Minimizers that are not also Relaxed Minimizers

Richard B. Vinter

Imperial College London

SADCO Summer School, Sept. 2012

Outline of the Talk

- Relaxation
- The occurence of an infimum gap
- Condition for existence of an infimum gap
- Implications for necessary conditions of optimality
- Concluding Remarks

(Joint work with Michele Palladino, ESR)

The Optimal Control Problem

Consider

```
(P) \left\{ \begin{array}{l} \text{Minimize } g(x(0),x(1)) \\ \text{over absolutely continuous functions } x(.):[0,1] \to \mathbb{R}^n \\ \text{satisfying} \\ \dot{x}(t) \in F(t,x(t)) \text{ a.e.,} \\ x(0) = x_0 \quad \text{and} \quad (x(0),x(1)) \in C \end{array} \right. ,
```

Data: $g: \mathbb{R}^n \to \mathbb{R}$, $x_0 \in \mathbb{R}$, a closed set $C \subset \mathbb{R}^n \times \mathbb{R}^n$ and a multifunction $F(.,.): [0,1] \times \mathbb{R}^n \hookrightarrow \mathbb{R}^n$.

State trajectory
$$x(.)$$
: $W^{1,1}$ function s.t. $\dot{x}(t) \in F(t,x(t))$, a.e., $x(0) = x_0$

x(.) is feasible if $x(1) \in C$.

Minimizers

 $\bar{x}(.)$ is a minimizer if

$$g(x(0), x(1)) \geq g((\bar{x}(0), \bar{x}(1)))$$

for all state trajectories x(.).

 $\bar{x}(.)$ is a strong local minimizer if, for some $\epsilon > 0$,

$$g(x(0), x(1)) \geq g((\bar{x}(0), \bar{x}(1)))$$

for all state trajectories x(.) such that $||x(.) - \bar{x}(.)||_{L^{\infty}} \le \epsilon$.

Standing Hypotheses

- (H1): F(t,x) is closed for all (t,x) and F(.,x) is measurable.
- (*H*2) : For given R > 0, there exist $\varepsilon > 0$, $k(.) \in L^1$ and $c(.) \in L^1$ such that

$$F(t,x)\subset F(t,x')+k(t)|x-x'|\mathbb{B}$$
 and $F(t,x)\subset c(t)\mathbb{B}$ for all $x,x'\in R\mathbb{B}$, a.e. $t\in [0,1]$.

Fact: Assume (H1) and (H2). Suppose the set of feasible state trajectories is non-empty and bounded, and

(C): F(t,x) is convex for all (t,x).

Then there exists a minimizer.

Relaxation

Relaxation:

'Enlarge the space of state trajectories to guarantee existence of minimizers'

Relaxed Problem:

(R)
$$\begin{cases} & \text{Minimize } g(x(1)) \\ & \text{over } x(.) : [0, 1] \in W^{1,1} \text{ s.t.} \\ & \dot{x}(t) \in \text{co } F(t, x(t)) \text{ a.e.,} \\ & x(0) = x_0 \quad \text{and} \quad x(1)) \in C \end{cases},$$

(Refer to relaxed state trajectories, relaxed minimizers, etc.).

Fact: Assume (H1) and (H2). Suppose the set of feasible relaxed state trajectories is non-empty and bounded.

Then there exists a relaxed minimizer.

(Relaxed problem automatically has a convex velocity set co F(t,x)).

Relaxation Theorem

Relaxation Theorem:

Take any relaxed state trajectory $\bar{x}(.)$ and $\epsilon > 0$. Then there exist a state trajectory x(.) such that

$$||x(.) - \bar{x}(.)||_{L^{\infty}} \leq \epsilon$$

Caution: x(.) and $\bar{x}(.)$ close, but their velocities can be very different!

Strategy for finding sub-optimal state trajectory:

- **Step 1:** Solve relaxed problem (it has a solution)
- **Step 2:** Approximate relaxed minimizer by a neigboring state trajectory (possible by relaxation theorem)

Geometric Interpretation

Define Reachable Set:

 $\mathcal{R} := \{(x(0), x(1)) \mid x(.) \text{ is a feasible state trajectory } \},$

 $\mathcal{R}_{relaxed} := \{(x(0), x(1)) \mid x(.) \text{ is a feasible relaxed state trajectory } \}$

From Relaxation Thm:

$$\mathcal{R}_{relaxed} = \overline{\mathcal{R}}$$
.

We have

$$\inf(P) = \inf\{g(x_0, x_1) | (x_0, x_1) \in \mathcal{R} \cap C\},\$$

$$\inf(R) = \inf\{g(x_0, x_1) \mid (x_0, x_1) \in \overline{\mathcal{R}} \cap C\}$$

The Infimum Gap

in general

$$\inf(R) \leq \inf(P)$$
.

Important to identify situations when there is an infimum gap:

$$\inf(R) < \inf(P)$$
 (strict inequality!)

because then

- Feasible trajectories cannot be closely approximated by feasible relaxed trajectories
- The dynamic programming methods yields only the relaxed infimum, not the 'true' infimum
- Numerical methods are often ill-conditioned when there is an infimum gap

The Infimum Gap

Occurence of an infimum gap

Link with Multiplier Abnormality

There is a relation between infimum gaps and abnormality of Lagrange multipliers.

Consider the finite dimensional optimization problem:

$$(P_1)$$
 $\left\{ egin{array}{ll} \mbox{Minimize } g(x) \ \mbox{s.t. } h(x) < 0 \mbox{ and } x \in C \end{array}
ight.$

and its relaxation (replace $\{x|h(x)<0\}$ by closed set $\{x|h(x)\leq 0\}$):

$$(R_1)$$
 $\left\{ egin{array}{ll} \mbox{Minimize } g(x) \ \mbox{s.t.} & h(x) \leq {\color{red}0} \mbox{ and } x \in {\color{blue}C} \end{array}
ight.$

(Data: $h(.): \mathbb{R}^n \to \mathbb{R}, g(.): \mathbb{R}^n \to \mathbb{R}$, Lipschitz functions)

Finite Dimensional Case

Fact: Suppose there exists $\delta > 0$, $\epsilon > 0$ and \bar{x} such that

 \bar{x} is feasible for (R_1) and

$$g(\bar{x}) \leq \inf\{g(x) \mid h(x) < 0 \text{ and } x \in C\}.$$

Then

$$0 \in 0.\partial g(\bar{x}) + \partial h(\bar{x}) + N_C(\bar{x})$$

i.e. infimum gap implies abnormal multiplier rule

Proof

 \dot{x} has cost strictly less than infimum cost over unrelaxed points x' implies

(S): If
$$x_i \to \bar{x}$$
 and $h(x_i) < 0$ for all i , then

 $x_i \notin C$ for all *i* sufficiently large.

Take $\epsilon_i \rightarrow 0$ and consider:

$$(P_i)$$
 Minimize $\{J_i(x) := (h(x + \epsilon_i))d_C(x) | x \in \mathbb{R}\}$.

For each i, \bar{x} is a minimizer. So by Ekeland's Theorem there exists x_i such that:

1)
$$\bar{x}$$
 minimizes $\to J_i(x) + \epsilon^{1/2}|x-x_i|$, and

2)
$$|x - x_i| \le \epsilon^{1/2}$$

But, by (S),
$$h(x_i) + \epsilon_i \leq 0$$
' \Longrightarrow ' $d_C(x_i) > 0$ '

for i sufficietly large. Use this to show

$$0 \in 0 \cdot \partial g(x_i) + \partial h(x_i) + N_C(\bar{x}) + \text{'error term'}$$

Pass to limit . .

Necessary Conditions of Optimality

It is possible to reformulate (*P*) as a generalized problem in the Calculus of Variations:

$$\begin{cases} & \text{Minimize } \int_0^1 L(t, x(t), \dot{x}(t)) dt + g(x(0), x(1)) \\ & \text{over } x(.) \in W^{1,1} \text{ s.t. } (x(0), x(1)) \in C, \end{cases}$$

where

$$L(t,x,v) := \begin{cases} 0 & \text{if } v \in F(t,x) \\ +\infty & \text{if } v \notin F(t,x) \end{cases}.$$

Write Hamiltonian:

$$H(t, x, p) = \sup\{e \cdot p \mid e \in F(t, x)\}$$

Nonsmooth analysis approaches have validated generalization of the classical necessary conditions:

$$(p(t), \dot{p}(t)) = \nabla_{x,p} L(t, x(t), p(t))$$
 (The Euler Lagrange condition) and

$$(-\dot{p}(t),\bar{x}(t)) = \nabla_{x,p}H(t,\bar{x}(t),p(t))$$
 (Hamilton's condition)

Generalized Euler Lagrange Condition

Theorem (Euler Lagrange Inclusion, Ioffe/Rockafellar 1996)

Let \bar{x} be a strong local minimizer. Assume (H1) and (H2).

Then there exists $p(.) \in W^{1,1}$ and $\lambda \ge 0$ such that

$$(p(.),\lambda) \neq 0$$

$$\dot{p}(t) \in \text{co}\{q \mid (q, p(t)) \in N_{Gr_{F(t, \cdot)}}(\bar{x}(t)), \dot{\bar{x}}(t), \} \text{ a.e. }$$

$$p(t) \cdot \dot{\bar{x}}(t) = \sup\{p(t) \cdot e \mid e \in F(t, \bar{x})(t)\}$$
 a.e.

$$(p(0), -p(1)) \in \lambda \partial g(\bar{x}(0), \bar{x}(1))) + N_C(\bar{x}(0), \bar{x}(1)).$$

Generalized Hamiltian Inclusion

Theorem (Generalized Hamiltonian Inclusion, Clarke 1973)

Let \bar{x} be a strong local minimizer. Assume (H1) and (H2) and

$$F(t,x)$$
 is convex for all (t,x)

Then there exists $p(.) \in W^{1,1}$ and $\lambda \ge 0$ such that

$$(p(.),\lambda) \neq 0$$

 $(-\dot{p}(t),\dot{\bar{x}}(t)) \in \operatorname{co} \partial H(t,\bar{x}(t)), p(t)(t), \}$ a.e.

$$(p(0), -p(1)) \in \lambda \partial g(\bar{x}(0), \bar{x}(1))) + N_C(\bar{x}(0), \bar{x}(1)).$$

The Generalized Hamiltonian Inclusion condition is valid also for non-convex F(.,.)'s (Clarke, 2005)

Partially Convexified Hamiltonian Inclusion

Theorem (Euler Lagrange Inclusion, Loewen/Rockafellar 1996)

Let \bar{x} be a strong local minimizer. Assume (H1) and (H2), and

(C)
$$f(t,x)$$
 is convex

Then there exists $p(.) \in W^{1,1}$ and $\lambda \ge 0$ such that

$$(p(.),\lambda) \neq 0$$

$$-\dot{p}(t) \in co \{a \mid (a \dot{\bar{y}}(t)) \in \partial \cup H(t \bar{y}(t)) \dot{\bar{y}}(t)\}$$

$$-\dot{p}(t) \in \text{co} \{q \mid (q, \dot{\bar{x}}(t)) \in \partial_{x,p} H(t, \bar{x}(t), \dot{\bar{x}}(t))\} \text{ a.e.}$$

$$(p(0),-p(1)) \in \lambda \partial g(\bar{x}(0),\bar{x}(1))) + N_C(\bar{x}(0),\bar{x}(1)).$$

Open question: True without hypothesis (C)?

Conditions for an Infimum Gap (1)

Theorem A, Palladino/Vinter

Let $\bar{x}(.)$ be a strong local minimizer. Assume (H1) and (H2). Assume also that, for each $\epsilon>0$, there exists a feasible relaxed trajectory x(.) such that

$$g(x(0), x(1)) < g(\bar{x}(0), \bar{x}(1)) \text{ and } ||x(.) - \bar{x}(.)||_{L^{\infty}} \le \epsilon$$

Then there exists $p(.) \in W^{1,1}$ and such that

$$\begin{split} & p(.) \ \neq \ 0 \\ & (-\dot{p}(t), \dot{\bar{x}}(t)) \in \operatorname{co} \partial H(t, \bar{x}(t)), p(t)(t), \} \ \text{ a.e.} \\ & (p(0), -p(1)) \ \in \ 0 \, . \, \partial g(\bar{x}(0), \bar{x}(1)) + N_{\mathcal{C}}(\bar{x}(0), \bar{x}(1)) \, . \end{split}$$

"a strong local minimizer which is not also a strong local relaxed minimizer is an abnormal extremal (w.r.t. the Hamiltonian Inclusion)"

(loffe 1996 proved related theorem for a $W^{1,1}$ infimum gap - strongr hypotheses.)

Conditions for an Infimum Gap (2)

Theorem B, Palladino/Vinter

Let $\bar{x}(.)$ be a feasible relaxed trajectory. Assume (H1) and (H2).

Suppose that there exist $\delta > 0$ and $\epsilon > 0$ such that

$$g(\bar{x}(0), \bar{x}(1)) < \inf\{g(x(0), x(1)) \, | \, x(.) \text{ is feasible and } ||x(.) - \bar{x}(.)||_{L^{\infty}} \leq \epsilon$$

Then there exists $p(.) \in W^{1,1}$ and such that

$$p(.) \neq 0$$

$$(-\dot{p}(t),\dot{\bar{x}}(t))\in\operatorname{co}\partial H(t,\bar{x}(t)),p(t)(t),\}$$
 a.e.

$$(p(0), -p(1)) \in 0.\partial g(\bar{x}(0), \bar{x}(1)) + N_{\mathcal{C}}(\bar{x}(0), \bar{x}(1)).$$

"a feasible relaxed trajectory which has cost strictly less that that of any L^{∞} -neighbouring trajectory is an abnormal extremal (w.r.t. Hamiltonian Inclusion)"

(Warga 1972 proved a related theorem for controlled differential equations)

Type A and Type B Theorems

Type A Theorem

Type B Theorem

Concluding Comments/Open Questions

Links between abnormality and infimum gap forst investigated by Warga

Take a minimizer \bar{x}

loffe:

 \dot{x} s not a $W^{1,1}$ local relaxed minimizer \implies 'E-L conditions are abnormal'

Now we know:

 $^{'}\bar{x}$ s not a strong local relaxed minimizer \implies 'Hamiltonian inclusion abnormal'

-Theory readily adapts to allow for state constraints

Open questions:

- Conditions for all multipliers to be abnormal item[-] Counter-examples distiguishing differ conditions
- Relaxation theorems with extra constraint $||x(.) \bar{x}(.)||_{W^{1,1}} \le \epsilon$

