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The Mean Curvature Motion of manifolds

) bounded domain
I" boundary of

V = V(z,y,t) smooth unit normal vector at (x,y,t)

H = —div(V)V mean curvature vector at (x,y,t)

(z,y) € I'; evolves according to the ODE

{z’:(s) = —[div(V)V](2(s),s) s>t
z(t) = (z,y).



The level set equation for MCM of curve

The initial curve I'g = 0L is represented by the O-level set of an
auxiliary function uq:

>0 if (z,y) € Q2
up(z,y) <0 if (z,y) €int Q,
=0 if (z,y) € 0N

The time-dependent curve Ty = {(x,y) € R? : u(z,y,t) = 0} is
obtained as the solution u of
R H Du(xvyvt)
(MCM) {ut(x’y’t) = div (‘Du(x7y7t)|> |Du(aj,y,t)|

u(az, Y, O) = UO(x’ y)

This equation projects the diffusion orthogonally with respect to
the gradient (see Osher & Sethian)



Analytic features:

e Degenerate parabolic
e Singular (undefined if Du = 0)

e [nterest in nonsmooth solutions

Applications:
e Image processing: denoising
e Image processing: active contours

Phase transitions

Mathematical biology



Generalized characteristics in R?
The trajectories satisfying the following s.d.e.
dy:c,t(s) = ﬂP(DU(th(S),t - 8))dW(8)
yx,t(t) =T

play the role of generalized characteristics .
Here, dW is the differential of a standard Wiener process and

Du@ Du 1 u? — Uz, U
P(Du) =TI — — @2 7t
(Du) |Dul? |Dul? < g Uy U2, >

which projects the diffusion on the space orthogonal to the
gradient of the solution u



Representation formula for MCM in R?

If u is a smooth solution of (MCM) by the lto-Taylor expansion it
turn out that,if Du # 0:

u(a, t) = Efuo(yea(t))}- (1)
The general representation formula reads
u(,t) = inf ess supg {uo(y, ()}, @
where A is the set of admissible controls and y” satisfies

{dy;,xs) = V2P(v(s))dW (s)
?J’é,t(o) =z

References: Soner - Touzi, Buckdahn - Cardaliaguet -
Quincampoix



Representation formula for MCM in R?

Representation formula (1) on a single time step
tn = tng1 = tn + At

u(xv tn-i-l) = E{u(yx,tn-u (At)v tn)} (3)

Brownian dimension reduction (from R? to R):

\/§ U Uy, AW Uz, AW
SP(Du)dW = Yo [ U 2 dW1 s, _
V2P(Du) Dl ( s, >( Dal |Du >
2 A .
= %(_“52 )dW:a(Du)dW
T1

we can replace the s.d.e. by

{dyx,t(s) = o(Du(ya(s),t — s))dW (s)
Yz t(0) = z.



Main steps for the numerical discretization

In order to set up

u(xv tn-i-l) = E{u(y:c,tn+1 (At)7 tn)}

in a fully discrete form:

e The computation of u(-,t,) is replaced by a numerical
reconstruction I[u"](-) (Lagrange, ENO, WENO,...)

e Partial derivatives u,, are replaced by finite differences

e An approximation of the expectation E{u(y, ., (At),t,)} is
computed by weak convergence scheme for SDEs



Weak Euler scheme

Assume that y(t) satisfy the scalar (for simplicity) SDE

dyz1(8) = (8, Yz,(5))dW (s)
Yz t(t) = .
Weak Euler scheme with t;, = tg + kAt and yg >~ ya +(tg):

Yk+1 = Yk + 0 (tr, yr) AWy
Yo = T.
with AW, distributed as

P(AW}, = +VAt) = %
Then (if o(-,-), h(-) are smooth enough), y1 >~ y, +(At) satisfies
E{h(ye (A1)} = 5 (b (VAD) + b (—VED)) +0(A%)



Construction of the SL scheme (in R?)

Generalized characteristics :
{dym,w(s) = 0 (Du(Ya,ty1 (5): tusr — 8))dW (s)
?J:c,tn+1(0) =z
Discrete characteristics :
{yl = 2+ o(Du(, tper ) AW

Yo=1T

with
P(AW), = £VAL) = %

Time-discretization:

1
upar(T,tny1) = iuAt(a: + o(Du(z, ty)) VAL t,) +

%um(x — o(Dulz, tn))VAL t,).



Construction of the SL scheme (in R?):

Fully discrete scheme for Du # 0

e [[] bilinear interpolation

D% ~ Du(w;,t,) central differences

o 0} =0o(D7})
u;l-i-l _ % (I[un](xj + O—;L\/E) + ][un] («Tj — U;L\/E))

e needs a suitable treatment of singularity

convergence analysis via Barles—Souganidis theory
e consistency
e monotonicity
o [°° stability



Weak notion of consistency

Let ¢ € C(R? x [0,77)) and
(Azp, Aty,) = 0 and  (zj,,,tn,,) — (x,t). Then, the scheme
S; is said to be consistent with

¢z, t) + F(D¢, D*¢)(x,t) =0

m—00 Aty,

m— oo Atm

> ¢y + F(Dp, D*¢)(, t)

< ¢+ F(Do, D*¢)(, t).
(4)



Treatment of singularities

The MCM equation is undefined at points such that Du = 0.
Therefore, in general

E(D¢, D*¢) # F(D¢, D*¢)

e from the analytical viewpoint, suitable conditions ensure
existence and uniqueness

e from the numerical viewpoint, it suffices for the scheme to be
consistent with the (suitably scaled) heat equation when
Du=0:

e without a threshold: min-max technique
explicit treatment of the heat equation

e with threshold: ¢ =~ .
implicit treatment of the heat equation



Treatment with threshold

When |D’| < C'Az" the scheme switches to an approximation of
the heat equation

1
u = —Au.
2

In this case, the evolution operator under the threshold satisfies
the condition

1 _
F(Du,D?*u) < —iAu < F(Du, D?u)

and a consistent numerical approximation allows to recover the
weak consistency condition.



e explicit treatment: the discrete laplacian is computed on a
“large” (O(V At)) stencil:

n+1 ZI wj + 52)’

with &; = (£v/AL, £VAL).

e implicit treatment:

u?“ = u;l + AtA "t

in which the part of the solution above the threshold is used
as a boundary condition.



Treatment by a Min-Max scheme

u" ™ = min <max(I[u"](a:j + V2Atp), Iu™](z; — \/ﬂu))

J pes!
The minmax operation basically selects the direction orthogonal to

Du, but does not require a special handling of stationary points.

e Advantages:

e defined also at singular points
e monotone by construction

e Drawbacks: more expensive and less accurate

References: Catté - Dibos - Koepfler, Kohn - Serfaty
(semi-discrete versions).



Convergence

All the versions of the scheme are consistent (for a suitable At/Awv
relationship), but only the minmax scheme is also monotone.

For the basic scheme, following Crandall & Lions, we introduce an
additional discretization parameter p and rewrite the scheme as

n+l _  n
U Uj 1

A7 = = (I[u")(zj + o7 p) + I[u")(x; — o p) — u}).

e convergence is proved for this scheme with a further vanishing
viscosity term (for monotonicity)
e three discretization parameters:

o Ax space step
e At time step

e p step for the second directional derivative



Affine Morphological Scale Space

This model is a derivation of the MCM equation:

[Du(x,t)]
u(z,0) = up(x).

1/3
wi(z,t) = div ( Du(zt) ) |Du(z, )]

e the collection of images (z — u(x,t)):>0 satisfying (5)
represents the Affine Morfological Scale Space

e existence and uniqueness in the class of viscosity solution.

References: Alvarez - Guichard - Lions - Morel, Sapiro -
Tannenbaum



Affine Morphological Scale Space

The AMSS is the only semigroup T} : ug — u(-,t) s.t.

Monotonicity if u < v, then T;(u) < T;(v) (no enhancement of
the original image, just smoothing)

References: Alvarez - Guichard - Lions - Morel
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Affine Morphological Scale Space

The AMSS is the only semigroup T} : ug — u(-,t) s.t.

Monotonicity if u < v, then T;(u) < T;(v) (no enhancement of
the original image, just smoothing)

Grey scale invariance Ty(g ou) = g o Ty(u), g monotone scalar
function (independence from the grey-level scale)

Translation invariance T}(7j, o u) = 73, o Ty(u), h € R? and
Thf(x) = f(z + h) (independence of image analysis
from change of position of objects)

Affine invariance Ti(u o ¢) = T}.get|g|u © ¢, ¢ affine map
(invariance of image analysis under any planar
projection of a planar shape)

References: Alvarez - Guichard - Lions - Morel
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Some references

e Finite Difference scheme (FDS)
(Guichard - Morel)

o Level Lines Affine Shortening (LLAS)
The algorithm has three steps:

e extraction of the level lines of the bilinear interpolation of the
initial image (Monasse - Guichard);

e independent evolution of each level line by affine curve
shortening (Moisan - Koepfler - Cao);

e reconstruction of a new image from the evolved level lines.

(Ciomaga - Monasse - Morel)



Properties of the M C'M'/? operator

Define curv(u) = div (‘gzgig‘) and observe

|Du|curv(u)% = (|Dufcurv(u)) %,
and

|DuPcurv(u) = |Du|?(|Dulcurv(u)) =
| Dul? (a(m)@?m(m)ﬁ) — 6(Du)* D?ué(Du),

where 6(Du) := (Du)*.
Then (5) can be rewritten as

uy = (6(Du)tD*ué(Du))/?

Reference: Guichard - Morel, “Image Analysis and PDEs"



Construction of the SL scheme

e Ax-Central Finite Difference
A 1
D? ~ Du(z;,t,) and 67 = 6(D7}) = (D7)



Construction of the SL scheme

e Auz-Central Finite Difference
i A 1L
D? ~ Du(z;,t,) and 67 = 6(D7}) = (D7)
e p-Discretization of directional derivative
u(xj + po7,t) +u(z; — po7t,t) — 2u?
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6(Du)! D*ué(Du) ~



Construction of the SL scheme

e Auz-Central Finite Difference
O 1L
D? ~ Du(z;,t,) and 67 = 6(D7}) = (D7)
e p-Discretization of directional derivative
u(xj + po7,t) +u(z; — po7t,t) — 2u?
2
p

6(Du)! D*ué(Du) ~

e At-Discretization of time derivative

W (g poTt) + @y — poT ) — 2l 3
At P’



Construction of the SL scheme

Ax-Central Finite Difference
D? ~ Du(zj,t,) and 67 = 6(D7) =
p-Discretization of directional derivative

6(Du)! D*ué(Du) ~

(

u(zj + po7,t) +u(z; — po7,t) — 2u

i
D?)

n
J

At-Discretization of time derivative

u

J

ntl _

J

2

At

u” (u”(ac] + po7,t) +u”(

p

Interpolation on characteristics feet

u

nt+l _
j

u}l—i—At (

2

1
T — poy,t) — 2u§l> 3

I[u"](z; + p&™) + I[u")(zj — p&™) — 2ug>§
2

p



Convergence
e consistency (in the weak sense) is checked under suitable
relationship between Az, At and p

e monotonicity is enforced for the version with a vanishing
viscosity term

e convergence follows from Barles—Souganidis theorem

References: Carlini - Ferretti, Mengucci (Tesi di Laurea)



Filtering a noisy image — MCM

Noise 50% MCM



Filtering a noisy image — MCM vs. MCM'/3

MCM AMSS



Filtering a "pixelled’ image

http://www.ipol.im/pub/algo/cmmm_image_curvature_microscope/

o>


http://www.ipol.im/pub/algo/cmmm_image_curvature_microscope/

Comparison: Level Lines Affine Shortening
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Comparison: SL scheme vs Level Lines Affine Shortening




Comparison: SL scheme vs Level Lines Affine Shortening
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Comparison: SL scheme vs Level Lines Affine Shortening
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Semi-Lagrangian scheme for Area Preserving Flows

To preserve the enclosed area while smoothing the curve the
following level set model has been proposed

{ut = div (@Z(;i ) |Du| — f-x - Du (6)
u(z,0) = up(z)

e Ay is the area of the initial set .

e the new term —Alozc - Du represents a transport along a vector
field with unit divergence which, assuming the origin is
contained in €0y, has the effect to push outwards the interface
so that the area is preserved.

References: Sapiro - Tannenbaum



Semi-Lagrangian scheme for Area Preserving Flows

X

e Auxz-Central Finite Difference

D? ~ Du(zj,t,) and 07 = o(D7}) = (

D
|D

=3

<3



Semi-Lagrangian scheme for Area Preserving Flows

e Auxz-Central Finite Difference
Dn
J

L
D? ~ Du(zj,t,) and 07 = o(D7}) = (m—?‘)

e Interpolation on characteristics feet by a I[-] bi-linear
interpolation



Semi-Lagrangian scheme for Area Preserving Flows

e Auxz-Central Finite Difference
Dn
J

1
D7 = Du(;, t,) and o7 = o(D7) = (‘D—Jn‘)

e Interpolation on characteristics feet by a I[-] bi-linear
interpolation

o Fully-discrete

u?"'l = % [I[u”]((l - AtAl())xj + @a?)
+1u"] ((1 - AtAl())mj - \/ma;"‘)]

References: Carlini - Ferretti, Balzerani (Tesi di Laurea)



Numerical Tests

Figure: Original star shape (top), star shape with random droplets
(center) and filtered by APMCM (bottom)



Numerical Tests

Figure: APMCM flow (blue line) and Initial shape (red line)
corresponding to the value u = 0.5



Area Comparison APMCM vs MCM

Figure: Area evolution A, n =0,...,50 for APMCM (left) MCM(right)



Numerical Tests

Figure: Noisy image, obtained Gaussian noise, and filtered image



Numerical Tests

275

2.7

Figure: Area evolution: A,,, n =0,...,5. Real image with Gaussian
noise



Numerical Tests

Figure: Noisy 3d shape, APMCM filtering



Numerical Tests

Figure: Noisy 3d shape, APMCM filtering



Numerical Tests

Figure: Noisy 3d shape, APMCM filtering



Numerical Tests

Figure: Noisy 3d shape, APMCM filtering
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