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Outline of the Talk

@ Relaxation

@ The occurence of an infimum gap

@ Condition for existence of an infimum gap

@ Implications for necessary conditions of optimality

@ Concluding Remarks

(Joint work with Michele Palladino, ESR)
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The Optimal Control Problem

Consider

Minimize g(x(0), x(1))
over absolutely continuous functions x(.) : [0,1] — R”
satisfyin
(P) ying
x(t) € F(t,x(1)) ae.,
x(0)=xo and (x(0),x(1)) e C,

Data: g: R” — R, xo € R, a closed set C C R” x R" and a
multifunction F(.,.) : [0,1] x R" ~ R".

State trajectory x(.) : W' function s.t. x(t) € F(t, x(t)), a.e.,
x(0) = xo

x(.) is feasible if x(1) € C.
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X(.) is a minimizer if
g(x(0),x(1)) = g((x(0), x(1)))

for all state trajectories x(.).

X(.) is a strong local minimizer if, for some ¢ > 0,

g(x(0),x(1)) = g((x(0),x(1)))

for all state trajectories x(.) such that ||x(.) — X(.)||r~ <.
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Standing Hypotheses

(H1) : F(t,x) is closed for all (t, x) and F(., x) is measurable.

(H2) : For given R > 0, there exist e > 0, k(.) € L' and ¢(.) € L" such
that

F(t,x) C F(t,x')+k(t)|x —x'|B and F(t, x) C c(t)B

forall x,x' € RB, a.e. t € [0, 1].

Fact: Assume (H1) and (H2). Suppose the set of feasible state
trajectories is non-empty and bounded, and

(C): F(t,x)is convex for all (¢, x).

Then there exists a minimizer.
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Relaxation

Relaxation:

‘Enlarge the space of state trajectories to guarantee existence of
minimizers’
Relaxed Problem:

Minimize g(x(1))
g ) overx(.):[0,1] € Wit s.t.
(R) N () e co F(t x(1)) ae.,
x(0)=x and x(1)) € C,

( Refer to relaxed state trajectories, relaxed minimizers, etc. ).

Fact: Assume (H1) and (H2). Suppose the set of feasible relaxed
state trajectories is non-empty and bounded.

Then there exists a relaxed minimizer.

( Relaxed problem automatically has a convex velocity set
co F(t, x)).
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Relaxation Theorem

Relaxation Theorem:

Take any relaxed state trajectory x(.) and € > 0.
Then there exist a state trajectory x(.) such that

[1IX() = X( )l <€

Caution: x(.) and X(.) close, but their velocities can be very different!

Strategy for finding sub-optimal state trajectory:
Step 1: Solve relaxed problem (it has a solution)

Step 2: Approximate relaxed minimizer by a neigboring state trajectory
(possible by relaxation theorem)
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Geometric Interpretation

Define Reachable Set:
R = {(x(0),x(1)) | x(.) is a feasible state trajectory },
R relaxed ‘= 1(x(0), x(1)) | x(.) is a feasible relaxed state trajectory }

From Relaxation Thm:

Rrelaxed = R -

We have

inf(P) = inf{g(xo0, x1)| (X0, X1) € RN C},

inf(R) = inf{g(xo, x1) | (X0, %) € RN C}
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The Infimum Gap

in general
inf(R) < inf(P).

Important to identify situations when there is an infimum gap:
inf(R) < inf(P) (strict inequality!)

because then

@ Feasible trajectories cannot be closely approximated by feasible
relaxed trajectories

@ The dynamic programming methods yields only the relaxed
infimum, not the ‘true’ infimum

@ Numerical methods are often ill-conditioned when there is an
infimum gap
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The Infimum Gap

1 Reachable set

o7 ‘:\minimizer

relaxed minimizer

Occurence of an infimum gap
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Link with Multiplier Abnormality

There is a relation between infimum gaps and abnormality of
Lagrange multipliers.

Consider the finite dimensional optimization problem:

(Py) Minimize g(x)
V' st h(x)<0 and xe C
and its relaxation (replace {x|h(x) < 0} by closed set {x|h(x) < 0}):

R Minimize g(x)
(R1) | st h(x) <0 and xe C

(Data: h(.) : R” — R, g(.) : R” — R, Lipschitz functions)
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Finite Dimensional Case

Fact: Suppose there exists § > 0, ¢ > 0 and x such that

X is feasible for (Ry) and

g(x) < inf{g(x)| h(x) < 0and x € C}.

Then
0 € 0.9g(x) + 0h(x) + N¢(X)

i.e. infimum gap implies abnormal multiplier rule
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‘X has cost strictly less than infimum cost over unrelaxed points x’ implies

(S): If x; — X and h(x;) < 0 for all i, then

x; ¢ C for all i sufficiently large.

Take ¢; — 0 and consider:
(P;) Minimize {J;(x) := (h(x + ¢€;))dc(x) | x € R} .
For each i, x is a minimizer. So by Ekeland’s Theorem there exists x; such that:
1) X minimizes — J;(x) + €'/?|x — x;|, and
2) Ix — x| < /2
But, by (S), ‘h(x))+€6 <0 = ‘do(x5)>0
for i sufficietly large. Use this to show

0 € 0.99(x)+ 0h(x;) + Nc(X) + ‘error term’

Pass to limit . .
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Necessary Conditions of Optimality

It is possible to reformulate (P) as a generalized problem in the Calculus of Variations:

Minimize [J L(t, x(t), X(t))dt + g(x(0), x(1))
over x(.) € WhH' st (x(0),x(1)) € C,
where )
) = { Qe BVEFEY.

Write Hamiltonian:
H(t,x,p) = sup{e p|e € F(t,x)}

Nonsmooth analysis approaches have validated generalization of the classical
necessary conditions:

(p(t), p(1)) = Vx,pL(t, x(t), p(t)) (The Euler Lagrange condition)
and

(=p(1), X(t)) = Vx,pH(t,X(t), p(t)) (Hamilton’s condition)
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Generalized Euler Lagrange Condition

Theorem (Euler Lagrange Inclusion, loffe/Rockafellar 1996)

Let x be a strong local minimizer. Assume (H1) and (H2).
Then there exists p(.) € W' and A > 0 such that
(p(.),A) # 0
p(t) € 00 {q|(a, P(1)) € Ngrr(,(X(D).X(1), } ace.
p(t)- X(t) = sup{p(t)-ele e F(t,X)(1)} ae.
(p(0), —p(1)) € A9g(x(0),X(1))) + Nc(x(0), X(1)).
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Generalized Hamiltian Inclusion

Theorem (Generalized Hamiltonian Inclusion, Clarke 1973)
Let x be a strong local minimizer. Assume (H1) and (H2) and
F(t, x) is convex for all (t, x)
Then there exists p(.) € W'! and A > 0 such that
(P(.).A) # 0
(—=p(t), X(1)) € codH(t, X(t)). p(1)(1). } a.e.
(p(0), —p(1)) € A9g(x(0),X(1))) + Nc(x(0), X(1)) -

The Generalized Hamiltonian Inclusion condition is valid also
for non-convex F(.,.)’s (Clarke, 2005)
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Partially Convexified Hamiltonian Inclusion

Theorem (Euler Lagrange Inclusion, Loewen/Rockafellar
1996)

Let x be a strong local minimizer. Assume (H1) and (H2), and
(C) f(t, x) is convex
Then there exists p(.) € W'! and A\ > 0 such that

(p(.),A) # O

—p(t) € co{q|(q, X(1)) € DxpH(t, X(t), X(1))} ace.

(p(0), —p(1)) € A9g(x(0),X(1))) + Nc(x(0), X(1)).-

Open question: True without hypothesis (C)?
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Conditions for an Infimum Gap (1)

Theorem A, Palladino/Vinter

Let X(.) be a strong local minimizer. Assume (H1) and (H2). Assume also
that, for each € > 0, there exists a feasible relaxed trajectory x(.) such that

9(x(0),x(1)) < g(x(0),x(1)) and [|x(.) = X(.)[| <€
Then there exists p(.) € W"' and such that
p(.) # 0
(—p(t), X(t)) € codH(t, X(1)), p(t)(t),} a.e.
(p(0), =p(1)) € 0.99(x(0), X(1)) + Ne(x(0), X(1)) -

“a strong local minimizer which is not also a strong local relaxed minimizer is
an abnormal extremal (w.r.t. the Hamiltonian Inclusion)”

(loffe 1996 proved related theorem for a W' infimum gap - strongr
hypotheses.)
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Conditions for an Infimum Gap (2)

Theorem B, Palladino/Vinter
Let x(.) be a feasible relaxed trajectory. Assume (H1) and (H2).
Suppose that there exist § > 0 and ¢ > 0 such that
g(x(0),x(1)) < inf{g(x(0),x(1))|x(.)is feasible and ||x(.) — X(.)||rc <€
Then there exists p(.) € W' and such that
p(.) # 0
(—P(1), X(t)) € codH(t,X(1)), p(t)(1),} ae.
(p(0), —p(1)) € 0.0g(x(0),X(1)) + Ne(x(0),x(1)) .

“a feasible relaxed trajectory which has cost strictly less that that of
any L°°-neighbouring trajectory is an abnormal extremal (w.r.t. Hamiltonian Inclusion)”

(Warga 1972 proved a related theorem for controlled differential equations)
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Type A and Type B Theorems

Reachable set

& X
: cost
>
! 1
! 1
! 1
| 1
! 1
X Constraint: x_= X X
0 0 0 0

x is locally minimizing trajectory x is relaxed feasible trajectory

Type A Theorem Type B Theorem

Vinter Minimizers that are not also Relaxed Minimizers



Concluding Comments/Open Questions

Links between abnormality and infimum gap forst investigated by Warga
Take a minimizer X
loffe:
‘x s not a W' local relaxed minimizer = ‘E-L conditions are abnormal’
Now we know:

‘X s not a strong local relaxed minimizer’ — ‘Hamiltonian inclusion abnormal’

-Theory readily adapts to allow for state constraints

Open questions:

- Conditions for all multipliers to be abnormal item[-] Counter-examples
distiguishing differ conditions

- Relaxation theorems with extra constraint ||x(.) — X(.)||y1.1 <€
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