Inward pointing trajectories, Lavrentieff phenomenon and normality of maximum principle for Bolza problem under state constraints

Daniela Tonon
Joint work with Hélène Frankowska

ITN Marie Curie Network SADCO, Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Paris 6

SADCO Workshop, New trends in Optimal Control, Ravello, 7th September 2012

Initial Training Network Sensitivity Analysis for Deterministic Controller Design

The Bolza Problem

Consider the control system

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), u(t)), \quad u(t) \in U(t) \quad \text { for a.e. } t \in[0,1], \tag{1}\\
x(t) \in K \quad \text { for all } t \in[0,1], \quad(x(0), x(1)) \in K_{1}, \tag{2}
\end{gather*}
$$

- $U(\cdot)$ measurable set-valued map from $[0,1]$ into nonempty closed subsets of a complete separable metric space \mathcal{Z},
- $f:[0,1] \times \mathbb{R}^{n} \times \mathcal{Z} \rightarrow \mathbb{R}^{n}, f(\cdot, x, \cdot)$ is $\mathcal{L} \times \mathcal{B}$-measurable and $f(t, \cdot, u)$ is locally Lipschitz continuous,
- $K \subset \mathbb{R}^{n}$ and $K_{1} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ are closed subsets
$S_{[0,1]}^{K}:=\left\{x(\cdot) \in W^{1,1}([0,1]) \mid x(\cdot)\right.$ is a solution to (1) satisfying (2) $\}$
A pair $(x(\cdot), u(\cdot))$, with $x(\cdot)$ absolutely continuous and $u(\cdot)$ measurable, is called a viable trajectory/control pair if it satisfies (1) and (2)

The Bolza Problem

Consider the control system

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), u(t)), \quad u(t) \in U(t) \quad \text { for a.e. } t \in[0,1], \tag{1}\\
x(t) \in K \quad \text { for all } t \in[0,1], \quad(x(0), x(1)) \in K_{1}, \tag{2}
\end{gather*}
$$

- $U(\cdot)$ measurable set-valued map from $[0,1]$ into nonempty closed subsets of a complete separable metric space \mathcal{Z},
- $f:[0,1] \times \mathbb{R}^{n} \times \mathcal{Z} \rightarrow \mathbb{R}^{n}, f(\cdot, x, \cdot)$ is $\mathcal{L} \times \mathcal{B}$-measurable and $f(t, \cdot, u)$ is locally Lipschitz continuous,
- $K \subset \mathbb{R}^{n}$ and $K_{1} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ are closed subsets
$S_{[0,1]}^{K}:=\left\{x(\cdot) \in W^{1,1}([0,1]) \mid x(\cdot)\right.$ is a solution to (1) satisfying (2) $\}$

The Bolza Problem

Consider the control system

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), u(t)), \quad u(t) \in U(t) \quad \text { for a.e. } t \in[0,1], \tag{1}\\
x(t) \in K \quad \text { for all } t \in[0,1], \quad(x(0), x(1)) \in K_{1}, \tag{2}
\end{gather*}
$$

- $U(\cdot)$ measurable set-valued map from $[0,1]$ into nonempty closed subsets of a complete separable metric space \mathcal{Z},
- $f:[0,1] \times \mathbb{R}^{n} \times \mathcal{Z} \rightarrow \mathbb{R}^{n}, f(\cdot, x, \cdot)$ is $\mathcal{L} \times \mathcal{B}$-measurable and $f(t, \cdot, u)$ is locally Lipschitz continuous,
- $K \subset \mathbb{R}^{n}$ and $K_{1} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ are closed subsets
$S_{[0,1]}^{K}:=\left\{x(\cdot) \in W^{1,1}([0,1]) \mid x(\cdot)\right.$ is a solution to (1) satisfying (2) $\}$
A pair $(x(\cdot), u(\cdot))$, with $x(\cdot)$ absolutely continuous and $u(\cdot)$ measurable,
is called a viable trajectory/control pair if it satisfies (1) and (2)

The Bolza Problem

Consider the control system

$$
\begin{gather*}
x^{\prime}(t)=f(t, x(t), u(t)), \quad u(t) \in U(t) \quad \text { for a.e. } t \in[0,1], \tag{1}\\
x(t) \in K \quad \text { for all } t \in[0,1], \quad(x(0), x(1)) \in K_{1}, \tag{2}
\end{gather*}
$$

- $U(\cdot)$ measurable set-valued map from $[0,1]$ into nonempty closed subsets of a complete separable metric space \mathcal{Z},
- $f:[0,1] \times \mathbb{R}^{n} \times \mathcal{Z} \rightarrow \mathbb{R}^{n}, f(\cdot, x, \cdot)$ is $\mathcal{L} \times \mathcal{B}$-measurable and $f(t, \cdot, u)$ is locally Lipschitz continuous,
- $K \subset \mathbb{R}^{n}$ and $K_{1} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ are closed subsets
$S_{[0,1]}^{K}:=\left\{x(\cdot) \in W^{1,1}([0,1]) \mid x(\cdot)\right.$ is a solution to (1) satisfying (2) $\}$
A pair $(x(\cdot), u(\cdot))$, with $x(\cdot)$ absolutely continuous and $u(\cdot)$ measurable, is called a viable trajectory/control pair if it satisfies (1) and (2)

The Bolza optimal control problem:

$$
(M I N) \quad \inf \left\{\varphi(x(0), x(1))+\int_{0}^{1} L(t, x(t), u(t)) d t \mid x(\cdot) \in S_{[0,1]}^{K}\right\},
$$

where $\varphi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $L:[0,1] \times \mathbb{R}^{n} \times \mathcal{Z} \rightarrow \mathbb{R}$
For $\lambda \in\{0,1\}$ define $H_{\lambda}:[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
H_{\lambda}(t, x, p):=\sup _{u \in U(t)}\{\langle p, f(t, x, u)\rangle-\lambda L(t, x, u)\}
$$

and the Hamiltonian $H:[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ $H(t, x, p):=H_{1}(t, x, p)$

The Bolza optimal control problem:
$\left(\right.$ MIN) $\quad \inf \left\{\varphi(x(0), x(1))+\int_{0}^{1} L(t, x(t), u(t)) d t \mid x(\cdot) \in S_{[0,1]}^{K}\right\}$,
where $\varphi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $L:[0,1] \times \mathbb{R}^{n} \times \mathcal{Z} \rightarrow \mathbb{R}$
For $\lambda \in\{0,1\}$ define $H_{\lambda}:[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
H_{\lambda}(t, x, p):=\sup _{u \in U(t)}\{\langle p, f(t, x, u)\rangle-\lambda L(t, x, u)\}
$$

and the Hamiltonian $H:[0,1] \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
H(t, x, p):=H_{1}(t, x, p)
$$

The Pontryagin's Maximum Principle (PMP)

For $(\bar{x}(\cdot), \bar{u}(\cdot))$ optimal for (MIN), $\exists(\lambda, p(\cdot), \psi(\cdot)) \neq 0$ where $\lambda \in\{0,1\}$, $p(\cdot) \in W^{1,1}$ and $\psi(\cdot) \in N B V$, integrable mappings $A:[0,1] \rightarrow M(n \times n), \pi:[0,1] \rightarrow \mathbb{R}^{n}$ and vectors $\pi_{0}, \pi_{1} \in \mathbb{R}^{n}$ s.t.

$$
\text { finite Borel measure } \mu \text { on }[0,1] \text { and a Borel measurable selection }
$$

$$
\nu(s) \in N_{K}(\bar{x}(s)) \cap B \mu \text {-a.e. }
$$

$$
p(\cdot) \text { is a solution of the adjoint system for a.e. } t \in[0,1]
$$

$$
-p^{\prime}(t)=A(t)^{*}(p(t)+\psi(t))-\lambda \pi(t)
$$

satisfying a.e. the maximum principle

$$
\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-\lambda L\left(t, \bar{x}(t), \bar{u}^{\prime}(t)\right)=H_{\lambda}(t, \bar{x}(t), p(t)+\psi(t))
$$

and the transversality condition

$$
(p(0),-p(1)-\psi(1)) \in \lambda\left(\pi_{0}, \pi_{1}\right)+N_{K_{1}}((\bar{x}(0), \bar{x}(1)))
$$

The Pontryagin's Maximum Principle (PMP)

For $(\bar{x}(\cdot), \bar{u}(\cdot))$ optimal for (MIN), $\exists(\lambda, p(\cdot), \psi(\cdot)) \neq 0$ where $\lambda \in\{0,1\}$, $p(\cdot) \in W^{1,1}$ and $\psi(\cdot) \in N B V$, integrable mappings
$A:[0,1] \rightarrow M(n \times n), \pi:[0,1] \rightarrow \mathbb{R}^{n}$ and vectors $\pi_{0}, \pi_{1} \in \mathbb{R}^{n}$ s.t.
i) $\psi(0)=0, \psi(t)=\int_{[0, t]} \nu(s) d \mu(s)$, for all $t \in(0,1]$ for a positive finite Borel measure μ on $[0,1]$ and a Borel measurable selection $\nu(s) \in N_{K}(\bar{x}(s)) \cap B \mu$-a.e.
satisfying a.e. the maximum principle
and the transversality condition

The Pontryagin's Maximum Principle (PMP)

For $(\bar{x}(\cdot), \bar{u}(\cdot))$ optimal for (MIN), $\exists(\lambda, p(\cdot), \psi(\cdot)) \neq 0$ where $\lambda \in\{0,1\}$, $p(\cdot) \in W^{1,1}$ and $\psi(\cdot) \in N B V$, integrable mappings
$A:[0,1] \rightarrow M(n \times n), \pi:[0,1] \rightarrow \mathbb{R}^{n}$ and vectors $\pi_{0}, \pi_{1} \in \mathbb{R}^{n}$ s.t.
i) $\psi(0)=0, \psi(t)=\int_{[0, t]} \nu(s) d \mu(s)$, for all $t \in(0,1]$ for a positive finite Borel measure μ on $[0,1]$ and a Borel measurable selection $\nu(s) \in N_{K}(\bar{x}(s)) \cap B \mu$-a.e.
ii) $p(\cdot)$ is a solution of the adjoint system for a.e. $t \in[0,1]$

$$
-p^{\prime}(t)=A(t)^{*}(p(t)+\psi(t))-\lambda \pi(t)
$$

satisfying a.e. the maximum principle
and the transversality condition

The Pontryagin's Maximum Principle (PMP)

For $(\bar{x}(\cdot), \bar{u}(\cdot))$ optimal for (MIN), $\exists(\lambda, p(\cdot), \psi(\cdot)) \neq 0$ where $\lambda \in\{0,1\}$, $p(\cdot) \in W^{1,1}$ and $\psi(\cdot) \in N B V$, integrable mappings
$A:[0,1] \rightarrow M(n \times n), \pi:[0,1] \rightarrow \mathbb{R}^{n}$ and vectors $\pi_{0}, \pi_{1} \in \mathbb{R}^{n}$ s.t.
i) $\psi(0)=0, \psi(t)=\int_{[0, t]} \nu(s) d \mu(s)$, for all $t \in(0,1]$ for a positive finite Borel measure μ on $[0,1]$ and a Borel measurable selection $\nu(s) \in N_{K}(\bar{x}(s)) \cap B \mu$-a.e.
ii) $p(\cdot)$ is a solution of the adjoint system for a.e. $t \in[0,1]$

$$
-p^{\prime}(t)=A(t)^{*}(p(t)+\psi(t))-\lambda \pi(t)
$$

satisfying a.e. the maximum principle

$$
\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-\lambda L(t, \bar{x}(t), \bar{u}(t))=H_{\lambda}(t, \bar{x}(t), p(t)+\psi(t))
$$

and the transversality condition

The Pontryagin's Maximum Principle (PMP)

For $(\bar{x}(\cdot), \bar{u}(\cdot))$ optimal for (MIN), $\exists(\lambda, p(\cdot), \psi(\cdot)) \neq 0$ where $\lambda \in\{0,1\}$, $p(\cdot) \in W^{1,1}$ and $\psi(\cdot) \in N B V$, integrable mappings
$A:[0,1] \rightarrow M(n \times n), \pi:[0,1] \rightarrow \mathbb{R}^{n}$ and vectors $\pi_{0}, \pi_{1} \in \mathbb{R}^{n}$ s.t.
i) $\psi(0)=0, \psi(t)=\int_{[0, t]} \nu(s) d \mu(s)$, for all $t \in(0,1]$ for a positive finite Borel measure μ on $[0,1]$ and a Borel measurable selection $\nu(s) \in N_{K}(\bar{x}(s)) \cap B \mu$-a.e.
ii) $p(\cdot)$ is a solution of the adjoint system for a.e. $t \in[0,1]$

$$
-p^{\prime}(t)=A(t)^{*}(p(t)+\psi(t))-\lambda \pi(t)
$$

satisfying a.e. the maximum principle

$$
\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-\lambda L(t, \bar{x}(t), \bar{u}(t))=H_{\lambda}(t, \bar{x}(t), p(t)+\psi(t))
$$

and the transversality condition

$$
(p(0),-p(1)-\psi(1)) \in \lambda\left(\pi_{0}, \pi_{1}\right)+N_{K_{1}}((\bar{x}(0), \bar{x}(1)))
$$

Under suitable hypotheses, in the classical PMP
$A(t):=\frac{\partial f}{\partial x}(t, \bar{x}(t), \bar{u}(t)), \quad \pi(t):=\frac{\partial L}{\partial x}(t, \bar{x}(t), \bar{u}(t))$,
$\left(\pi_{0}, \pi_{1}\right):=\nabla \varphi(\bar{x}(0), \bar{x}(1))$
In general the adjoint system could be expressed as a Hamiltonian
inclusion

$$
-p^{\prime}(t) \in \partial_{x} H_{\lambda}(t, \bar{x}(t), p(t)+\psi(t)),
$$

where $\partial_{x} H_{\lambda}$ denotes the generalized gradient of H_{λ} with respect to x, or as an Euler-Lagrange inclusion

However, if $\lambda=0$ and $p(\cdot)$ and $\psi(\cdot)$ are s.t.

$$
\left|p^{\prime}(t)\right| \leq k(t)|p(t)+\psi(t)| \quad \text { a.e. }
$$

for some $k(\cdot) \in L^{1}$, then we can find an integrable matrix valued mapping $A(\cdot)$ such that

$$
-p^{\prime}(t)=A(t)^{*}(p(t)+\psi(t))
$$

Under suitable hypotheses, in the classical PMP

$$
\begin{aligned}
& A(t):=\frac{\partial f}{\partial x}(t, \bar{x}(t), \bar{u}(t)), \quad \pi(t):=\frac{\partial L}{\partial x}(t, \bar{x}(t), \bar{u}(t)), \\
& \left(\pi_{0}, \pi_{1}\right):=\nabla \varphi(\bar{x}(0), \bar{x}(1))
\end{aligned}
$$

In general the adjoint system could be expressed as a Hamiltonian inclusion

$$
-p^{\prime}(t) \in \partial_{x} H_{\lambda}(t, \bar{x}(t), p(t)+\psi(t)),
$$

where $\partial_{x} H_{\lambda}$ denotes the generalized gradient of H_{λ} with respect to x, or as an Euler-Lagrange inclusion

However, if $\lambda=0$ and $p(\cdot)$ and $\psi(\cdot)$ are s.t.
for some $k(\cdot) \in L^{1}$, then we can find an integrable matrix valued
mapping $A(\cdot)$ such that

Under suitable hypotheses, in the classical PMP

$$
\begin{aligned}
& A(t):=\frac{\partial f}{\partial x}(t, \bar{x}(t), \bar{u}(t)), \quad \pi(t):=\frac{\partial L}{\partial x}(t, \bar{x}(t), \bar{u}(t)), \\
& \left(\pi_{0}, \pi_{1}\right):=\nabla \varphi(\bar{x}(0), \bar{x}(1))
\end{aligned}
$$

In general the adjoint system could be expressed as a Hamiltonian inclusion

$$
-p^{\prime}(t) \in \partial_{x} H_{\lambda}(t, \bar{x}(t), p(t)+\psi(t))
$$

where $\partial_{x} H_{\lambda}$ denotes the generalized gradient of H_{λ} with respect to x, or as an Euler-Lagrange inclusion

However, if $\lambda=0$ and $p(\cdot)$ and $\psi(\cdot)$ are s.t.

$$
\left|p^{\prime}(t)\right| \leq k(t)|p(t)+\psi(t)| \quad \text { a.e. }
$$

for some $k(\cdot) \in L^{1}$, then we can find an integrable matrix valued mapping $A(\cdot)$ such that

$$
-p^{\prime}(t)=A(t)^{*}(p(t)+\psi(t))
$$

Non-degeneracy and normality

$$
\begin{aligned}
&\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-\lambda \lambda(t, \bar{x}(t), \bar{u}(t))= \\
& \sup _{u \in U(t)}\{\langle p(t)+\psi(t), f(t, \bar{x}(t), u)\rangle-\lambda L(t, \bar{x}(t), u)\}
\end{aligned}
$$

If $\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)|=0$ the PMP gives no useful information about optimal controls because the maximum is then satisfied by every $u \in U(t)$
When
a triple $(\lambda, p(\cdot), \psi(\cdot))$ is called non-degenerate
If $\lambda=0$, the PMP does not depend on the cost functions L and φ and expresses some relations between the control system and state constraints When $\lambda=1$ the PMP is called normal

Non-degeneracy and normality

$$
\begin{aligned}
& \left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle- \\
& \quad \sup _{u \in U(t)}\{\langle(t, \bar{x}(t), \bar{u}(t))= \\
& u(t), f(t, \bar{x}(t), u)\rangle-\lambda L(t, \bar{x}(t), u)\}
\end{aligned}
$$

If $\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)|=0$ the PMP gives no useful information about optimal controls because the maximum is then satisfied by every $u \in U(t)$
a triple $(\lambda, p(\cdot), \psi(\cdot))$ is called non-degenerate
If $\lambda=0$, the PMP does not depend on the cost functions L and φ and expresses some relations between the control system and state constraints When $1-1$ the PMP is called normal

Non-degeneracy and normality

$$
\begin{aligned}
& \left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle- \\
& \quad \sup _{u \in U(t)}\{\langle(t, \bar{x}(t), \bar{u}(t))= \\
& u(t), f(t, \bar{x}(t), u)\rangle-\lambda L(t, \bar{x}(t), u)\}
\end{aligned}
$$

If $\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)|=0$ the PMP gives no useful information about optimal controls because the maximum is then satisfied by every $u \in U(t)$
When $\quad \lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)| \neq 0$,
a triple $(\lambda, p(\cdot), \psi(\cdot))$ is called non-degenerate
If $\lambda=0$, the PMP does not depend on the cost functions L and φ and
expresses some relations between the control system and state constraints When $\lambda=1$ the PMP is called normal

Non-degeneracy and normality

$$
\begin{aligned}
& \left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle- \\
& \quad \sup _{u \in U(t)}\{\langle(t, \bar{x}(t), \bar{u}(t))=\psi(t), f(t, \bar{x}(t), u)\rangle-\lambda L(t, \bar{x}(t), u)\}
\end{aligned}
$$

If $\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)|=0$ the PMP gives no useful information about optimal controls because the maximum is then satisfied by every $u \in U(t)$
When

$$
\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)| \neq 0,
$$

a triple $(\lambda, p(\cdot), \psi(\cdot))$ is called non-degenerate
If $\lambda=0$, the PMP does not depend on the cost functions L and φ and expresses some relations between the control system and state constraints

Non-degeneracy and normality

$$
\begin{aligned}
& \left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-\quad \lambda L(t, \bar{x}(t), \bar{u}(t))= \\
& \quad \sup _{u \in U(t)}\{\langle p(t)+\psi(t), f(t, \bar{x}(t), u)\rangle-\lambda L(t, \bar{x}(t), u)\}
\end{aligned}
$$

If $\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)|=0$ the PMP gives no useful information about optimal controls because the maximum is then satisfied by every $u \in U(t)$
When

$$
\lambda+\sup _{t \in(0,1]}|p(t)+\psi(t)| \neq 0,
$$

a triple $(\lambda, p(\cdot), \psi(\cdot))$ is called non-degenerate
If $\lambda=0$, the PMP does not depend on the cost functions L and φ and expresses some relations between the control system and state constraints When $\lambda=1$ the PMP is called normal

Ferreira and Vinter 1994, Arutyunov and Aseev 1997, Ferreira, Fontes and Vinter 1999, Rampazzo and Vinter 1999, Rampazzo and Vinter 2000, Lopes and Fontes 2009, Lopes, Fontes and de Pinho 2011 Using an inward pointing condition they ensured the existence of non-degenerate multipliers in addition to degenerate ones

Cernea and Frankowska 2005, Frankowska 2009
Using an inward pointing condition they ensured normality for a non-degenerate PMP (with restrictions on K)

We address normality for general, not necessarily Lipschitz, optimal trajectories and for general closed state constraints K, improving considerably earlier results

Ferreira and Vinter 1994, Arutyunov and Aseev 1997, Ferreira, Fontes and Vinter 1999, Rampazzo and Vinter 1999, Rampazzo and Vinter 2000, Lopes and Fontes 2009, Lopes, Fontes and de Pinho 2011 Using an inward pointing condition they ensured the existence of non-degenerate multipliers in addition to degenerate ones

Cernea and Frankowska 2005, Frankowska 2009 Using an inward pointing condition they ensured normality for a non-degenerate PMP (with restrictions on K)

We address normality for general, not necessarily Lipschitz, optimal trajectories and for general closed state constraints K, improving considerably earlier results

Ferreira and Vinter 1994, Arutyunov and Aseev 1997, Ferreira, Fontes and Vinter 1999, Rampazzo and Vinter 1999, Rampazzo and Vinter 2000, Lopes and Fontes 2009, Lopes, Fontes and de Pinho 2011 Using an inward pointing condition they ensured the existence of non-degenerate multipliers in addition to degenerate ones

Cernea and Frankowska 2005, Frankowska 2009 Using an inward pointing condition they ensured normality for a non-degenerate PMP (with restrictions on K)

We address normality for general, not necessarily Lipschitz, optimal trajectories and for general closed state constraints K, improving considerably earlier results

Preliminary definitions

Let $\emptyset \neq K \subset \mathbb{R}^{n}$ ．
Distance $d_{K}(x):=\inf _{y \in K}|x-y| \quad \forall x \in \mathbb{R}^{n}$
Oriented distance $d(x):=d_{K}(x)-d_{\mathbb{R}^{n} \backslash K}(x) \quad \forall x \in \mathbb{R}^{n}$
Contingent cone to K at $x \in K$

Clarke tangent cone and Clarke normal cone to K at $x \in K$

Reachable gradient $\left.\partial^{*} f(x):=\operatorname{Lim}_{\sup }^{y \rightarrow x} ⿵ ⺆ ⿻ 二 丨(y)\right\}$ for $f \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$

Preliminary definitions

Let $\emptyset \neq K \subset \mathbb{R}^{n}$ ．
Distance $d_{K}(x):=\inf _{y \in K}|x-y| \quad \forall x \in \mathbb{R}^{n}$
Oriented distance $d(x):=d_{K}(x)-d_{\mathbb{R}^{n} \backslash K}(x) \forall x \in \mathbb{R}^{n}$
Contingent cone to K at $x \in K$

Clarke tangent cone and Clarke normal cone to K at $x \in K$

Reachable gradient $\left.\partial^{*} f(x):=\operatorname{Lim}_{\sup }^{y \rightarrow x} ⿵ ⺆ ⿱ 乛 ⿻ 上 丨(y)\right\}$ for $f \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$

Preliminary definitions

Let $\emptyset \neq K \subset \mathbb{R}^{n}$ ．
Distance $d_{K}(x):=\inf _{y \in K}|x-y| \quad \forall x \in \mathbb{R}^{n}$
Oriented distance $d(x):=d_{K}(x)-d_{\mathbb{R}^{n} \backslash K}(x) \forall x \in \mathbb{R}^{n}$
Contingent cone to K at $x \in K$

$$
T_{K}(x):=\operatorname{Lim}_{h \rightarrow 0^{+}} \frac{K-x}{h}
$$

Clarke tangent cone and Clarke normal cone to K at $x \in K$

Reachable gradient $\left.\partial^{*} f(x):=\operatorname{Lim}_{\sup }^{y \rightarrow x} ⿵ ⺆ ⿻ 二 丨(y)\right\}$ for $f \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$

Preliminary definitions

Let $\emptyset \neq K \subset \mathbb{R}^{n}$.
Distance $d_{K}(x):=\inf _{y \in K}|x-y| \quad \forall x \in \mathbb{R}^{n}$
Oriented distance $d(x):=d_{K}(x)-d_{\mathbb{R}^{n} \backslash K}(x) \forall x \in \mathbb{R}^{n}$
Contingent cone to K at $x \in K$

$$
T_{K}(x):=\underset{h \rightarrow 0^{+}}{\operatorname{Lim} \sup } \frac{K-x}{h}
$$

Clarke tangent cone and Clarke normal cone to K at $x \in K$

$$
C_{K}(x):=\operatorname{Liminf}_{h \rightarrow 0^{+}, K \ni y \rightarrow x} \frac{K-y}{h} \quad N_{K}(x):=\left[C_{K}(x)\right]^{-}
$$

Reachable gradient $\partial^{*} f(x):=\operatorname{Limsup}_{y \rightarrow x}\{\nabla f(y)\}$ for $f \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$

Preliminary definitions

Let $\emptyset \neq K \subset \mathbb{R}^{n}$.
Distance $d_{K}(x):=\inf _{y \in K}|x-y| \quad \forall x \in \mathbb{R}^{n}$
Oriented distance $d(x):=d_{K}(x)-d_{\mathbb{R}^{n} \backslash K}(x) \forall x \in \mathbb{R}^{n}$
Contingent cone to K at $x \in K$

$$
T_{K}(x):=\underset{h \rightarrow 0^{+}}{\operatorname{Lim} \sup } \frac{K-x}{h}
$$

Clarke tangent cone and Clarke normal cone to K at $x \in K$

$$
C_{K}(x):=\operatorname{Liminf}_{h \rightarrow 0^{+}, K \ni y \rightarrow x} \frac{K-y}{h} \quad N_{K}(x):=\left[C_{K}(x)\right]^{-}
$$

Reachable gradient $\partial^{*} f(x):=\operatorname{Lim}_{\sup }^{y \rightarrow x}$ $\{\nabla f(y)\}$ for $f \in W^{1, \infty}\left(\mathbb{R}^{n}\right)$

Inward Pointing Condition

Classical : $\forall x \in \partial K, t \in[0,1]$ there exists $u \in U(t)$ such that

$$
\left\langle n_{x}, f(t, x, u)\right\rangle<0 \quad n_{x} \text { is the unit outer normal to } K \text { at } x
$$

$$
G^{+}(t, x):=\left\{f(t, x, u) \mid u \in U(t), \max _{p \in \partial^{*} d(x)}\langle p, f(t, x, u)\rangle \geq 0\right\}
$$

We shall use the following inward pointing condition (IP)

$$
\left\{\begin{array}{l}
\exists M, \rho>0 \text { s.t. } \forall(t, x) \in[0,1] \times \partial K, \exists \delta>0 \text { s.t. } \\
\text { for a.e. } s \in[0,1], \forall y \in K \text { with }|(s, y)-(t, x)|<\delta, \forall f(s, y, u) \in G^{+}(s, y) \\
\exists v \in T_{\overline{c o}(f(s, y, U(s)))}(f(s, y, u)),|v| \leq M \\
\text { satisfying } \max _{p \in \partial^{*} d(x)}\langle p, v\rangle \leq-\rho .
\end{array}\right.
$$

Inward Pointing Trajectories

Let $K_{1}=Q_{0} \times Q_{1}$, where Q_{i} is a closed subset of K, for $i \in\{0,1\}$ Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair.

Inward pointing trajectories are solution of

$$
\left\{\begin{aligned}
& w^{\prime}(t)=A(t) w(t)+v(t), \quad v(t) \in \mathcal{T}(t) \text { for a.e. } t \in[0,1] \\
& w(t) \in \operatorname{Int}\left(C_{K}(\bar{x}(t))\right) \quad \forall t \in(0,1] \\
& w(0)=0 \quad \text { or } \quad w_{0} \in \operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0))
\end{aligned}\right.
$$

where

Since $\operatorname{Int}\left(C_{K}(\bar{x}(t))\right)$ is open and $x \rightsquigarrow C_{K}(x)$ is not upper semicontinuous
in general \Rightarrow we cannot use results from Viability Theory

Inward Pointing Trajectories

Let $K_{1}=Q_{0} \times Q_{1}$, where Q_{i} is a closed subset of K, for $i \in\{0,1\}$ Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair.

Inward pointing trajectories are solution of

$$
\left\{\begin{array}{c}
w^{\prime}(t)=A(t) w(t)+v(t), \quad v(t) \in \mathcal{T}(t) \text { for a.e. } t \in[0,1] \\
w(t) \in \operatorname{Int}\left(C_{K}(\bar{x}(t))\right) \quad \forall t \in(0,1] \\
w(0)=0 \quad \text { or } \quad w_{0} \in \operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0))
\end{array}\right.
$$

where

$$
\mathcal{T}(t):= \begin{cases}T_{\overline{c o}(f(t, \bar{x}(t), U(t)))}\left(\bar{x}^{\prime}(t)\right) & \text { if } \bar{x}^{\prime}(t) \in f(t, \bar{x}(t), U(t)) \\ \{0\} & \text { otherwise }\end{cases}
$$

Inward Pointing Trajectories

Let $K_{1}=Q_{0} \times Q_{1}$, where Q_{i} is a closed subset of K, for $i \in\{0,1\}$ Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair.

Inward pointing trajectories are solution of

$$
\left\{\begin{array}{c}
\left\{\begin{aligned}
w^{\prime}(t) & =A(t) w(t)+v(t), \quad v(t) \in \mathcal{T}(t) \text { for a.e. } t \in[0,1] \\
w(t) & \in \operatorname{Int}\left(C_{K}(\bar{x}(t))\right) \quad \forall t \in(0,1]
\end{aligned}\right. \tag{3}\\
w(0)=0 \quad \text { or } \quad w_{0} \in \operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0))
\end{array}\right.
$$

where

$$
\mathcal{T}(t):= \begin{cases}T_{\overline{c o}(f(t, \bar{x}(t), U(t)))}\left(\bar{x}^{\prime}(t)\right) & \text { if } \bar{x}^{\prime}(t) \in f(t, \bar{x}(t), U(t)) \\ \{0\} & \text { otherwise }\end{cases}
$$

Since $\operatorname{Int}\left(C_{K}(\bar{x}(t))\right)$ is open and $x \rightsquigarrow C_{K}(x)$ is not upper semicontinuous in general \Rightarrow we cannot use results from Viability Theory

Inward pointing trajectory Theorem-1
Let $K_{1}=Q_{0} \times \mathbb{R}^{n}, Q_{0} \subset \mathbb{R}^{n}$ closed. Assume that (IP) holds. Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair. Assume that

$$
\operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0)) \neq \emptyset,
$$

Then, for any integrable $(n \times n)$-matrix valued map
$A:[0,1] \rightarrow M(n \times n)$ and any $w_{0} \in \operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0))$, there exists a solution $w(\cdot)$ of (3) which satisfies $w(0)=w_{0}$.

Inward pointing trajectory Theorem-1
Let $K_{1}=Q_{0} \times \mathbb{R}^{n}, Q_{0} \subset \mathbb{R}^{n}$ closed. Assume that (IP) holds. Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair. Assume that

$$
\operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0)) \neq \emptyset
$$

Then, for any integrable $(n \times n)$-matrix valued map
$A:[0,1] \rightarrow M(n \times n)$ and any $w_{0} \in \operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0))$, there exists a solution $w(\cdot)$ of (3) which satisfies $w(0)=w_{0}$.

Inward pointing trajectory Theorem-2
Assume that (IP) holds. Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair. Then, for any integrable $(n \times n)$-matrix valued map $A:[0,1] \rightarrow M(n \times n)$, there exists a solution $w(\cdot)$ of (3), with $w(0)=0$.

Lemma

Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be extremal for an abnormal triple $(0, p(\cdot), \psi(\cdot))$ and let $A(\cdot)$ be the corresponding matrix valued map. Then for every solution $w(\cdot)$ of the viability problem

$$
\left\{\begin{aligned}
w^{\prime}(t) & =A(t) w(t)+v(t), \quad v(t) \in \mathcal{T}(t) \text { for a.e. } t \in[0,1] \\
w(t) & \in C_{K}(\bar{x}(t)) \forall t \in[0,1] \\
(w(0), w(1)) & \in C_{K_{1}}((\bar{x}(0), \bar{x}(1))),
\end{aligned}\right.
$$

we have

$$
\begin{gathered}
\int_{0}^{1}\langle p(s)+\psi(s), v(s)\rangle d s=0, \quad \int_{0}^{1} w(s) d \psi(s)=0 \\
-\langle p(1)+\psi(1), w(1)\rangle+\langle p(0), w(0)\rangle=0
\end{gathered}
$$

Proposition

Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be extremal for a triple $(\lambda, p(\cdot), \psi(\cdot))$ and let $A(\cdot)$ be the corresponding matrix valued map. Then $\lambda=1$ whenever there exists a solution $\bar{w}(\cdot)$ to the viability problem

$$
\left\{\begin{aligned}
w^{\prime}(t) & \in A(t) w(t)+\mathcal{T}(t) \quad \text { a.e. in }[0,1] \\
w(t) & \in \operatorname{Int}\left(C_{K}(\bar{x}(t))\right) \quad \forall t \in(0,1] \\
w(0) & \in C_{K}(\bar{x}(0))
\end{aligned}\right.
$$

satisfying one of the following relations:
i) $\operatorname{Int}\left(C_{K}(x)\right) \neq \emptyset$ for all $x \in \partial K, \bar{w}(0) \in \operatorname{Int}\left(C_{K}(\bar{x}(0))\right)$ and for some $\varepsilon>0$,

$$
(\bar{w}(0), \bar{w}(1)+\varepsilon B) \subset C_{K_{1}}((\bar{x}(0), \bar{x}(1))) .
$$

ii) $(\lambda, p(\cdot), \psi(\cdot))$ is non-degenerate and for some $\varepsilon>0$,

$$
(\bar{w}(0), \bar{w}(1)+\varepsilon B) \subset C_{K_{1}}((\bar{x}(0), \bar{x}(1))) .
$$

Theorem
Assume that $K_{1}=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a closed subset of \mathbb{R}^{n}, (IP) and

$$
\operatorname{Int}\left(C_{K}(z)\right) \cap C_{Q_{0}}(z) \neq \emptyset, \forall z \in \partial K \cap \partial Q_{0}
$$

If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a triple $(\lambda, p(\cdot), \psi(\cdot))$, then $\lambda=1$.

Theorem
Assume that $K_{1}=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a closed subset of \mathbb{R}^{n}, (IP) and

$$
\operatorname{Int}\left(C_{K}(z)\right) \cap C_{Q_{0}}(z) \neq \emptyset, \forall z \in \partial K \cap \partial Q_{0}
$$

If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a triple $(\lambda, p(\cdot), \psi(\cdot))$, then $\lambda=1$.
Assume that $K_{1}=\left\{x_{0}\right\} \times \mathbb{R}^{n}$ for some $x_{0} \in \mathbb{R}^{n}$ and (IP). If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a non-degenerate triple $(\lambda, p(\cdot), \psi(\cdot))$, then $\lambda=1$.

Let $K_{1}=Q_{0} \times Q_{1}$, where Q_{i} is a closed subset of K, for $i \in\{0,1\}$.

Theorem
Assume (IP), $\operatorname{Int}\left(C_{K}(z)\right) \cap C_{Q_{0}}(z) \neq \emptyset, \forall z \in \partial K \cap \partial Q_{0}$ and $C_{K}(y) \subset C_{Q_{1}}(y)$ for all $y \in \partial K \cap \partial Q_{1}$.
If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a triple $(\lambda, p(\cdot), \psi(\cdot))$ and $\bar{x}(1) \in \partial K$, then $\lambda=1$.

Assume $Q_{0}=$ If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a non-degenerate triple $(\lambda, p(\cdot), \psi(\cdot))$ and $\bar{x}(1) \in \partial K$, then

Let $K_{1}=Q_{0} \times Q_{1}$, where Q_{i} is a closed subset of K, for $i \in\{0,1\}$.

Theorem
Assume (IP), $\operatorname{Int}\left(C_{K}(z)\right) \cap C_{Q_{0}}(z) \neq \emptyset, \forall z \in \partial K \cap \partial Q_{0}$ and $C_{K}(y) \subset C_{Q_{1}}(y)$ for all $y \in \partial K \cap \partial Q_{1}$.
If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a triple $(\lambda, p(\cdot), \psi(\cdot))$ and $\bar{x}(1) \in \partial K$, then $\lambda=1$.

Assume $Q_{0}=\left\{x_{0}\right\},(I P)$ and $C_{K}(y) \subset C_{Q_{1}}(y)$ for every $y \in \partial K \cap \partial Q_{1}$. If $(\bar{x}(\cdot), \bar{u}(\cdot))$ is extremal for a non-degenerate triple $(\lambda, p(\cdot), \psi(\cdot))$ and $\bar{x}(1) \in \partial K$, then $\lambda=1$.

Lipschitz continuity of optimal trajectories under Tonelli's growth condition on L
Let $K_{1}:=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a compact subset of $\mathbb{R}^{n}, L \geq 0, \varphi \geq 0$. Suppose that the infimum in

$$
(\text { MIN }) \quad \inf \left\{\varphi(x(0), x(1))+\int_{0}^{1} L(t, x(t), u(t)) d t \mid x(\cdot) \in S_{[0,1]}^{K}\right\},
$$

is finite.
Assumption (G):
there exists a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\lim _{r \rightarrow+\infty} \frac{\phi(r)}{r}=+\infty$ and $L(t, x, u) \geq \phi(|f(t, x, u)|)$, for all $(t, x, u) \in[0,1] \times \mathbb{R}^{n} \times \mathcal{Z}$. Assumption (H):
i) f, L and φ are continuous, $U(\cdot)$ is lower semicontinuous;
ii) $\operatorname{Int}\left(C_{K}(x)\right) \cap C_{Q_{0}}(x) \neq \emptyset, \forall x \in \partial K \cap \partial Q_{0}$;
iii) for all $t \in[0,1], x \in K$, the set
$F(t, x):=\{(L(t, x, u)+\eta, f(t, x, u)) \mid u \in U(t), \eta \geq 0\}$ is closed and
convex;

Lipschitz continuity of optimal trajectories under Tonelli's growth condition on L
Let $K_{1}:=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a compact subset of $\mathbb{R}^{n}, L \geq 0, \varphi \geq 0$. Suppose that the infimum in

$$
(M I N) \quad \inf \left\{\varphi(x(0), x(1))+\int_{0}^{1} L(t, x(t), u(t)) d t \mid x(\cdot) \in S_{[0,1]}^{K}\right\},
$$

is finite.
Assumption (G):
there exists a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\lim _{r \rightarrow+\infty} \frac{\phi(r)}{r}=+\infty$ and $L(t, x, u) \geq \phi(|f(t, x, u)|)$, for all $(t, x, u) \in[0,1] \times \mathbb{R}^{n} \times \mathcal{Z}$.
Assumption (H):
f, L and φ are continuous, $U(\cdot)$ is lower semicontinuous;
ii) $\operatorname{Int}\left(C_{K}(x)\right) \cap C_{Q_{0}}(x) \neq \emptyset, \forall x \in \partial K \cap \partial Q_{0}$;
iii) for all $t \in[0,1], x \in K$, the set
$F(t, x):=\{(L(t, x, u)+\eta, f(t, x, u)) \mid u \in U(t), \eta \geq 0\}$ is closed and
convex;

Lipschitz continuity of optimal trajectories under Tonelli's

growth condition on L

Let $K_{1}:=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a compact subset of $\mathbb{R}^{n}, L \geq 0, \varphi \geq 0$. Suppose that the infimum in
$\left(\right.$ MIN) $\quad \inf \left\{\varphi(x(0), x(1))+\int_{0}^{1} L(t, x(t), u(t)) d t \mid x(\cdot) \in S_{[0,1]}^{K}\right\}$,
is finite.
Assumption (G):
there exists a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\lim _{r \rightarrow+\infty} \frac{\phi(r)}{r}=+\infty$ and $L(t, x, u) \geq \phi(|f(t, x, u)|)$, for all $(t, x, u) \in[0,1] \times \mathbb{R}^{n} \times \mathcal{Z}$.
Assumption (H):
i) f, L and φ are continuous, $U(\cdot)$ is lower semicontinuous;
ii) $\operatorname{Int}\left(C_{K}(x)\right) \cap C_{Q_{0}}(x) \neq \emptyset, \forall x \in \partial K \cap \partial Q_{0}$;
iii) for all $t \in[0,1], x \in K$, the set
$F(t, x):=\{(L(t, x, u)+\eta, f(t, x, u)) \mid u \in U(t), \eta \geq 0\}$ is closed and convex;

Theorem
Assume (G), (H), (IP) and some Lipschitz regularity of $L(t, \cdot, \cdot), f(t, \cdot, u), \varphi(\cdot, \cdot)$ for all $t \in[0,1], u \in U(t)$. Then the infimum is attained and every optimal trajectory $\bar{x}(\cdot)$ is Lipschitz Moreover, if \mathcal{Z} is a separable Banach space and $\forall R>0$

$$
\liminf _{\|u\| z \rightarrow \infty} \operatorname{ess} \inf _{t \in[0,1]} \inf _{x \in R B}|f(t, x, u)|=+\infty
$$

then every optimal control $\bar{u}(\cdot)$ is essentially bounded.

This is a generalization of a result of Frankowska and Marchini 2006
Our Inward pointing trajectory Theorems allow also to generalize results of Cannarsa, Frankowska and Marchini 2009

Theorem
Assume (G), (H), (IP) and some Lipschitz regularity of $L(t, \cdot, \cdot), f(t, \cdot, u), \varphi(\cdot, \cdot)$ for all $t \in[0,1], u \in U(t)$. Then the infimum is attained and every optimal trajectory $\bar{x}(\cdot)$ is Lipschitz Moreover, if \mathcal{Z} is a separable Banach space and $\forall R>0$

$$
\liminf _{\|u\| \mathcal{Z} \rightarrow \infty} \operatorname{ess} \inf _{t \in[0,1]} \inf _{x \in R B}|f(t, x, u)|=+\infty
$$

then every optimal control $\bar{u}(\cdot)$ is essentially bounded.

This is a generalization of a result of Frankowska and Marchini 2006

Our Inward pointing trajectory Theorems allow also to generalize results of Cannarsa, Frankowska and Marchini 2009

Theorem
Assume (G), (H), (IP) and some Lipschitz regularity of $L(t, \cdot, \cdot), f(t, \cdot, u), \varphi(\cdot, \cdot)$ for all $t \in[0,1], u \in U(t)$. Then the infimum is attained and every optimal trajectory $\bar{x}(\cdot)$ is Lipschitz Moreover, if \mathcal{Z} is a separable Banach space and $\forall R>0$

$$
\liminf _{\|u\| \mathcal{Z} \rightarrow \infty} \operatorname{ess} \inf _{t \in[0,1]} \inf _{x \in R B}|f(t, x, u)|=+\infty
$$

then every optimal control $\bar{u}(\cdot)$ is essentially bounded.

This is a generalization of a result of Frankowska and Marchini 2006
Our Inward pointing trajectory Theorems allow also to generalize results of Cannarsa, Frankowska and Marchini 2009

Sketch of the proof

Thanks to (G) and (H) we can use a theorem of Cesari to prove the existence of an optimal solution in $S_{[0,1]}^{K}$

Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be an optimal trajectory/control pair, thanks to (H) and (IP) a normal PMP holds (cf. Vinter + our normality results)
$\left\langle p(t)+\psi^{\prime}(t), \bar{x}^{\prime}(t)\right\rangle-L\left(t, \bar{x}(t), \bar{u}^{\prime}(t)\right)=H^{\prime}\left(t, \bar{x}(t), p(t)+\psi^{(}(t)\right)$ a.e.

Continuity of f, L and the lower semicontinuity of $U(\cdot)$ and (G) imply that H is lower semicontinuous, hence locally bounded from below

H locally bounded from below and $(\mathrm{G}) \Rightarrow \bar{x}^{\prime}(\cdot)$ bounded $\Rightarrow \bar{x}(\cdot)$ Lipschitz

Sketch of the proof

Thanks to (G) and (H) we can use a theorem of Cesari to prove the existence of an optimal solution in $S_{[0,1]}^{K}$

Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be an optimal trajectory/control pair, thanks to (H) and (IP) a normal PMP holds (cf. Vinter + our normality results)

$$
\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-L(t, \bar{x}(t), \bar{u}(t))=H(t, \bar{x}(t), p(t)+\psi(t)) \quad \text { a.e. }
$$

Continuity of f, L and the lower semicontinuity of $U(\cdot)$ and (G) imply that H is lower semicontinuous, hence locally bounded from below

Sketch of the proof

Thanks to (G) and (H) we can use a theorem of Cesari to prove the existence of an optimal solution in $S_{[0,1]}^{K}$

Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be an optimal trajectory/control pair, thanks to (H) and (IP) a normal PMP holds (cf. Vinter + our normality results)

$$
\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-L(t, \bar{x}(t), \bar{u}(t))=H(t, \bar{x}(t), p(t)+\psi(t)) \quad \text { a.e. }
$$

Continuity of f, L and the lower semicontinuity of $U(\cdot)$ and (G) imply that H is lower semicontinuous, hence locally bounded from below

H locally bounded from below and $(G) \Rightarrow \bar{x}^{\prime}(\cdot)$ bounded $\Rightarrow \bar{x}(\cdot)$ Lipschitz

Sketch of the proof

Thanks to (G) and (H) we can use a theorem of Cesari to prove the existence of an optimal solution in $S_{[0,1]}^{K}$

Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be an optimal trajectory/control pair, thanks to (H) and (IP) a normal PMP holds (cf. Vinter + our normality results)

$$
\left\langle p(t)+\psi(t), \bar{x}^{\prime}(t)\right\rangle-L(t, \bar{x}(t), \bar{u}(t))=H(t, \bar{x}(t), p(t)+\psi(t)) \quad \text { a.e. }
$$

Continuity of f, L and the lower semicontinuity of $U(\cdot)$ and (G) imply that H is lower semicontinuous, hence locally bounded from below

H locally bounded from below and $(G) \Rightarrow \bar{x}^{\prime}(\cdot)$ bounded $\Rightarrow \bar{x}(\cdot)$ Lipschitz

Variational Equation

Let $K_{1}=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a closed subset of K
Theorem
Assume (IP), f differentiable w.r.t. x and for some integrable $k:[0,1] \rightarrow \mathbb{R}_{+}, f(t, \cdot, u)$ is $k(t)$-Lipschitz for all $t \in[0,1], u \in U(t)$. Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair and

$$
\operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0)) \neq \emptyset
$$

Then every solution $w(\cdot)$ of the viability problem

$$
\left\{\begin{array}{l}
w^{\prime}(t) \in \frac{\partial f}{\partial x}(t, \bar{x}(t), \bar{u}(t)) w(t)+\mathcal{T}(t) \text { for a.e. } t \in[0,1] \\
w(t) \in C_{K}(\bar{x}(t)) \quad \forall t \in[0,1] \\
w(0) \in C_{Q_{0}}(\bar{x}(0)),
\end{array}\right.
$$

is an element of the contingent cone to $S_{[0,1]}^{K}$ at $\bar{x}(\cdot)$.

Variational Equation

Let $K_{1}=Q_{0} \times \mathbb{R}^{n}$, where Q_{0} is a closed subset of K
Theorem
Assume (IP), f differentiable w.r.t. x and for some integrable $k:[0,1] \rightarrow \mathbb{R}_{+}, f(t, \cdot, u)$ is $k(t)$-Lipschitz for all $t \in[0,1], u \in U(t)$. Let $(\bar{x}(\cdot), \bar{u}(\cdot))$ be a viable trajectory/control pair and

$$
\operatorname{Int}\left(C_{K}(\bar{x}(0))\right) \cap C_{Q_{0}}(\bar{x}(0)) \neq \emptyset
$$

Then every solution $w(\cdot)$ of the viability problem

$$
\left\{\begin{array}{l}
w^{\prime}(t) \in \frac{\partial f}{\partial x}(t, \bar{x}(t), \bar{u}(t)) w(t)+\mathcal{T}(t) \text { for a.e. } t \in[0,1] \\
w(t) \in C_{K}(\bar{x}(t)) \quad \forall t \in[0,1] \\
w(0) \in C_{Q_{0}}(\bar{x}(0)),
\end{array}\right.
$$

is an element of the contingent cone to $S_{[0,1]}^{K}$ at $\bar{x}(\cdot)$.

This results can be used to prove the normal PMP in a direct way.
[1] H. Frankowska. Normality of the maximum principle for absolutely continuous solutions to Bolza problems under state constraints. Control Cybernet., 38(4B):1327-1340, 2009.
[2] H. Frankowska and E. M. Marchini. Lipschitzianity of optimal trajectories for the Bolza optimal control problem. Calc. Var. Partial Differential Equations, 27(4):467-492, 2006.
[3] H. Frankowska and D. Tonon. Inward pointing trajectories, normality of the maximum principle and the non occurrence of the Lavrentieff phenomenon in optimal control under state constraints. Submitted.

For every $R>0, \exists C_{R}>0$ such that, for any $t \in[0,1]$, $x_{1}, x_{2}, y_{1}, y_{2} \in R B \cap K$ and any $u \in U(t)$,
i1) $\left|\varphi\left(x_{1}, y_{1}\right)-\varphi\left(x_{2}, y_{2}\right)\right| \leq C_{R}\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right)$,
i2) $\left|L\left(t, x_{1}, u\right)-L\left(t, x_{2}, u\right)\right| \leq C_{R}\left|x_{1}-x_{2}\right|\left[1+L\left(t, x_{1}, u\right) \wedge L\left(t, x_{2}, u\right)\right]$,
i3) $\left|f\left(t, x_{1}, u\right)-f\left(t, x_{2}, u\right)\right| \leq$
$C_{R}\left|x_{1}-x_{2}\right|\left[1+\left|f\left(t, x_{1}, u\right)\right| \wedge\left|f\left(t, x_{2}, u\right)\right|+L\left(t, x_{1}, u\right) \wedge L\left(t, x_{2}, u\right)\right] ;$

