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@ Optimization Based Control and Estimation
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o MHE

© LSQ Problems and the Gauss-Newton Method
© MPC: From Formulation to Implementation

@ Control of Tethered Planes Attached to a Carousel
@ Test Setup
@ System Model
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Optimization Based Control and Estimation

@ Optimization Based Control and Estimation
e MPC
e MHE
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Optimization Based Control and Estimation - MPC 4/30
Model Predictive Control

t+th
min [ttt ) X (et wlle+ [ K0 - X lo
{lu(e) — (1) relt
s.t. x(tx) — X(tx) =0,
F((). x(2), 2(1). (1)) = 0,
h(x(t),z(t), u(t)) >0,
x(ty + tp) € Xy, (1)

where ||w||s = wT Sw.
@ At each sampling time ty:
o get the (estimated) initial state X(tx)

o solve the OCP (1)
o apply the control u*(ty), solution of (1)
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Optimization Based Control and Estimation - MPC

A simple illustrative example

Very simple system, input bounds, solution in the us timescale
Without constraints = LQR = MPC
| am lazy = | used ACADO Code Generation

Generated code called in Matlab with a mex

Purpose:

o illustrate how MPC works
e advertise ACADO Code Generation http://www.acadotoolkit.org
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Optimization Based Control and Estimation - MPC
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Optimization Based Control and Estimation - MPC
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Optimization Based Control and Estimation - MPC
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Optimization Based Control and Estimation - MPC
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Optimization Based Control and Estimation - MPC
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Optimization Based Control and Estimation - MPC
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Optimization Based Control and Estimation - MPC

The phase diagram
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Optimization Based Control and Estimation - MPC

The phase diagram
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Optimization Based Control and Estimation - MPC
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The phase diagram
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Optimization Based Control and Estimation - MHE

Moving Horizon Estimation

Lk
min (e — )= Ko=)z [ I =y (D)l
t,

)

+ [|u(t) — u™(t)]| g1 0t
s.t. F(x(t),x(t), z(t), u(t)) =0,
y(t) — g(x(1), 2(t), u(t)) =0,
h(x(t), z(t), u(t)) > 0,
c(x(t)) = 0, (2)

where ||w|s = wT Sw.
@ At each sampling time ty:

e get the measured output y™ and control u™
o solve the OCP (2)
e output the estimated state X(tx) = x*(tx), solution of (2)
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LSQ Problems and the Gauss-Newton Method

© LSQ Problems and the Gauss-Newton Method
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LSQ Problems and the Gauss-Newton Method 10/30
Problem formulation: NLP

mXin f(x)
st. g(x)=0
h(x) >0 (3)

Given an initial guess xg, keep iterating:
Q determine a (descent) direction py
@ determine a step length oy
© compute the step: Xxi1 = Xk + akpk

@ check for convergence and return the solution
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LSQ Problems and the Gauss-Newton Method

Let's look at the simpler problem

min f(x)

X

First order necessary condition for optimality: Vf(x*) =0
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LSQ Problems and the Gauss-Newton Method 11/30
Let's look at the simpler problem

min f(x)

X

First order necessary condition for optimality: Vf(x*) =0

Linearize Vf(x) = 0 to obtain:

Vf(Xk) ar sz(xk)pk =0
)
pr = — (V2F(x)) " VF(x)
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LSQ Problems and the Gauss-Newton Method

Let's look at the simpler problem

min f(x)

X

First order necessary condition for optimality: Vf(x*) =0

Linearize Vf(x) = 0 to obtain:

Vf(Xk) ar sz(xk)pk =0
)
pr = — (V2F(x)) " VF(x)

y

Newton Type Algorithms

Replace V2f(xx) with a suitable approximation

4
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LSQ Problems and the Gauss-Newton Method 12/30
Some Hessian Approximations

@ Steepest descent:
V2f(xe) = T

Convergence rate: linear (bad)
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LSQ Problems and the Gauss-Newton Method 12/30
Some Hessian Approximations

@ Steepest descent:
V2f(xe) = T

Convergence rate: linear (bad)
© Gauss-Newton:

V2f(xk) = VF(x) T VF(xk), f(x) = IF(x)I3

Convergence rate: linear (good)
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LSQ Problems and the Gauss-Newton Method 12/30
Some Hessian Approximations

@ Steepest descent:
V2f(xe) = T

Convergence rate: linear (bad)
© Gauss-Newton:

V2f(xk) = VF(x) T VF(xk), f(x) = IF(x)I3

Convergence rate: linear (good)
© BFGS update:

Biss' B yyt

2
f ~B Bxi1 =B
Vo (xk) = B, k1 =Bt =7 g Ty

Convergence rate: superlinear
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LSQ Problems and the Gauss-Newton Method
Why does Gauss-Newton perform so well?

The exact Hessian is given by:

VIL =V =Y NV = uiVh
with
Vif=JTJ+) FVF
and J=VFT.

In Gauss-Newton: V2L~ JTJ.

V.

When does it perform particularly well?
o ||F| small: good fit

o V2F; small: F is nearly linear
o ||Al] and ||| small (true when ||F|| is small)
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LSQ Problems and the Gauss-Newton Method

Least Squares NLP

1 >
min = [FI2

st. g(x)=0
h(x) =0 (4)

Linearize (4) at xi (inside the norm)

. 1
min 3 IF (i) + J(xk) (x — xe)II5

st g(x) + Vela) " (x —x) =0
h(xx) + Vh(Xk)T (x—xk) >0 (5)

where J(xx) = VF(xx)T
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LSQ Problems and the Gauss-Newton Method

Let's rewrite (5)

1 1
min  ~Ax'JTJAx+FTJAx+ =FTF
AxeRr 2 2
st. g+Vg'Ax=0

h+VhTAx >0 (6)

where Ax = (x — xx) and f = f(xy).

v

In the absence of inequality constraints

The solution of (6) is equivalent to the solution of:
JTJ vg ][ Ax JTF
T = (7)
Vg 0 —A g

True for every Newton type method, JT J replaced by By.
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LSQ Problems and the Gauss-Newton Method 16/30
In the general case

Problem (6) is a QP. Two solution approaches are possible:
© Active set methods

@ Interior point methods

Given a feasible initial guess xp with corresponding active set
Ao = {ilhi(x0) = 0}, iterate:
Q solve equation (7)

@ update the active set (only linear algebra, no matrix update)

© if no active set change: solution found
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LSQ Problems and the Gauss-Newton Method 17 /30

Modify the NLP to get a Barrier Problem:
q
min  £(x) min  f(x) - TZ log (hi(x))
= i=1
st. g(x)=0 st. g(x)=0
h(x) >0 hi(x)ui —7=0 (8)
Given an initial guess xp, start with a big 7 > 0, choose 5 € (0, 1)
and iterate:
Q solve (8)
@ update 7 = 871
© check for convergence
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LSQ Problems and the Gauss-Newton Method

Which method to choose?

@ IP methods:

e have guarantees on maximum runtime
o can directly solve NLPs (no SQP)
o perform well especially for large NLPs

@ Active set methods:

e can be warm started

o perform extremely well if the initial guess is good

o particularly suited for homotopies (no need to go back to the
central path)
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MPC: From Formulation to Implementation

© MPC: From Formulation to Implementation
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MPC: From Formulation to Implementation

Proposed scheme to solve the MPC problem

@ MPC: iteratively solve an OCP (usually to track a reference)
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MPC: From Formulation to Implementation

Proposed scheme to solve the MPC problem

@ MPC: iteratively solve an OCP (usually to track a reference)
@ OCP: translated into a (LSQ) NLP (direct multiple shooting)
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MPC: From Formulation to Implementation

Proposed scheme to solve the MPC problem

@ MPC: iteratively solve an OCP (usually to track a reference)
@ OCP: translated into a (LSQ) NLP (direct multiple shooting)
© NLP: SQP method with Gauss-Newton approximation
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MPC: From Formulation to Implementation

Proposed scheme to solve the MPC problem

@ MPC: iteratively solve an OCP (usually to track a reference)
@ OCP: translated into a (LSQ) NLP (direct multiple shooting)
© NLP: SQP method with Gauss-Newton approximation

Q QP: active set strategy, warm-start, RTI
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MPC: From Formulation to Implementation

Proposed scheme to solve the MPC problem

@ MPC: iteratively solve an OCP (usually to track a reference)
@ OCP: translated into a (LSQ) NLP (direct multiple shooting)
© NLP: SQP method with Gauss-Newton approximation

Q QP: active set strategy, warm-start, RTI

© Code generation
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MPC: From Formulation to Implementation

Proposed scheme to solve the MPC problem

@ MPC: iteratively solve an OCP (usually to track a reference)
@ OCP: translated into a (LSQ) NLP (direct multiple shooting)
© NLP: SQP method with Gauss-Newton approximation

Q QP: active set strategy, warm-start, RTI

© Code generation

V.

Not covered in this talk

@ Discretization method (single-multiple shooting, collocation):

e need for an integrator
e sensitivity computation (AD)

@ Detailed description of the QP solution strategy

@ Code generation
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MPC: From Formulation to Implementation

Real Time lterations

At each sampling time perform:
@ integration and sensitivities: compute the QP matrices
@ condensing: large and sparse QP reduced to small and dense
@ QP solution (qpOASES)
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MPC: From Formulation to Implementation

Real Time lterations

At each sampling time perform:
@ integration and sensitivities: compute the QP matrices
@ condensing: large and sparse QP reduced to small and dense
@ QP solution (qpOASES)

Most computations can be prepared without prior knowledge of the
initial state Xp:

@ Preparation phase: integrate the system, condense, set up the
QP
o Feedback phase: solve the QP and immediately apply ug
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MPC: From Formulation to Implementation 21/30
Real Time lterations

At each sampling time perform:
@ integration and sensitivities: compute the QP matrices
@ condensing: large and sparse QP reduced to small and dense
@ QP solution (qpOASES)

Most computations can be prepared without prior knowledge of the
initial state Xp:

@ Preparation phase: integrate the system, condense, set up the
QP
o Feedback phase: solve the QP and immediately apply ug

@ being fast is often more important than being accurate

@ converge while the system dynamics evolve

Fast Model Predictive Contol and Moving Horizon Estimation for Tethered Planes — Mario Zanon



Control of Tethered Planes Attached to a Carousel 22730

@ Control of Tethered Planes Attached to a Carousel
@ Test Setup
@ System Model
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Control of Tethered Planes Attached to a Carousel - Test Setup 2330
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Control of Tethered Planes Attached to a Carousel - Test Setup  24/30
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Control of Tethered Planes Attached to a Carousel - System Model 2530

Model features

@ Full rotational model, 22 states, 3 controls
@ Tether: constraint

@ Rotation: full parametrization of the rotation matrix

v

Model equations: index 1 DAE (after index reduction)

52“57
R = RQ,

Jw=Ta—wx Jw

m-lh —X][X] _[F-Vx—mX
_XT 0 z - XTX )

(7x=7) =0 (x7%)_, =0
=tp =to
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Control of Tethered Planes Attached to a Carousel - System Model 2,30

MPC problem formulation

min [xv = xglle + D Ixi = xfllq + llui — uf [l
i

s.t. xo— X =0,

f(XI'+17XI'aZI'a U,') = 07

h(Xi,z,',U,') Z 07

@ terminal cost: LQR (stabilize the invariants)
@ no terminal constraint
@ path constraints: —1 < C; <1, z > 0 (not yet included)

@ possible slack reformulation to increase feasibility
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Control of Tethered Planes Attached to a Carousel - System Model 27,30
MHE problem formulation

min [lxo = Rollzz1 + D Iyi =y llss + lui = ullls;
i

s.t. f(Xi41, i, zi,u;) =0,
yi — g(xi, zi, uj) = 0,
C(XN) = 0,

@ terminal constraint: enforce the invariants
@ measurements:

o IMU (X,w)

o 2 cameras (3 LED position)

e encoder (4)

@ no path constraints (rotation matrix)

@ no arrival cost (not implemented yet, available for free)
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Control of Tethered Planes Attached to a Carousel - System Model 2,30

Simulation results and computational times

MHE | MPC
Preparation phase | 7ms | 5 ms
Feedback phase | 1ms | 0.2 ms

PP
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Control of Tethered Planes Attached to a Carousel - System Model 29,30

Experimental results

Movie
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Thank you for your attention!
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