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The Bolza Problem

Consider the control system

x ′(t) = f (t, x(t), u(t)), u(t) ∈ U(t) for a.e. t ∈ [0, 1], (1)

x(t) ∈ K for all t ∈ [0, 1], (x(0), x(1)) ∈ K1, (2)

U(·) measurable set-valued map from [0, 1] into nonempty closed
subsets of a complete separable metric space Z,

f : [0, 1]×R
n ×Z → R

n, f (·, x , ·) is L×B-measurable and f (t, ·, u)
is locally Lipschitz continuous,

K ⊂ R
n and K1 ⊂ R

n × R
n are closed subsets

SK
[0,1] := {x(·) ∈ W 1,1([0, 1])| x(·) is a solution to (1) satisfying (2)}

A pair (x(·), u(·)), with x(·) absolutely continuous and u(·) measurable,
is called a viable trajectory/control pair if it satisfies (1) and (2)
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The Bolza optimal control problem:

(MIN) inf

{

ϕ(x(0), x(1)) +

∫ 1

0

L(t, x(t), u(t))dt
∣

∣

∣
x(·) ∈ SK

[0,1]

}

,

where ϕ : Rn × R
n → R and L : [0, 1]× R

n ×Z → R

For λ ∈ {0, 1} define Hλ : [0, 1]× R
n × R

n → R ∪ {+∞}

Hλ(t, x , p) := sup
u∈U(t)

{〈p, f (t, x , u)〉 − λL(t, x , u)}

and the Hamiltonian H : [0, 1]× R
n × R

n → R ∪ {+∞}

H(t, x , p) := H1(t, x , p)
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The Pontryagin’s Maximum Principle (PMP)

For (x̄(·), ū(·)) optimal for (MIN), ∃(λ, p(·), ψ(·)) 6= 0 where λ ∈ {0, 1},
p(·) ∈ W 1,1 and ψ(·) ∈ NBV , integrable mappings
A : [0, 1] → M(n × n), π : [0, 1] → R

n and vectors π0, π1 ∈ R
n s.t.

i) ψ(0) = 0, ψ(t) =
∫

[0,t]
ν(s)dµ(s), for all t ∈ (0, 1] for a positive

finite Borel measure µ on [0, 1] and a Borel measurable selection
ν(s) ∈ NK (x̄(s)) ∩ B µ-a.e.

ii) p(·) is a solution of the adjoint system for a.e. t ∈ [0, 1]

− p′(t) = A(t)∗(p(t) + ψ(t))− λπ(t)

satisfying a.e. the maximum principle

〈p(t) + ψ(t), x̄ ′(t)〉 − λL(t, x̄(t), ū(t)) = Hλ(t, x̄(t), p(t) + ψ(t))

and the transversality condition

(p(0),−p(1)− ψ(1)) ∈ λ(π0, π1) + NK1
((x̄(0), x̄(1)))
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Under suitable hypotheses, in the classical PMP
A(t) := ∂f

∂x
(t, x̄(t), ū(t)), π(t) := ∂L

∂x
(t, x̄(t), ū(t)),

(π0, π1) := ∇ϕ(x̄(0), x̄(1))

In general the adjoint system could be expressed as a Hamiltonian
inclusion

−p′(t) ∈ ∂xHλ(t, x̄(t), p(t) + ψ(t)),

where ∂xHλ denotes the generalized gradient of Hλ with respect to x , or
as an Euler-Lagrange inclusion

However, if λ = 0 and p(·) and ψ(·) are s.t.

|p′(t)| ≤ k(t)|p(t) + ψ(t)| a.e.

for some k(·) ∈ L1, then we can find an integrable matrix valued
mapping A(·) such that

−p′(t) = A(t)∗(p(t) + ψ(t))
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(π0, π1) := ∇ϕ(x̄(0), x̄(1))

In general the adjoint system could be expressed as a Hamiltonian
inclusion

−p′(t) ∈ ∂xHλ(t, x̄(t), p(t) + ψ(t)),

where ∂xHλ denotes the generalized gradient of Hλ with respect to x , or
as an Euler-Lagrange inclusion

However, if λ = 0 and p(·) and ψ(·) are s.t.

|p′(t)| ≤ k(t)|p(t) + ψ(t)| a.e.

for some k(·) ∈ L1, then we can find an integrable matrix valued
mapping A(·) such that

−p′(t) = A(t)∗(p(t) + ψ(t))



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Non-degeneracy and normality

〈p(t) + ψ(t), x̄ ′(t)〉− λL(t, x̄(t), ū(t)) =

sup
u∈U(t)

{〈p(t) + ψ(t), f (t, x̄(t), u)〉 − λL(t, x̄(t), u)}

If λ+ supt∈(0,1] |p(t) + ψ(t)| = 0 the PMP gives no useful information
about optimal controls because the maximum is then satisfied by every
u ∈ U(t)
When λ+ supt∈(0,1] |p(t) + ψ(t)| 6= 0,
a triple (λ, p(·), ψ(·)) is called non-degenerate

If λ = 0, the PMP does not depend on the cost functions L and ϕ and
expresses some relations between the control system and state constraints
When λ = 1 the PMP is called normal
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sup
u∈U(t)

{〈p(t) + ψ(t), f (t, x̄(t), u)〉 − λL(t, x̄(t), u)}

If λ+ supt∈(0,1] |p(t) + ψ(t)| = 0 the PMP gives no useful information
about optimal controls because the maximum is then satisfied by every
u ∈ U(t)
When λ+ supt∈(0,1] |p(t) + ψ(t)| 6= 0,
a triple (λ, p(·), ψ(·)) is called non-degenerate

If λ = 0, the PMP does not depend on the cost functions L and ϕ and
expresses some relations between the control system and state constraints
When λ = 1 the PMP is called normal



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Non-degeneracy and normality

〈p(t) + ψ(t), x̄ ′(t)〉− λL(t, x̄(t), ū(t)) =
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Ferreira and Vinter 1994, Arutyunov and Aseev 1997, Ferreira, Fontes
and Vinter 1999, Rampazzo and Vinter 1999, Rampazzo and Vinter
2000, Lopes and Fontes 2009, Lopes, Fontes and de Pinho 2011
Using an inward pointing condition they ensured the existence of
non-degenerate multipliers in addition to degenerate ones

Cernea and Frankowska 2005, Frankowska 2009
Using an inward pointing condition they ensured normality for a
non-degenerate PMP (with restrictions on K)

We address normality for general, not necessarily Lipschitz, optimal
trajectories and for general closed state constraints K , improving
considerably earlier results
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Preliminary definitions

Let ∅ 6= K ⊂ R
n.

Distance dK (x) := infy∈K |x − y | ∀x ∈ R
n

Oriented distance d(x) := dK (x)− dRn\K (x) ∀x ∈ R
n

Contingent cone to K at x ∈ K

TK (x) := Lim sup
h→0+

K − x

h

Clarke tangent cone and Clarke normal cone to K at x ∈ K

CK (x) := Lim inf
h→0+,K∋y→x

K − y

h
NK (x) := [CK (x)]

−

Reachable gradient ∂∗f (x) := Lim supy→x{∇f (y)} for f ∈ W 1,∞(Rn)



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Preliminary definitions

Let ∅ 6= K ⊂ R
n.

Distance dK (x) := infy∈K |x − y | ∀x ∈ R
n

Oriented distance d(x) := dK (x)− dRn\K (x) ∀x ∈ R
n

Contingent cone to K at x ∈ K

TK (x) := Lim sup
h→0+

K − x

h

Clarke tangent cone and Clarke normal cone to K at x ∈ K

CK (x) := Lim inf
h→0+,K∋y→x

K − y

h
NK (x) := [CK (x)]

−

Reachable gradient ∂∗f (x) := Lim supy→x{∇f (y)} for f ∈ W 1,∞(Rn)



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Preliminary definitions

Let ∅ 6= K ⊂ R
n.

Distance dK (x) := infy∈K |x − y | ∀x ∈ R
n

Oriented distance d(x) := dK (x)− dRn\K (x) ∀x ∈ R
n

Contingent cone to K at x ∈ K

TK (x) := Lim sup
h→0+

K − x

h

Clarke tangent cone and Clarke normal cone to K at x ∈ K

CK (x) := Lim inf
h→0+,K∋y→x

K − y

h
NK (x) := [CK (x)]

−

Reachable gradient ∂∗f (x) := Lim supy→x{∇f (y)} for f ∈ W 1,∞(Rn)



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Preliminary definitions

Let ∅ 6= K ⊂ R
n.

Distance dK (x) := infy∈K |x − y | ∀x ∈ R
n

Oriented distance d(x) := dK (x)− dRn\K (x) ∀x ∈ R
n

Contingent cone to K at x ∈ K

TK (x) := Lim sup
h→0+

K − x

h

Clarke tangent cone and Clarke normal cone to K at x ∈ K

CK (x) := Lim inf
h→0+,K∋y→x

K − y

h
NK (x) := [CK (x)]

−

Reachable gradient ∂∗f (x) := Lim supy→x{∇f (y)} for f ∈ W 1,∞(Rn)



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Preliminary definitions

Let ∅ 6= K ⊂ R
n.

Distance dK (x) := infy∈K |x − y | ∀x ∈ R
n

Oriented distance d(x) := dK (x)− dRn\K (x) ∀x ∈ R
n

Contingent cone to K at x ∈ K

TK (x) := Lim sup
h→0+

K − x

h

Clarke tangent cone and Clarke normal cone to K at x ∈ K

CK (x) := Lim inf
h→0+,K∋y→x

K − y

h
NK (x) := [CK (x)]

−

Reachable gradient ∂∗f (x) := Lim supy→x{∇f (y)} for f ∈ W 1,∞(Rn)



Introduction Inward Pointing Trajectories Normality Lipschitz continuity Variational Equation References

Inward Pointing Condition
Classical : ∀x ∈ ∂K , t ∈ [0, 1] there exists u ∈ U(t) such that

〈nx , f (t, x , u)〉 < 0 nx is the unit outer normal to K at x

x

Kf (t, x , u)

nx
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G+(t, x) := {f (t, x , u)| u ∈ U(t), max
p∈∂∗d(x)

〈p, f (t, x , u)〉 ≥ 0}

We shall use the following inward pointing condition (IP)


























∃M , ρ > 0 s.t. ∀(t, x) ∈ [0, 1] × ∂K , ∃ δ > 0 s.t.

for a.e. s ∈ [0, 1], ∀y ∈ K with |(s, y)− (t, x)| < δ, ∀ f (s, y , u) ∈ G+(s, y)

∃ v ∈ Tco(f (s,y ,U(s)))(f (s, y , u)), |v | ≤ M

satisfying maxp∈∂∗d(x)〈p, v〉 ≤ −ρ.

x

f (s, y , u)

K

v
y

∂∗d(x)

co(f (s, y ,U))
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Inward Pointing Trajectories

Let K1 = Q0 × Q1, where Qi is a closed subset of K , for i ∈ {0, 1}
Let (x̄(·), ū(·)) be a viable trajectory/control pair.

Inward pointing trajectories are solution of

{

w ′(t) = A(t)w(t) + v(t), v(t) ∈ T (t) for a.e. t ∈ [0, 1]
w(t) ∈ Int(CK (x̄(t))) ∀t ∈ (0, 1]

(3)

w(0) = 0 or w0 ∈ Int(CK (x̄(0))) ∩ CQ0
(x̄(0))

where

T (t) :=

{

Tco(f (t,x̄(t),U(t)))(x̄
′(t)) if x̄ ′(t) ∈ f (t, x̄(t),U(t))

{0} otherwise

Since Int(CK (x̄(t))) is open and x  CK (x) is not upper semicontinuous
in general ⇒ we cannot use results from Viability Theory
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Inward pointing trajectory Theorem-1

Let K1 = Q0 × R
n, Q0 ⊂ R

n closed. Assume that (IP) holds. Let
(x̄(·), ū(·)) be a viable trajectory/control pair. Assume that

Int(CK (x̄(0))) ∩ CQ0
(x̄(0)) 6= ∅,

Then, for any integrable (n × n)-matrix valued map
A : [0, 1] → M(n × n) and any w0 ∈ Int(CK (x̄(0))) ∩ CQ0

(x̄(0)), there
exists a solution w(·) of (3) which satisfies w(0) = w0.

Inward pointing trajectory Theorem-2

Assume that (IP) holds. Let (x̄(·), ū(·)) be a viable trajectory/control
pair. Then, for any integrable (n × n)-matrix valued map
A : [0, 1] → M(n × n), there exists a solution w(·) of (3), with w(0) = 0.
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Lemma

Let (x̄(·), ū(·)) be extremal for an abnormal triple (0, p(·), ψ(·)) and let
A(·) be the corresponding matrix valued map. Then for every solution
w(·) of the viability problem







w ′(t) = A(t)w(t) + v(t), v(t) ∈ T (t) for a.e. t ∈ [0, 1]
w(t) ∈ CK (x̄(t)) ∀t ∈ [0, 1]

(w(0),w(1)) ∈ CK1
((x̄(0), x̄(1))),

we have

∫ 1

0

〈p(s) + ψ(s), v(s)〉ds = 0,

∫ 1

0

w(s)dψ(s) = 0,

− 〈p(1) + ψ(1),w(1)〉+ 〈p(0),w(0)〉 = 0.
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Proposition

Let (x̄(·), ū(·)) be extremal for a triple (λ, p(·), ψ(·)) and let A(·) be the
corresponding matrix valued map. Then λ = 1 whenever there exists a
solution w̄(·) to the viability problem







w ′(t) ∈ A(t)w(t) + T (t) a.e. in [0, 1]
w(t) ∈ Int(CK (x̄(t))) ∀t ∈ (0, 1]
w(0) ∈ CK (x̄(0))

satisfying one of the following relations:

i) Int(CK (x)) 6= ∅ for all x ∈ ∂K , w̄(0) ∈ Int(CK (x̄(0))) and for some
ε > 0,

(w̄(0), w̄(1) + εB) ⊂ CK1
((x̄(0), x̄(1))).

ii) (λ, p(·), ψ(·)) is non-degenerate and for some ε > 0,

(w̄(0), w̄(1) + εB) ⊂ CK1
((x̄(0), x̄(1))).
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Q0

K

x̄(·)
x̄(·)

K

x0

Theorem

Assume that K1 = Q0 × R
n, where Q0 is a closed subset of Rn, (IP) and

Int(CK (z)) ∩ CQ0
(z) 6= ∅, ∀ z ∈ ∂K ∩ ∂Q0.

If (x̄(·), ū(·)) is extremal for a triple (λ, p(·), ψ(·)), then λ = 1.

Assume that K1 = {x0} × R
n for some x0 ∈ R

n and (IP).
If (x̄(·), ū(·)) is extremal for a non-degenerate triple (λ, p(·), ψ(·)), then
λ = 1.
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Let K1 = Q0 × Q1, where Qi is a closed subset of K , for i ∈ {0, 1}.

Q0

K

x̄(·) x̄(·)

K

x0

Q1
Q1

Theorem

Assume (IP), Int(CK (z)) ∩ CQ0
(z) 6= ∅, ∀ z ∈ ∂K ∩ ∂Q0 and

CK (y) ⊂ CQ1
(y) for all y ∈ ∂K ∩ ∂Q1.

If (x̄(·), ū(·)) is extremal for a triple (λ, p(·), ψ(·)) and x̄(1) ∈ ∂K, then
λ = 1.

Assume Q0 = {x0}, (IP) and CK (y) ⊂ CQ1
(y) for every y ∈ ∂K ∩ ∂Q1.

If (x̄(·), ū(·)) is extremal for a non-degenerate triple (λ, p(·), ψ(·)) and
x̄(1) ∈ ∂K, then λ = 1.
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Lipschitz continuity of optimal trajectories under Tonelli’s

growth condition on L

Let K1 := Q0 × R
n, where Q0 is a compact subset of Rn, L ≥ 0, ϕ ≥ 0.

Suppose that the infimum in

(MIN) inf

{

ϕ(x(0), x(1)) +

∫ 1

0

L(t, x(t), u(t))dt
∣

∣

∣
x(·) ∈ SK

[0,1]

}

,

is finite.
Assumption (G):

there exists a function φ : R → R satisfying limr→+∞
φ(r)

r
= +∞

and L(t, x , u) ≥ φ(|f (t, x , u)|), for all (t, x , u) ∈ [0, 1]× R
n ×Z.

Assumption (H):

i) f , L and ϕ are continuous, U(·) is lower semicontinuous;

ii) Int(CK (x)) ∩ CQ0
(x) 6= ∅, ∀x ∈ ∂K ∩ ∂Q0;

iii) for all t ∈ [0, 1], x ∈ K , the set
F (t, x) := {(L(t, x , u) + η, f (t, x , u))| u ∈ U(t), η ≥ 0} is closed and
convex;
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Theorem

Assume (G), (H), (IP) and some Lipschitz regularity of
L(t, ·, ·), f (t, ·, u), ϕ(·, ·) for all t ∈ [0, 1], u ∈ U(t). Then the infimum is
attained and every optimal trajectory x̄(·) is Lipschitz
Moreover, if Z is a separable Banach space and ∀R > 0

lim inf
||u||Z→∞

ess inf
t∈[0,1]

inf
x∈RB

|f (t, x , u)| = +∞

then every optimal control ū(·) is essentially bounded.

This is a generalization of a result of Frankowska and Marchini 2006

Our Inward pointing trajectory Theorems allow also to generalize results
of Cannarsa, Frankowska and Marchini 2009
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Sketch of the proof

Thanks to (G) and (H) we can use a theorem of Cesari to prove the
existence of an optimal solution in SK

[0,1]

Let (x̄(·), ū(·)) be an optimal trajectory/control pair, thanks to (H) and
(IP) a normal PMP holds (cf. Vinter + our normality results)

〈p(t) + ψ(t), x̄ ′(t)〉 − L(t, x̄(t), ū(t)) = H(t, x̄(t), p(t) + ψ(t)) a.e.

Continuity of f , L and the lower semicontinuity of U(·) and (G) imply
that H is lower semicontinuous, hence locally bounded from below

H locally bounded from below and (G) ⇒ x̄ ′(·) bounded ⇒ x̄(·) Lipschitz
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Variational Equation

Let K1 = Q0 × R
n, where Q0 is a closed subset of K

Theorem

Assume (IP), f differentiable w.r.t. x and for some integrable
k : [0, 1] → R+, f (t, ·, u) is k(t)-Lipschitz for all t ∈ [0, 1], u ∈ U(t).
Let (x̄(·), ū(·)) be a viable trajectory/control pair and

Int(CK (x̄(0))) ∩ CQ0
(x̄(0)) 6= ∅.

Then every solution w(·) of the viability problem







w ′(t) ∈ ∂f
∂x

(t, x̄(t), ū(t))w(t) + T (t) for a.e. t ∈ [0, 1]
w(t) ∈ CK (x̄(t)) ∀t ∈ [0, 1]
w(0) ∈ CQ0

(x̄(0)),

is an element of the contingent cone to SK
[0,1] at x̄(·).

This results can be used to prove the normal PMP in a direct way.
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For every R > 0, ∃CR > 0 such that, for any t ∈ [0, 1],
x1, x2, y1, y2 ∈ RB ∩ K and any u ∈ U(t),

i1) |ϕ(x1, y1)− ϕ(x2, y2)| ≤ CR(|x1 − x2|+ |y1 − y2|),

i2) |L(t, x1, u)− L(t, x2, u)| ≤ CR |x1 − x2|[1 + L(t, x1, u) ∧ L(t, x2, u)],

i3) |f (t, x1, u)− f (t, x2, u)| ≤
CR |x1 − x2|[1 + |f (t, x1, u)| ∧ |f (t, x2, u)|+ L(t, x1, u) ∧ L(t, x2, u)];
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