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For f : Rn × A → R
n, h : Rn × A → R bounded from

below, we have a Hamiltonian

H(x, p) = sup
a∈A

{−f(x, a) · p− h(x, a)}(≥ 0).

A may be unbounded. H is continuous but in general
not coercive.
Given Ω ⊂ R

n and g : ∂Ω → R we want to minimize

sup
x∈Ω

H(x,Du(x)),

subject to u(x) = g(x), for x ∈ ∂Ω.

Question. Choose the correct class of functions.
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If H(x, ·) is coercive (H(x, p) → +∞ as |p| → +∞) then
it is natural to consider u ∈ W 1,+∞

loc (Ω) ∩ C(Ω) so that

ess sup H(x,Du(x)) → min .

A classical problem: Lipschitz extension: if g ∈ Lip(∂Ω),

|g(x)− g(y)| ≤ L|x− y|, x, y ∈ ∂Ω,

find u ∈ Lip(Ω), u = g on ∂Ω such that

|u(x)− u(y)| ≤ L|x− y|, x, y ∈ Ω.

Equivalently, minimize

ess sup |Du(x)|, (or ess sup
|Du(x)|2

2
).
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The Lipschitz extension problem has possibly many
solutions, and the extremal ones are explicit.
It is a nonstandard variational problem versus

∫

Ω

|Du(x)|p dx → min

(worst case analysis) and its solutions do not have in
general the property of being local minima in order to be
able to derive an Euler equation.
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We will introduce the notion of Absolute minimizer and
the Aronsson equation

−D (H(x,Du(x))) ·DpH(x,Du(x)) = 0, x ∈ Ω (AE)
u(x) = g(x)∈ C(∂Ω),

where Ω ⊂ R
N is open and connected, H = H(x, p),

H : Ω× R
N → [0,+∞) and H(x, ·) is convex and in

general not coercive, u : Ω → R.
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We will introduce the notion of Absolute minimizer and
the Aronsson equation

−D (H(x,Du(x))) ·DpH(x,Du(x)) = 0, x ∈ Ω (AE)
u(x) = g(x)∈ C(∂Ω),

where Ω ⊂ R
N is open and connected, H = H(x, p),

H : Ω× R
N → [0,+∞) and H(x, ·) is convex and in

general not coercive, u : Ω → R.

Classical case: H ∈ C1, u ∈ C2. (AE) is a quasilinear
degenerate elliptic pde.
Taking derivatives AE becomes

−Tr(DpH ⊗DpH D2u)−DxH ·DpH = 0
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Recall that:

H(x, p) = sup
a∈A

{−f(x, a) · p− h(x, a)},

● the problem can be reduced to H ≥ 0,
● total controllability of the vectogram f(x,A) in every

connected and open subdomain is a crucial
ingredient.
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Included is the case of a Carnot-Carathèodory structure:

H(x, p) = H̃(x, σt(x)p) (1)
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Included is the case of a Carnot-Carathèodory structure:

H(x, p) = H̃(x, σt(x)p) (1)

σ : Ω → R
N×M , M ≤ N , is a matrix valued function

whose columns are a family of vector fields {σj}j=1,...,M ,
satisfying Hörmander’s finite rank condition and
H̃ : Ω× R

M → [0,+∞) is coercive.
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When in particular (for A = σσt, N ×N matrix,)

H(x, p) =
1

2
A(x)p · p =

1

2
|σt(x)Du(x)|2,
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When in particular (for A = σσt, N ×N matrix,)

H(x, p) =
1

2
A(x)p · p =

1

2
|σt(x)Du(x)|2,

we obtain the infinity-Laplace equation with respect to
the family of vector fields,

−∆σ
∞u(x) = −D2

σu(x) D
σu(x) ·Dσu(x) = 0, x ∈ D,
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When in particular (for A = σσt, N ×N matrix,)

H(x, p) =
1

2
A(x)p · p =

1

2
|σt(x)Du(x)|2,

we obtain the infinity-Laplace equation with respect to
the family of vector fields,

−∆σ
∞u(x) = −D2

σu(x) D
σu(x) ·Dσu(x) = 0, x ∈ D,

where Dσu(x) = σt(x)Du(x) are the directional
derivatives with respect to the family of vector fields
(horizontal gradient) and the horizontal hessian
D2

σu(x) =
(

1
2
(Dσ

j (D
σ
i u(x)) +Dσ

i (D
σ
j u(x)))

)

i,j
.
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Aronsson’s Lipschitz extension problem (1965): given
g ∈ Lip(∂Ω), find u : Ω → R such that u|∂Ω = g with the
same best Lipschitz constant.
Equivalently minimize the following functional

‖Du‖L∞(Ω) → min

with prescribed boundary conditions.
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Aronsson’s Lipschitz extension problem (1965): given
g ∈ Lip(∂Ω), find u : Ω → R such that u|∂Ω = g with the
same best Lipschitz constant.
Equivalently minimize the following functional

‖Du‖L∞(Ω) → min

with prescribed boundary conditions.
The problem has minima and they are nonunique. To
derive a Euler-Lagrange equation, define Absolute
Minimizers, i.e. minima in every relatively compact open
subdomain.
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Aronsson proves that u ∈ C2 is an absolute minimizer iff
it solves the infinity-Laplace equation. Existence of
absolute minimizers is obtained through approximation
with more classical variational problems

∫

Ω

|Du|pdx → min,

as p → +∞.
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Aronsson proves that u ∈ C2 is an absolute minimizer iff
it solves the infinity-Laplace equation. Existence of
absolute minimizers is obtained through approximation
with more classical variational problems

∫

Ω

|Du|pdx → min,

as p → +∞.
In general given a Hamiltonian H(x, p), for u : Ω → R ,
the problem

ess supx∈Ω H(x,Du(x)) → min

corresponds to the Aronsson equation.
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● Jensen (1993): obtains Aronsson’s results for the
infinity-Laplacian without the regularity assumption
on u;

● Juutinen (1998/2002): extends Jensen to a class of
strictly convex functionals and existence of the
absolutely minimizing Lipschitz extension in length
spaces;

● Barron-Jensen-Wang (2001): derivation of AE for
general Hamiltonian and existence of absolute
minimizers via approximation with Lp minimization;

● Barles-Busca (2001): uniqueness proof for a class
of quasilinear x-independent equations;

● Crandall (2003)/Crandall-Wang-Yu (2009) general
derivation of AE for C1 Hamiltonians.
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● Bieske (2005) equivalence of AM and solutions of
AE for Riemannian metrics and Grushin;

● Bieske-Capogna (2005)/Wang (2007): derivation of
AE in Carnot-Caratheodory spaces, uniqueness in
Carnot groups;

● Peres-Schramm-Sheffield-Wilson (2009) Tug of war
approach, existence and uniqueness of the
absolutely minimizing Lipschitz extension in length
spaces;
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● Crandall-Evans-Gariepy (2001): for infinity-Laplace,
comparison with cones, continuity estimates;

● Aronsson-Crandall-Juutinen (2004): a complete pde
approach for the infinity-Laplace equation
(euclidean), comparison with cones, Perron’s
method, Harnack inequality.

● Champion-De Pascale (2007): equivalence of AM
and comparison with cones in length spaces.

● Jensen-Wang-Yu (2009) results on uniqueness and
non uniqueness, x−independent;

● Savin (2000) C1 regularity of infinitely harmonic
functions in dimention 2.

● Evans-Savin (2008) C1,α regularity of infinitely
harmonic functions in dimention 2.
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There are important relationships with solutions of the
HJ equations (for us H(x, · ) is not symmetric)

H(x,Du(x)) = k > 0, H(x,−Du(x)) = k, x ∈ Ω.

(recall that H(x, p) = supa∈A{−f(x, a) · p− h(x, a)}.)
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There are important relationships with solutions of the
HJ equations (for us H(x, · ) is not symmetric)

H(x,Du(x)) = k > 0, H(x,−Du(x)) = k, x ∈ Ω.

(recall that H(x, p) = supa∈A{−f(x, a) · p− h(x, a)}.)
These are value functions of optimal control problems,
thus we consider the control system

{

ẏ(t) = f(y(t), a(t)), t > 0,
y(0) = xo,

(2)

or its backward version ẏ(t) = −f(y(t), a(t)), for suitable
control functions a(·) ∈ A.
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We assume Total controllability. For all x, z ∈ D ⊂⊂ Ω,
D open and connected, the set

AD
x,z = {a(·) ∈ A : y(0, a) = x, y(tx,z; a) = z, tx,z ≥ 0
y(t, a) ∈ D, t ∈ (0, tx,z)} 6= ∅.

(3)
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We assume Total controllability. For all x, z ∈ D ⊂⊂ Ω,
D open and connected, the set

AD
x,z = {a(·) ∈ A : y(0, a) = x, y(tx,z; a) = z, tx,z ≥ 0
y(t, a) ∈ D, t ∈ (0, tx,z)} 6= ∅.

(3)

For any (large) k > 0, we therefore define the following
function (generalized cone). For convenience J1 ≡ J .

JD
k (x, z) = inf

a(·)∈Ax,z

∫ tx,z

0

(h(y(t), a(t)) + k)dt < +∞,

JD
k (x̂, ẑ) = lim inf

D×D∋(x,z)→(x̂,ẑ)
JD
k (x, z), (x̂, ẑ) ∈ D ×D.
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Each Jk is a semi-distance in D (cfr. PL Lions’ book, it
lacks symmetry) and satisfies

J(x, z) ≥ λK |x− z|(≥ 0) for J(x, z) ≤ K.
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Each Jk is a semi-distance in D (cfr. PL Lions’ book, it
lacks symmetry) and satisfies

J(x, z) ≥ λK |x− z|(≥ 0) for J(x, z) ≤ K.

We assume it is ”uniformly continuous” and satisfies
local estimates in D of the form

J(x, z) ≤ ω(|x− z|),
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Each Jk is a semi-distance in D (cfr. PL Lions’ book, it
lacks symmetry) and satisfies

J(x, z) ≥ λK |x− z|(≥ 0) for J(x, z) ≤ K.

We assume it is ”uniformly continuous” and satisfies
local estimates in D of the form

J(x, z) ≤ ω(|x− z|),

Thus

H(x,DxJk(x, z)) = k, x ∈ D\{z}, Jk(z, z) = 0.
H(z,−DzJk(x, z)) = k, z ∈ D\{x}, Jk(x, x) = 0.
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Although V (x) = Jk(x, z) satisfies the HJ equation:

H(x,DV (x)) = k, x ∈ D\{z}, (HJ),

we have that
Theorem. V (x) = Jk(x, z), k > 0, is a viscosity
supersolution of the Aronsson equation

−Dx (H(x,DV (x))) ·DpH(x,DV (x)) = 0, x ∈ D\{z},

and it is a viscosity solution iff it is a bilateral solution of
(HJ) (see Barron-Jensen, Barles, Pi. Sor.). In this case
V is also unique as an absolute minimizer.
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An important feature of the distances is that they
determine the regularity of subsolutions of the HJ
equation: if u is a viscosity solution of H(x,Du(x)) ≤ k
in Ω, then locally (C depends on sup |u|)

|u(x)− u(y)| ≤ C J(x, y).
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An important feature of the distances is that they
determine the regularity of subsolutions of the HJ
equation: if u is a viscosity solution of H(x,Du(x)) ≤ k
in Ω, then locally (C depends on sup |u|)

|u(x)− u(y)| ≤ C J(x, y).

In the CC case H̃(x, σt(x)p), subsolutions are locally
Lipschitz continuous with respect to the CC distance.

dDCC(x, z) = inf
a∈AD

x,z

tx,z.
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An important feature of the distances is that they
determine the regularity of subsolutions of the HJ
equation: if u is a viscosity solution of H(x,Du(x)) ≤ k
in Ω, then locally (C depends on sup |u|)

|u(x)− u(y)| ≤ C J(x, y).

In the CC case H̃(x, σt(x)p), subsolutions are locally
Lipschitz continuous with respect to the CC distance.

dDCC(x, z) = inf
a∈AD

x,z

tx,z.

We can use the well established theory of Sobolev
spaces for CC metrics (e.g. Franchi-Serapioni-Serra
Cassano, Garofalo-Nhieu, Franchi-Hajlasz-Koskela,
Bonfiglioli-Lanconelli-Uguzzoni).
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In particular:
Proposition. (Pi. Sor. 2010) For u : Ω → R we have
that

H̃(x, σt(x)Du(x)) ≤ k

in the viscosity sense if and only if

H̃(x,Xu(x)) ≤ k, a.e. x ∈ Ω.

Here the differential operator X = σt(x)D = Dσ has to
be interpreted in the sense of distributions.
This holds in particular if σ(x) ≡ In.
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On Jk we also assume

Jk(x, z) ≥ κD
1 (J(x, z))κ

D
2 (k), for all z ∈ D, (4)

if the set {x : J(x, z) ≤ r} ⊂ Ω. Here

κD
1 , κ

D
2 : (0,+∞) → (0,+∞) are increasing and κD

2 is
surjective.
This happens for instance for:

● A bounded ;
● A unbounded if H(x, ·) is positively homogeneous.
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A (generalized) cone with positive slope k > 0 and
vertex z ∈ R

n, possibly constrained in D with z ∈ ∂aD is
a function (b ∈ R)

C(x) = Jk(x, z) + b.

A (generalized) cone with negative slope k < 0 and
vertex z ∈ R

n is a function

C(x) = −J|k|(z, x) + b.
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Definition. Given a Hamiltonian H ∈ C(Ω× R
n), H(x, ·)

convex for all x, we say that u ∈ C(U), U ⊂ Ω open, is
an absolute minimizer (in the viscosity sense) for H if for
any open, bounded subset D ⊂⊂ U we have that
whenever v ∈ C(D) is such that u(x) = v(x) in ∂D and

H(x,Dv(x)) ≤ k, ∀x ∈ D

in the viscosity sense, then

H(x,Du(x)) ≤ k, ∀x ∈ D, (5)

in the viscosity sense.
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For the forward and backward Hamiltonian it holds that if
u ∈ C(Ω), then

H(x,Du(x)) ≤ k, x ∈ Ω

in the viscosity sense, if and only if

H(x,−D(−u)(x)) ≤ k, x ∈ Ω.

Note: u absolute minimizer for H implies that −u is
absolute minimizer for H(x,−p).
Also the variational problem may be seen as

sup
(x,p)∈D×(D+u(x)∪D−u(x))

H(x, p) → min .

(Recall here that D+(−u) = −D−u.)
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A locally dCC-Lipschitz continuous function u : U → R, is
an absolute minimizer for H if and only if for any open,
bounded subset D, D ⊂⊂ U we have that whenever
v ∈ C(D) ∩W 1,∞

X (D) is such that u(x) = v(x) in ∂D and

H̃(x,Xv(x)) ≤ k, a.e. x ∈ D,

then

H̃(x,Xu(x)) ≤ k, a.e. x ∈ D. (6)

This is as saying that u is a local minimizer in U for the
variational problem

ess supH(x,Xv(x)) → min

among all locally dCC-Lipschitz continuous functions v.
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We have the following characterization.
Theorem. (Pi. Sor., cfr. Champions-De Pascale)
u ∈ C(U) is an absolute minimizer if and only if:

● u ∈ CCA(U): for any open, connected and bounded
set V ⊂⊂ U , k > 0, z /∈ V and cone C(x) (possibly
relative to V ) with slope k and vertex z we have that

u(x)− C(x) ≤ sup
w∈∂V

{u(w)− C(w)}, for all x ∈ V ;

● u ∈ CCB(U) i.e. for k < 0, z /∈ V we have that

u(x)− C(x) ≥ inf
w∈∂V

{u(w)− C(w)}, for all x ∈ V.
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Propositions.

● (local Lipschitz/Hölder continuity) If u ∈ CCA(D)
and E ⊂⊂ D, then we can find a constant L,
depending only on ‖u‖∞, κE

1 , κE
2 and infy∈E d(y, ∂D),

such that

|u(x)− u(y)| ≤ LĴ(x, y), ∀z ∈ E,
x, y ∈ BR(z), 3R < infz∈E d(z, ∂D).

● Uniformly bounded families of functions in CCA(D)
are locally equi-Lipschitz continuous with respect to
the distance Ĵ induced by the Hamiltonian;
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● (strong maximum principle) if u ∈ CCA(D) has a
local maximum, then it is locally constant;

● (existence of functions in CCA) a cone C with
negative slope satisfies C ∈ CCA (and it is a
viscosity subsolution of the (AE));

● (Harnack inequality) If H(x, ·) is positivey
homogeneous, u ≥ 0, u ∈ CCB(D), then for z ∈ D

max
J(x,z)≤R

u(x) ≤ 3 min
J(y,z)≤R

u(y), R <
d(z, ∂D)

4
;
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● Let ∅ 6= F ⊂ CCA(D) and

h(x) = sup
v∈F

v(x).

If h is locally bounded from above then
h ∈ CCA(D) ∩ C(D).

● We couple the last property with the more standard
(in viscosity solutions theory): Let ∅ 6= F ⊂ C(D) be
a family of viscosity subsolutions of (AE),

h(x) = sup
v∈F

v(x).

If h ∈ C(D) then h is a viscosity subsolution of the
(AE).
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Theorem. (Pi.Sor. 2010) Let D ⊂ Ω open, g ∈ C(∂D),
b−, b+ ∈ R, k− < 0, k+ > 0, z ∈ ∂D:

C−(x) = −J|k−|(z, x) + b− ≤ g(x) ≤ Jk+(x, z) + b+ = C+(x),

for all x ∈ ∂D. Then there exists u ∈ C(D) an absolute
minimizer, such that u = g on ∂D and

C−(x) ≤ u(x) ≤ C+(x), x ∈ D.

If moreover H ∈ C1(D × R
N ) then there exists an

absolute minimizer that is in addition a viscosity solution
of the AE.
NB. Perron’s method cannot prove that AE is satisfied
by all of the absolute minimizers (unless comparison
principle holds).
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