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Model Predictive Control

min
x ,u

‖x(tk + th)− x r (tk + th)‖P +

∫ tk+th

tk

‖x(t)− x r (t)‖Q

+ ‖u(t)− ur (t)‖Rdt
s.t. x(tk)− x̂(tk) = 0,

f (ẋ(t), x(t), z(t), u(t)) = 0,

h(x(t), z(t), u(t)) ≥ 0,

x(tk + th) ∈ Xf , (1)

where ‖w‖S = wTSw .

At each sampling time tk :

get the (estimated) initial state x̂(tk)
solve the OCP (1)
apply the control u∗(tk), solution of (1)
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A simple illustrative example

ẋ = v

v̇ = u

Very simple system, input bounds, solution in the µs timescale

Without constraints ⇒ LQR ≡ MPC

I am lazy ⇒ I used ACADO Code Generation

Generated code called in Matlab with a mex

Purpose:

illustrate how MPC works
advertise ACADO Code Generation http://www.acadotoolkit.org
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A simple illustrative example
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The phase diagram
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Moving Horizon Estimation

min
x ,u

‖x(tk − th)− x̂(tk − th)‖Σ−1
s

+

∫ tk

tk−th
‖y(t)− ym(t)‖Σ−1

y

+ ‖u(t)− um(t)‖Σ−1
u
dt

s.t. f (ẋ(t), x(t), z(t), u(t)) = 0,

y(t)− g(x(t), z(t), u(t)) = 0,

h(x(t), z(t), u(t)) ≥ 0,

c(x(tk)) = 0, (2)

where ‖w‖S = wTSw .

At each sampling time tk :

get the measured output ym and control um

solve the OCP (2)
output the estimated state x̂(tk) = x∗(tk), solution of (2)
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Problem formulation: NLP

min
x

f (x)

s.t. g(x) = 0

h(x) ≥ 0 (3)

Newton type algorithm

Given an initial guess x0, keep iterating:

1 determine a (descent) direction pk
2 determine a step length αk

3 compute the step: xk+1 = xk + αkpk
4 check for convergence and return the solution
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Let’s look at the simpler problem

min
x

f (x)

First order necessary condition for optimality: ∇f (x∗) = 0

Newton’s Method

Linearize ∇f (x) = 0 to obtain:

∇f (xk) +∇2f (xk)pk = 0

m

pk = −
(
∇2f (xk)

)−1∇f (xk)

Newton Type Algorithms

Replace ∇2f (xk) with a suitable approximation
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Some Hessian Approximations

1 Steepest descent:

∇2f (xk) ≈ I

Convergence rate: linear (bad)

2 Gauss-Newton:

∇2f (xk) ≈ ∇F (xk)T∇F (xk), f (x) = ‖F (x)‖2
2

Convergence rate: linear (good)

3 BFGS update:

∇2f (xk) ≈ Bk , Bk+1 = Bk +
Bkss

TBk

sTBks
+

yy t

sT y

Convergence rate: superlinear
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Why does Gauss-Newton perform so well?

The exact Hessian is given by:

∇2
xL = ∇2f −

∑
λi∇2gi −

∑
µi∇2hi

with
∇2f = JT J +

∑
Fi∇2Fi

and J = ∇FT .

In Gauss-Newton: ∇2
xL ≈ JT J.

When does it perform particularly well?

‖F‖ small: good fit

∇2Fi small: F is nearly linear

‖λ‖ and ‖µ‖ small (true when ‖F‖ is small)
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Least Squares NLP

min
x∈Rn

1

2
‖F (x)‖2

2

s.t. g(x) = 0

h(x) ≥ 0 (4)

Linearize (4) at xk (inside the norm)

min
x∈Rn

1

2
‖F (xk) + J(xk) (x − xk)‖2

2

s.t. g(xk) +∇g(xk)T (x − xk) = 0

h(xk) +∇h(xk)T (x − xk) ≥ 0 (5)

where J(xk) = ∇F (xk)T
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Let’s rewrite (5)

min
∆x∈Rn

1

2
∆xT JT J∆x + FT J∆x +

1

2
FTF

s.t. g +∇gT∆x = 0

h +∇hT∆x ≥ 0 (6)

where ∆x = (x − xk) and f = f (xk).

In the absence of inequality constraints

The solution of (6) is equivalent to the solution of:[
JT J ∇g
∇gT 0

] [
∆x
−λ

]
= −

[
JTF
g

]
(7)

True for every Newton type method, JT J replaced by Bk .
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In the general case

Problem (6) is a QP. Two solution approaches are possible:

1 Active set methods

2 Interior point methods

1. Active set

Given a feasible initial guess x0 with corresponding active set
A0 = {i |hi (x0) = 0}, iterate:

1 solve equation (7)

2 update the active set (only linear algebra, no matrix update)

3 if no active set change: solution found
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2. Interior point

Modify the NLP to get a Barrier Problem:

min
x∈Rn

f (x)

s.t. g(x) = 0

h(x) ≥ 0

⇒
min
x∈Rn

f (x)− τ
q∑

i=1

log (hi (x))

s.t. g(x) = 0

hi (x)µi − τ = 0 (8)

Given an initial guess x0, start with a big τ � 0, choose β ∈ (0, 1)
and iterate:

1 solve (8)

2 update τ = βτ

3 check for convergence
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Which method to choose?

IP methods:

have guarantees on maximum runtime
can directly solve NLPs (no SQP)
perform well especially for large NLPs

Active set methods:

can be warm started
perform extremely well if the initial guess is good
particularly suited for homotopies (no need to go back to the
central path)
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Proposed scheme to solve the MPC problem

1 MPC: iteratively solve an OCP (usually to track a reference)

2 OCP: translated into a (LSQ) NLP (direct multiple shooting)

3 NLP: SQP method with Gauss-Newton approximation

4 QP: active set strategy, warm-start, RTI

5 Code generation

Not covered in this talk

Discretization method (single-multiple shooting, collocation):

need for an integrator
sensitivity computation (AD)

Detailed description of the QP solution strategy

Code generation
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Real Time Iterations

At each sampling time perform:

integration and sensitivities: compute the QP matrices

condensing: large and sparse QP reduced to small and dense

QP solution (qpOASES)

Most computations can be prepared without prior knowledge of the
initial state x̂0:

Preparation phase: integrate the system, condense, set up the
QP

Feedback phase: solve the QP and immediately apply u0

being fast is often more important than being accurate

converge while the system dynamics evolve
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Model features

Full rotational model, 22 states, 3 controls

Tether: constraint

Rotation: full parametrization of the rotation matrix

Model equations: index 1 DAE (after index reduction)

δ̈ = uδ,

Ṙ = RΩ,

Jω̇ = TA − ω × Jω[
m · I3 −X
−XT 0

] [
Ẍ
z

]
=

[
F − VX − ṁẊ

ẊT Ẋ

]
,(

XTX − r2
)
t=t0

= 0,
(
XT Ẋ

)
t=t0

= 0,
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MPC problem formulation

min
x ,u

‖xN − x rN‖P +
∑
i

‖xi − x ri ‖Q + ‖ui − uri ‖R

s.t. x0 − x̂k = 0,

f (xi+1, xi , zi , ui ) = 0,

h(xi , zi , ui ) ≥ 0,

terminal cost: LQR (stabilize the invariants)

no terminal constraint

path constraints: −1 ≤ CL ≤ 1, z ≥ 0 (not yet included)

possible slack reformulation to increase feasibility
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MHE problem formulation

min
x ,u

‖x0 − x̂0‖Σ−1
x

+
∑
i

‖yi − ymi ‖Σ−1
y

+ ‖ui − umi ‖Σ−1
u

s.t. f (xi+1, xi , zi , ui ) = 0,

yi − g(xi , zi , ui ) = 0,

c(xN) = 0,

terminal constraint: enforce the invariants

measurements:

IMU (Ẍ , ω)
2 cameras (3 LED position)
encoder (δ)

no path constraints (rotation matrix)

no arrival cost (not implemented yet, available for free)
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Simulation results and computational times

MHE MPC

Preparation phase 7 ms 5 ms

Feedback phase 1 ms 0.2 ms
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Experimental results

Movie
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Thank you for your attention!
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