$$|I(x_1, a) - I(x_2, a)| \le (1 + |a|^q) \,\omega(|x_1 - x_2|, R)$$

$$0 \le I(x, a) \le M_R(1 + |a|^q) \quad \text{if } |x_1|, \, |x_2|, \, |x| \le R.$$

- ▶ Remark. We consider both
 - (C) $I(x, a) \ge C_2 |a|^q C_1$ $C_1, C_2 > 0$ for q > p, coercive case; and for q = p, weakly coercive case;
 - (NC) $I \equiv I(x)$, cheap control (in general, I non coercive)

$\forall x$, we consider the set of asymptotic controls

$$\mathcal{A}(x) \doteq \{\alpha \in L^q_{loc}([0,+\infty[,A): \liminf_{t \to t_x^-(\alpha)} \mathbf{d}(y(t)) = 0\},\$$

where
$$\mathbf{d}(x) \doteq dist(x, \mathbf{C})$$
.

Continuity propagation

Propagation Theorem. Assume (H1) below. If $\mathcal V$ is continuous on $\partial \mathbf C$, then it is continuous on its domain.

(H1)
$$\forall M, \, \delta > 0, \, \exists T, \, K > 0 \text{ such that } \forall x \in \mathbb{R}^n \setminus \overline{B(\mathbf{C}, \delta)} \text{ and } \\ \forall \alpha \in \mathcal{A}(x) \text{ verifying } \int_0^{t_x(\alpha)} I(y_x(t, \alpha), \alpha(t)) \, dt \leq M, \text{ one has } \\ t_x^{\delta}(\alpha) \doteq \inf \left\{ t > 0 : \, y_x(t, \alpha) \in \overline{B(\mathbf{C}, \delta)} \right\} \leq T \\ \text{and } \int_0^{t_x^{\delta}(\alpha)} |\alpha(t)|^q \, dt \leq K.$$

Continuity propagation

Propagation Theorem. Assume (H1) below. If $\mathcal V$ is continuous on $\partial \mathbf C$, then it is continuous on its domain.

(H1)
$$\forall M, \, \delta > 0, \, \exists T, \, K > 0 \text{ such that } \forall x \in \mathbb{R}^n \setminus \overline{B(\mathbf{C}, \delta)} \text{ and } \\ \forall \alpha \in \mathcal{A}(x) \text{ verifying } \int_0^{t_x(\alpha)} I(y_x(t, \alpha), \alpha(t)) \, dt \leq M, \text{ one has } \\ t_x^{\delta}(\alpha) \doteq \inf \left\{ t > 0 : \ y_x(t, \alpha) \in \overline{B(\mathbf{C}, \delta)} \right\} \leq T \\ \text{and } \int_0^{t_x^{\delta}(\alpha)} |\alpha(t)|^q \, dt \leq K.$$

Remark. If I is satisfies the coercivity condition (C) both for q > p or q = p, the last control constraint can be dropped.

Penalized problems

▶ Let $\rho = \rho(x, a) \ge 0$ be continuous. Fix $\varepsilon > 0$. $\forall x$, define

Penalized problems

- ▶ Let $\rho = \rho(x, a) \ge 0$ be continuous. Fix $\varepsilon > 0$. $\forall x$, define
- the ε -penalized value function

$$\mathcal{V}_{arepsilon}(x) \doteq \inf_{lpha \in \mathcal{A}(x)} \int_{0}^{t_{x}(lpha)} \left[I(y(t), lpha(t)) + arepsilon
ho(y(t), lpha(t))
ight] dt;$$

Penalized problems

- ▶ Let $\rho = \rho(x, a) \ge 0$ be continuous. Fix $\varepsilon > 0$. $\forall x$, define
- the ε -penalized value function

$$\mathcal{V}_{\varepsilon}(x) \doteq \inf_{\alpha \in \mathcal{A}(x)} \int_{0}^{t_{x}(\alpha)} \left[I(y(t), \alpha(t)) + \varepsilon \rho(y(t), \alpha(t)) \right] dt;$$

▶ MOST USED PENALIZATIONS: $\rho \equiv 1$, $\rho \equiv |a|^r$ (r > q)

Approximation Theorem. We have

- (i) $\lim_{\varepsilon \to 0^+} \mathcal{V}_{\varepsilon}(x) = \mathcal{U}(x) \doteq \inf_{\{\alpha \in \mathcal{A}(x): \int_0^{t_x(\alpha)} \rho(y(t), \alpha(t)) \, dt < +\infty\}} \mathcal{J}(t_x(\alpha), \alpha).$
- (ii) If \mathcal{U} is continuous on $\partial \mathbf{C}$, then $\mathcal{V} \equiv \mathcal{U}$.
- (iii) If $\mathcal{V}_{\bar{\varepsilon}}$ is continuous on $\partial \mathbf{C}$ for some $\bar{\varepsilon} > 0$ and \mathcal{V} is continuous in its domain,

$$\lim_{\varepsilon \to 0^+} \mathcal{V}_\varepsilon = \mathcal{V}$$

uniformly on compact sets $Q \subset Dom(\mathcal{V})$.

Characterization of ${\cal V}$

Consider

$$\mathcal{V}^f(x) \doteq \inf_{\{\alpha: \ t_x(\alpha) < +\infty\}} \mathcal{J}(t_x(\alpha), \alpha), \quad \mathcal{V}^e(x) \doteq \inf_{\alpha} \mathcal{J}(t_x(\alpha), \alpha)$$

IN GENERAL:
$$V^e(x) < V(x) < V^f(x)$$
 for some x

 \downarrow

NO UNIQUE solution to the associated HJ equation

Coercive case

Uniqueness Teorem 1. Assume (C) (i.e. $l \geq C_2|a|^q - C_1$, $C_1, C_2 > 0$) for q > p and "f, l-convexity", in short, (CV). If $\mathcal{V} = \mathcal{V}^e$ and \mathcal{V} is continuous on $\partial \mathbf{C}$, then \mathcal{V} is continuous and it is the unique nonnegative viscosity solution to

$$-\inf_{\mathbf{a}\in A}\left\{\langle f(\mathbf{x},\mathbf{a}),D\mathbf{u}
angle + I(\mathbf{x},\mathbf{a})
ight\} = 0 \quad \text{in} \quad Dom(\mathcal{V})\setminus \mathbf{C}$$

such that u=0 on $\partial \mathbf{C}$.

Remark. We assume $\mathcal{V} = \mathcal{V}^e$, but \mathcal{V}^f may be different...

Weakly coercive and non coercive problems

Following the graph-completion approach, we should introduce generalized or impulsive controls and trajectories.

[Bressan, Rampazzo, 88], [Rampazzo, Sartori,00], [Motta, 04]

WE DENOTE by W the generalized asymptotic value function obtained by minimizing over asymptotic generalized controls.

In an analogous way, we introduce also W^f , W^e .

Remark. IN GENERAL, $W^e \leq W \leq W^f$ and

$$W \leq \mathcal{V}, \quad W^f \leq \mathcal{V}^f, \quad W^e \leq \mathcal{V}^e.$$

For UNIQUENESS IN THE NON COERCIVE CASE, consider

MODEL CASE: f, l polynomials in the control variable. E.g. q = p = 2 and

$$f(x, a) = f_0(x) + \sum_{i=1}^m f_i(x)a_i + \sum_{i,j=1}^m F_{i,j}(x)a_i a_j,$$

$$I(x, a) = I_0(x) + \sum_{i=1}^m I_i(x)a_i + \sum_{i,j=1}^m L_{i,j}(x)a_i a_j$$

The <u>recession function</u> of f, I are defined as:

$$f^{\infty}(x,a) = \sum_{i,j=1}^{m} F_{ij}(x) a_i a_j, \quad I^{\infty}(x,a) = \sum_{i,j=1}^{m} L_{ij}(x) a_i a_j.$$

Assume

the traversality condition:

(T)
$$\forall x \notin \mathbf{C}$$
, $\forall a \in A$, $a \neq 0$: $|f^{\infty}(x, a)| + I^{\infty}(x, a) \neq 0$.

Assume

the traversality condition:

(T)
$$\forall x \notin \mathbf{C}$$
, $\forall a \in A$, $a \neq 0$: $|f^{\infty}(x, a)| + I^{\infty}(x, a) \neq 0$.

▶ Remark. / weakly coercive, i.e. $l \ge C_2 |a|^p - C_1 \Longrightarrow (T)$;

Assume

▶ the traversality condition:

(T)
$$\forall x \notin \mathbf{C}$$
, $\forall a \in A$, $a \neq 0$: $|f^{\infty}(x, a)| + I^{\infty}(x, a) \neq 0$.

- ▶ Remark. I weakly coercive, i.e. $I \ge C_2 |a|^p C_1 \Longrightarrow (T)$;
- I cheap: if I = I(x) and $f(x, a) = f_0(x) + \sum_{i=1}^m f_i(x)a_i$,

$$(T) \iff \sum_{i=1}^m f_i(x)w_i \neq 0 \quad \forall w \in A, \ w \neq 0.$$

Uniqueness Teorem, 2. Let q = p and \mathcal{V} continuous on $\partial \mathbf{C}$. Then

- (i) $\mathcal{V} \equiv W$;
- (ii) Assume (CV), (T) (i.e., convexity plus trasversality) and $W=W^e$. Then $\mathcal V$ is continuous and it is the unique nonnegative viscosity solution to

$$-\inf_{a\in A}\left\{\langle f(x,a),Du\rangle+I(x,a)\right\}=0\quad\text{in}\quad \textit{Dom}(\mathcal{V})\setminus \textbf{C}$$

such that u = 0 on $\partial \mathbf{C}$.

Remark. Hypothesis $W=W^e$ is stronger than $\mathcal{V}\equiv\mathcal{V}^e$ (assumed in Uniqueness Theorem 1)

The remaining time will be used to state

- (i) the result of [Motta, Rampazzo, 12] IMPLYING the continuity of ${\cal V}$ on $\partial {\bf C}$
- (ii) some EXPLICIT conditions IMPLYING both propagation of continuity and $\mathcal{V}\equiv\mathcal{V}^e,~W\equiv W^e$

Asymptotic Controllability with a cost

 $\overline{\mathbb{R}^n \setminus \mathbf{C}} \to \mathbb{R}$ is a **Minimum Restraint Function** , **MRF**, for $A' \subset A$ if

-
$$U$$
 is locally semiconcave, positive definite, proper on $\mathbb{R}^n \setminus \mathbf{C}$;
- $\exists k > 0$ such that
$$H(x, k, D^*U(x)) \doteq \inf_{a \in A'} \{\langle D^*U(x), f(x, a) \rangle + k I(x, a)\} < 0.$$

▶ By [Motta-Rampazzo, '12] it follows that

Theorem 1. If there exists a (local) MRF U for $A' \subset A$, A' compact, then \mathcal{V} is continuous on $\partial \mathbf{C}$.

▶ By [Motta-Rampazzo, '12] it follows that

Theorem 1. If there exists a (local) MRF U for $A' \subset A$, A' compact, then $\mathcal V$ is continuous on $\partial \mathbf C$.

▶ **Remark.** We can obtain similar sufficient conditions for the continuity of $\mathcal{V}_{\varepsilon}$, \mathcal{U} on ∂ **C** and $\rho = 1$, $\rho = |a|^r$ (r > q),

Theorem 2. Assume either coercivity, i.e. (C) for $q \ge p$ or (CV)+(T) (convexity plus trasversality). If

$$l(x, a) \ge m(\mathbf{d}(x))$$
 $(\mathbf{d}(x) \doteq dist(x, \mathbf{C}))$

for some continuous, increasing function $m:]0, +\infty[\to]0, +\infty[$, then

- (i) the continuity of ${\cal V}$ on $\partial {\bf C}$ propagates to its domain;
- (ii) $V \equiv W \equiv W^e \equiv V^e$.

Theorem 3. If there exists a MRF *U* for *A* such that

$$\sup_{a \in A} \{ \langle D^* U(x), f(x,a) \rangle + k I(x,a) + (1+|a|^q) m(U(x)) \} \le 0$$

for some continuous, increasing function $m:]0, +\infty[\rightarrow]0, +\infty[$,

- (i) \mathcal{V} is continuous in \mathbb{R}^n ; (ii) $\mathcal{V} \equiv W \equiv W^e \equiv \mathcal{V}^e$.