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The fundamental problem of the Calculus of Variations

The classical variational problem is formulated as follows:
minimize (or maximize) the functional

J (x) =

∫ b

a
L(t , x(t), x ′(t)) dt

on D = {x ∈ C1([a,b]) : x(a) = xa, x(b) = xb},
where L : [a,b]× R2n → R is twice continuously differentiable.

In Mechanics:

function L is called the Lagrangian;
functional J is called the Action.
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Necessary Optimality Condition

Theorem (The Euler–Lagrange equation)
If x gives a (local) minimum (or maximum) to J on D, then

d
dt
∂3L

(
t , x(t), x ′(t)

)
= ∂2L

(
t , x(t), x ′(t)

)
for all t ∈ [a,b].

In Mechanics: if the Lagrangian L does not depend explicitly on t ,
then the energy

E(x) := −L(x , x ′) + ∂3L(x , x ′) · x ′

is constant along physical trajectories x (along the solutions of the
Euler–Lagrange equations).
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Classical Example from Mechanics

Consider a particle of mass m, and let x : R→ R3 denote the
trajectory of this particle.
Define the Lagrangian to be the difference between the kinetic
and potential energies:

L(t , x , x ′) := T (x)− V (x) =
1
2

m‖x ′‖2 − V (x)

The action of the trajectory from time a to b is the integral

J (x) =

∫ b

a
L(t , x(t), x ′(t)) dt .

Hamilton’s Principle of Least Action
asserts that particles follow trajectories which minimize the action.
Therefore, the solutions of the Euler–Lagrange equations give the
physical trajectories.
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Discrete embedding of the Euler–Lagrange equations

The Euler–Lagrange equations give Newton’s second law:

m
d2x i

dt2 = −∂V
∂x i

Let us consider the usual discretization of a function

f : t ∈ [a,b] ⊂ R 7→ f (t) ∈ R

denote by h = (b − a)/N the step of discretization;
consider the partition tk = a + kh, k = 0, . . . ,N, of [a,b];
let F = {fk := f (tk )}k=0,...,N ;
substitute the differential operator d

dt by ∆+ or ∆−:

∆+(F) =

{
fk+1 − fk

h
, 0 ≤ k ≤ N − 1 , 0

}
∆−(F) =

{
0,

fk − fk−1

h
, 1 ≤ k ≤ N

}
.
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Numerical scheme

The discrete version of the Euler–Lagrange equation obtained by
the direct embedding is

xk+2 − 2xk+1 + xk

h2 m +
∂V
∂x

(xk ) = 0, k = 0, . . . ,N − 2,

where N = b−a
h and xk = x(a + kh).

This numerical scheme is of order one: we make an error of order
h at each step, which is of course not good.

We can do better!
All Lagrangian systems possess a variational structure, i.e., their
solutions correspond to critical points of a functional and this
characterization does not depend on the system coordinates. This
induces strong constraints on solutions, for example the conservation
of energy for autonomous classical Lagrangian systems:
E(x) = T (x) + V (x) = const .
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The Search for a Perpetual Motion Machine

Generations of inventors have tried to create a machine, called a
perpetual motion machine, that would run forever without fuel:

such a machine is not forbidden by Newton’s laws!
the principle of inertia seems even to encourage the belief that a
cleverly constructed machine might run forever!

=⇒ The magnet draws the ball to the
top of the ramp, where it falls through
the hole and rolls back to the bottom.

=⇒ As the wheel spins clockwise, the flexible
arms sweep around and bend and unbend. By
dropping off its ball on the ramp, the arm is sup-
posed to make itself lighter and easier to lift over
the top. Picking its own ball back up again on the
right, it helps to pull the right side down.

Delfim F. M. Torres (delfim@ua.pt) The Fractional Optimal Control SADCO, Ravello, Sept 2012 7 / 48



Today, a little longer than yesterday

Innumerable perpetual motion machines have been proposed.
The reason why these machines don’t work is always the same:
friction corrupts conservation of energy

Earth: an almost perfect perpetual motion machine
Rotating earth might seem a perfect perpetual motion machine, since
it is isolated in the vacuum of outer space with nothing to exert
frictional forces on it. But in fact our planet’s rotation has slowed
drastically since it first formed, and the earth continues to slow its
rotation, making today just a little longer than yesterday. The very
subtle source of friction is the tides. The moon’s gravity raises bulges
in earth’s oceans, and as the earth rotates the bulges progress around
the planet. Where the bulges encounter land, there is friction, which
slows earth’s rotation very gradually.
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Nonconservative systems

For conservative systems, variational methods are equivalent to
the original used by Newton. However, while Newton’s equations
allow nonconservative forces, the later techniques of Lagrangian
and Hamiltonian mechanics have no direct way to dealing with
them.
Let us recall the classical problem of linear friction:

m
d2x
dt2 + γ

dx
dt
− ∂U
∂x

= 0, γ > 0.

What is the associated variational problem?
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Bauer’s theorem

In 1931, Bauer proved that it is impossible to use a variational
principle to derive a single linear dissipative equation of motion
with constant coefficients.
Bauer’s theorem expresses the well-known belief that there is no
direct method of applying variational principles to nonconservative
systems, which are characterized by friction or other dissipative
processes.
Lanczos: “Forces of a frictional nature... are outside the realm of
variational principles.”

The techniques of Lagrangian and Hamiltonian mechanics, which are
derived from variational principles, thus appears to be out of reach.
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Mechanics with fractional derivatives

The proof of Bauer’s theorem relies on the tacit assumption that
all derivatives are of integer order.
If a Lagrangian is constructed using fractional (non-integer order)
derivatives, then the resulting equation of motion can be
nonconservative.

F. Riewe, Nonconservative Lagrangian and Hamiltonian
mechanics, Phys. Rev. E (3) 53 (1996), no. 2, 1890–1899.

F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E (3) 55
(1997), no. 3, part B, 3581–3592.

Fractional Calculus of Variations
Because most processes observed in the physical world are
nonconservative, it is important to be able to apply the power of
variational methods to such cases.
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Riewe’s approach

Consider the Lagrangian

L =
1
2

m
(

dx
dt

)2

− U(x) +
1
2
γ

(
tD

1
2
b x
)2

.

Using the fractional variational principle we obtain

∂L
∂x

+ aD
1
2
t

∂L

∂tD
1
2
b x
− d

dt
∂L
∂x ′

= 0

which becomes

m
d2x
dt2 + γ

dx
dt
− ∂U
∂x

= 0

In order to obtain this casual equation Riewe suggests considering an
infinitesimal time interval, that is the limiting case a→ b, while keeping
a < b.
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Dreisigmeyer & Young approach

D.W. Dreisigmeyer and P. M. Young

L =
1
2

maD1
t x tD1

bx − U(x) +
1
2
γaD

1
2
t x tD

1
2
b x

D. W. Dreisigmeyer and P. M. Young, Nonconservative Lagrangian
mechanics: a generalized function approach, J. Phys. A 36 (2003),
no. 30, 8297–8310.

D. W. Dreisigmeyer and P. M. Young, Extending Bauer’s corollary to
fractional derivatives, J. Phys. A 37 (2004), no. 11, L117–L121.
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Other approaches

M. Klimek
L = 2m(D2x)2 − U(x) + γ(Dx)2

where D := 1
2

(
aD

1
2
t + tD

1
2
b

)
.

M. Klimek, Fractional sequential mechanics—models with symmetric
fractional derivative, Czechoslovak J. Phys. 51 (2001), no. 12,
1348–1354.

J. Cresson, FVC with

Dα,β
µ :=

1
2

(
aDα

t − tD
β
b

)
+

iµ
2

(
aDα

t + tD
β
b

)

J. Cresson, Fractional embedding of differential operators and
Lagrangian systems, J. Math. Phys. 48 (2007), no. 3, 033504, 34 pp.
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The Book

Agnieszka B. Malinowska and Delfim F. M. Torres,
Introduction to the Fractional Calculus of Variations,
Imperial College Press, London &
World Scientific Publishing, Singapore (2012).
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Fractional Differentiation

The name of the game
fractional derivatives means “derivatives of arbitrary order”.

Its origin goes back more than 300 years, when in 1695 L’Hopital
asked Leibniz the meaning of dny

dxn for n = 1
2 .

After that, many famous mathematicians, like J. Fourier,
N. H. Abel, J. Liouville, B. Riemann, among others, contributed to
the development of the Fractional Calculus.
The theory of derivatives and integrals of arbitrary order took more
or less finished form by the end of the XIX century.
The theory is very rich: fractional differentiation may be introduced
in several different ways – fractional derivatives of
Riemann-Liouville; Grünwald-Letnikov; Caputo; Miller-Ross.
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From Theory to Practice

Fractional Calculus had its origin in the 1600s
For three centuries the theory of fractional derivatives developed
as a pure theoretical field of mathematics, useful only for
mathematicians.
In the last few decades, fractional differentiation proved very
useful in various fields: physics (classic and quantum mechanics,
thermodynamics, etc), chemistry, biology, economics,
engineering, signal and image processing, and control theory.

I recommend
I refer to the web site of Podlubny:

http://people.tuke.sk/igor.podlubny/fc_
resources.html

Delfim F. M. Torres (delfim@ua.pt) The Fractional Optimal Control SADCO, Ravello, Sept 2012 17 / 48

http://people.tuke.sk/igor.podlubny/fc_resources.html
http://people.tuke.sk/igor.podlubny/fc_resources.html


Fractional Differentiation is alive!

Several international conferences on the subject:

IFAC Workshop on Fractional Derivative and Applications (IFAC
FDA2010), held in University of Extremadura, Badajoz, Spain,
October 18-20, 2010.
The 5th Workshop on Fractional Differentiation and its
Applications (FDA’2012), May 14-17 2012, Hohai University,
Nanjing, China.
The sixth FDA workshop, FDA’2013 (FDA : Fractional
differentiation and its Applications) will be held in Grenoble,
France, February 4-6, 2013
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Fractional Differentiation is alive!

Several specialized journals on the subject:

1 Fractional Calculus & Applied Analysis
2 Fractional Dynamic Systems
3 Communications in Fractional Calculus
4 Journal of Fractional Calculus and its Applications

J.T. Machado, V. Kiryakova, F. Mainardi, Recent History of Fractional
Calculus, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), no. 3,
1140–1153.
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Let us begin from the beginning

We are all familiar with the idea of derivatives. The usual notation:

df (x)

dx
= D1f (x) ,

d2f (x)

dx2 = D2f (x) .

We are also familiar with properties like

D1[f (x) + g(x)] = D1f (x) + D1g(x) .

But what would be the meaning of notation like

d1/2f (x)

dx1/2 = D1/2f (x) ?
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Several giants toyed with the idea

The notion of derivative of order 1/2 (fractional derivative) was
discussed briefly as early as the XVIII century by Leibniz.
Other giants of the past including L’Hopital, Euler, Lagrange,
Laplace, Riemann, Fourier, Liouville, and others toyed with the
idea.
Let us toy also a little with it :)
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FDs of exponential function (Liouville, 1832)

We are familiar:

D1eλx = λeλx , D2eλx = λ2eλx , . . . Dneλx = λneλx ,

when n is an integer. Why not to replace n by 1/2 and write

D1/2eλx = λ1/2eλx ?

Why not go further and let n be an irrational number like
√

2 or a
complex number like 1 + i? We will be bold and write

Dαeλx = λαeλx (exp)

for any value of α, integer, rational, irrational, or complex.

If a definition of FD is found, we expect (exp) to follow from it. Liouville
used this approach.
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Meaning of (exp) when α ∈ Z−

We naturally want
eλx = D1

(
D−1

(
eλx
))

.

Since eλx = D1 ( 1
λeλx), we have

D−1
(

eλx
)

=
1
λ

eλx =

∫
eλxdx .

Similarly,

D−2
(

eλx
)

=

∫ ∫
eλxdxdx .

So it is reasonable to interpret Dα when α is a negative integer −n and
the nth iterated integral.

Dα represents a derivative if α is a positive real number, and an
integral if α is a negative real number.
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Examples

Let f (x) = e2x , 0 < α < 1. Then Dα(e2x ) = 2αe2x . We see that

D0 (f (x)) = f (x) ≤ Dα (f (x)) ≤ D1 (f (x))

Let f (x) = e
1
3 x , 0 < α < 1. Then Dα(1

3x) =
(1

3

)α
e

1
3 x . We see that

D1 (f (x)) ≤ Dα (f (x)) ≤ D0 (f (x))
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Trigonometric functions: sine and cosine

We are familiar with the derivatives of the sine function. Each time we
differentiate, the graph is shifted π

2 to the left:

D0 sin x = sin x ,

D1 sin x = cos x = sin
(

x +
π

2

)
D2 sin x = − sin x = sin

(
x + 2

π

2

)
...

Dn sin x = sin
(

x + n
π

2

)
As before, we will replace the positive integer n with an arbitrary α:

Dα sin x = sin
(

x + α
π

2

)
, Dα cos x = cos

(
x + α

π

2

)
. (sin)
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Derivatives of xp (Lacroix, 1819)

We now look at derivatives of powers of x :

D0xp = xp , D1xp = pxp−1 , D2xp = p(p − 1)xp−2

...

Dnxp = p(p − 1) · · · (p − n + 1)xp−n =
p!

(p − n)!
xp−n =

Γ(p + 1)

Γ(p − n + 1)
xp−n .

The gamma function gives meaning to factorial for real numbers, so for
any α we put

Dαxp =
Γ(p + 1)

Γ(p − α + 1)
xp−α . (power)
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Example

Using equation (power) for the constant function f (x) ≡ 1, we have for
0 < α < 1 that

Dα(1) =
Γ(1)

Γ(1− α)
x−α

The FD of a constant is not equal to zero for 0 < α < 1. However, we
have agreement with classical calculus:

α→ 1⇒ Γ(1− α)→ +∞⇒ D1(1) = 0
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Remark

By plotting a discrete number of derivatives Dα(1) between D0(1) and
D1(1) (use, for example, Excel!) an interesting picture is obtained:

There is a continuous deformation of a polynomial via fractional
derivatives between 0 and 1.

“If we sketch the half derivative its graph will be about half way
between the function and its 1st derivative.”
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Didactics

Illustration of the transition from function to first derivative via fractional
derivatives in Excel:

D. A. Miller and S. J. Sugden, Insight into the fractional calculus via a
spreadsheet, Spreadsheets in Education, Vol. 3, No. 2, 2009, Article 4.
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Our 1st attempt to define fractional derivative

With (power) we can extend the idea of a fractional derivative to a large
number of functions. Given any function that can be expanded in a
Taylor series in powers of x ,

f (x) =
+∞∑
n=0

anxn ,

and assuming we can differentiate term by term we get

Dαf (x) =
+∞∑
n=0

anDαxn =
+∞∑
n=0

an
Γ(n + 1)

Γ(n − α + 1)
xn−α . (Liouville)

Expression (Liouville) presents itself as a possible candidate for the
definition of the fractional derivative for the wide variety of functions
that can be expanded in a Taylor’s series in powers of x . However...
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A mysterious contradiction

We wrote
Dαex = ex . (1)

Let us now compare this with our definition (Liouville) to see if they
agree. From the Taylor series,

ex =
+∞∑
n=0

1
n!

xn

and our definition (Liouville) gives

Dαex =
+∞∑
n=0

xn−α

Γ(n − α + 1)
(2)

The expressions (1) and (2) do not match!
We have discovered a contradiction that historically has caused
great problems (controversy between 1835 and 1850).
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Iterated Integrals

We could write D−1f (x) =
∫

f (x)dx , but the right-hand side is
indefinite. Instead, we will write

D−1f (x) =

∫ x

0
f (t)dt .

The second integral will then be

D−2f (x) =

∫ x

0

∫ t2

0
f (t1)dt1dt2 .

The region of integration is a triangle, and if we interchange the order
of integration, we can write the iterated integral as a single integral
(method of Dirichlet, 1908):

D−2f (x) =

∫ x

0

∫ x

t1
f (t1)dt2dt1 =

∫ x

0
f (t1)

∫ x

t1
dt2dt1 =

∫ x

0
f (t1)(x − t1)dt1 .
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Writing iterated integrals as a single integral (Dirichlet)

Using the same procedure we can show that

D−3f (x) =
1
2

∫ x

0
f (t)(x − t)2dt ,

D−4f (x) =
1

2 · 3

∫ x

0
f (t)(x − t)3dt

and, in general,

D−nf (x) =
1

(n − 1)!

∫ x

0
f (t)(x − t)n−1dt .

Now, as we have previously done, let us replace the n with an arbitrary
α and the factorial with the gamma function...
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Our 2nd attempt to define fractional derivative

... replacing n by α, factorial by gamma function:

D−αf (x) =
1

Γ(α)

∫ x

0
f (t)(x − t)α−1dt . (Riemann)

Remark: we have a definition of fractional integral
As t → x , x − t → 0. The integral diverges for every α ≤ 0; when
0 < α < 1 the improper integral converges.
Since (Riemann) converges only for positive α, it is truly a
fractional integral.
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Lower limit and the Riemann-Liouville integral

The choice of zero for the lower limit was arbitrary. The lower limit
could just as easily have been a.
Many people who work in the field use the notation aDα

x f (x)
indicating limits of integration going from a to x . With this notation
we have:

Riemann-Liouville integral

aD−αx f (x) =
1

Γ(α)

∫ x

a
f (t)(x − t)α−1dt .
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The importance of notation cannot be minimized

We are not surprised that fractional integrals involve limits,
because integrals involve limits.
Since ordinary derivatives do not involve limits of integration, we
were not expecting fractional derivatives to involve such limits!
We think of derivatives as local properties of functions.
The fractional derivative symbol Dα incorporates both derivatives
(positive α) and integrals (negative α).

Integrals are between limits, it turns out that fractional derivatives are
between limits too.
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What went wrong before

The reason for the contradiction is that two different limits of
integration were being used!
We have

aD−1
x eλx =

∫ x

a
eλtdt =

1
λ

eλx − 1
λ

eλa

We get the form we want when 1
λeλa = 0, i.e., when λa = −∞.

If λ is positive, then a = −∞:

Weyl fractional derivative

−∞Dα
x eλx = λαeλx
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What limits will work for the FD of xp?

We have

aD−1
x xp =

∫ x

a
tpdt =

xp+1

p + 1
− ap+1

p + 1
.

Again, we want ap+1

p+1 = 0. This will be the case when a = 0. We
conclude that (power) should be written in the more revealing notation

0Dα
x xp =

Γ(p + 1)

Γ(p − α + 1)
xp−α .

The mystery solved

First we calculated −∞Dα
x eλx ; the second time we calculated 0Dα

x eλx .
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Fractional Integrals and Derivatives
(Riemann-Liouville)

Fractional integral of f of order α:

aD−αx f (x) =
1

Γ(α)

∫ x

a
f (t)(x − t)α−1dt , α > 0 .

Let α > 0 and let m be the smallest integer exceeding α. Then we
define the fractional derivative of f of order α as

aDα
x f (x) =

dm

dxm

[
aD−(m−α)x f (x)

]
=

1
Γ(m − α)

dm

dxm

∫ x

a
f (t)(x − t)m−α−1dt .

FD of integer order is the ordinary derivative

If α = n ∈ N, then m = n + 1 and aDn
x f (x) = dn

dxn f (x).
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Fractional Models and Dynamical Love

When one wants to include memory effects, i.e., the influence of
the past on the behavior of the system at present time, one may
use fractional derivatives to describe such effect.
Fractional models have been shown by many researchers to
adequately describe the operation of a variety of physical,
engineering, and biological processes and systems.
Such models are represented by differential equations of
non-integer order.

Applications include also psychological and life sciences
W. M. Ahmad and R. El-Khazali, Fractional-order dynamical models of
love, Chaos Solitons Fractals 33 (2007), no. 4, 1367–1375.
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Fractional Optimal Control

Fractional Optimal Control is a 16 years old subject: was born in
1996 with the works of Riewe.

My first works on the subject
G. S. F. Frederico and D. F. M. Torres,
A formulation of Noether’s theorem
for fractional problems of the calculus of variations,
J. Math. Anal. Appl. 334 (2007), no. 2, 834–846.
G. S. F. Frederico and D. F. M. Torres,
Fractional conservation laws in optimal control theory,
Nonlinear Dynam. 53 (2008), no. 3, 215–222.
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Fractional Noether’s Theorem in Lagrangian form

Theorem (Frederico & Torres, 2007)
If the fractional functional

I[q(·)] =

∫ b

a
L (t ,q(t), aDα

t q(t)) dt

is invariant under a symmetry t̄ = t + ετ(t ,q) + o(ε),
q̄(̄t) = q(t) + εξ(t ,q) + o(ε), then

[L (t ,q, aDα
t q)− α∂3L (t ,q, aDα

t q) · aDα
t q] τ(t ,q)

+ ∂3L (t ,q, aDα
t q) · ξ(t ,q)

is a fractional constant of motion.
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Hamiltonian form

Dα {[H− (1− α) p(t) · aDt
αq(t)] τ − p(t) · ξ} = 0

For autonomous problems, it follows from our fractional Noether’s
theorem that

H− (1− α) p(t) · aDt
αq(t) (3)

is a fractional constant of motion.

Non-fractional case: α = 1
In the classical framework of optimal control theory α = 1 and we then
get from (3) the well known fact that the Hamiltonian is a preserved
quantity along any extremal (conservation of energy in Mechanics).
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Fractional Optimal Control

While various fields of application of fractional derivatives are
already well established, some are under strong current progress:
this is the case of fractional optimal control, even in the particular
case of fractional calculus of variations.
The study of fractional problems of the Calculus of Variations and
respective Euler-Lagrange type equations is a subject of current
strong research.

The Fractional Optimal Control
has born in 1996-1997 with the work of F. Riewe: he obtained a
version of the Euler-Lagrange equations for problems of the Calculus
of Variations with fractional derivatives, combining the conservative
and non-conservative cases.
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Conclusion

During the last two decades, fractional differential equations have
increasingly attracted the attention of many researchers: many
mathematical problems in science and engineering are
represented by these kinds of equations.
FC is a useful tool for modeling complex behaviours of physical
systems from diverse domains such as mechanics, electricity,
chemistry, biology, economics, and many others.
Science Watch of Thomson Reuters identified this area as an
Emerging Research Front.

The study of fractional variational problems is a subject of strong
current study because of its numerous applications.
The fractional theory of optimal control is in its childhood so that
much remains to be done.
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Thank you very much for your attention!
Delfim F. M. Torres
http://www.researcherid.com/rid/A-7682-2008
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