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The Mean Curvature Motion of manifolds

• Ω bounded domain

• Γ boundary of Ω

• V = V(x, y, t) smooth unit normal vector at (x, y, t)

• H = −div(V)V mean curvature vector at (x, y, t)

(x, y) ∈ Γt evolves according to the ODE

{

ż(s) = −[div(V)V](z(s), s) s > t

z(t) = (x, y).
Γ

H
,(x,y)

Ω
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The level set equation for MCM of curve

The initial curve Γ0 = ∂Ω is represented by the 0-level set of an
auxiliary function u0:

u0(x, y)











> 0 if (x, y) /∈ Ω

< 0 if (x, y) ∈ int Ω,

= 0 if (x, y) ∈ ∂Ω.

The time-dependent curve Γt = {(x, y) ∈ R
2 : u(x, y, t) = 0} is

obtained as the solution u of

(MCM)

{

ut(x, y, t) = div
(

Du(x,y,t)
|Du(x,y,t)|

)

|Du(x, y, t)|
u(x, y, 0) = u0(x, y)

This equation projects the diffusion orthogonally with respect to
the gradient (see Osher & Sethian)
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Analytic features:

• Degenerate parabolic

• Singular (undefined if Du = 0)

• Interest in nonsmooth solutions

Applications:

• Image processing: denoising

• Image processing: active contours

• Phase transitions

• Mathematical biology
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Generalized characteristics in R
2

The trajectories satisfying the following s.d.e.

{

dyx,t(s) =
√

2P (Du(yx,t(s), t − s))dW (s)

yx,t(t) = x

play the role of generalized characteristics .
Here, dW is the differential of a standard Wiener process and

P (Du) = I − Du
⊗

Du

|Du|2 =
1

|Du|2
(

u2
x2

−ux1
ux2

−ux1
ux2

u2
x1

)

which projects the diffusion on the space orthogonal to the
gradient of the solution u
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Representation formula for MCM in R
2

If u is a smooth solution of (MCM) by the Ito-Taylor expansion it
turn out that,if Du 6= 0:

u(x, t) = E{u0(yx,t(t))}. (1)

The general representation formula reads

u(x, t) = inf
ν∈A

ess supΩ{u0(y
ν
x,t(t)}, (2)

where A is the set of admissible controls and yν satisfies

{

dyν
x,t(s) =

√
2P (ν(s))dW (s)

yν
x,t(0) = x

References: Soner - Touzi, Buckdahn - Cardaliaguet -
Quincampoix
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Representation formula for MCM in R
2

Representation formula (1) on a single time step
tn → tn+1 = tn + ∆t:

u(x, tn+1) = E{u(yx,tn+1
(∆t), tn)}. (3)

Brownian dimension reduction (from R
2 to R):

√
2P (Du)dW =

√
2

|Du|

(

ux2

−ux1

)(

ux2
dW1

|Du| − ux1
dW2

|Du|

)

=

=

√
2

|Du|

(

ux2

−ux1

)

dŴ = σ(Du)dŴ

we can replace the s.d.e. by
{

dyx,t(s) = σ(Du(yx,t(s), t − s))dŴ (s)

yx,t(0) = x.
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Main steps for the numerical discretization

In order to set up

u(x, tn+1) = E{u(yx,tn+1
(∆t), tn)}

in a fully discrete form:

• The computation of u(·, tn) is replaced by a numerical
reconstruction I[un](·) (Lagrange, ENO, WENO,...)

• Partial derivatives uxi
are replaced by finite differences

• An approximation of the expectation E{u(yx,tn+1
(∆t), tn)} is

computed by weak convergence scheme for SDEs
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Weak Euler scheme

Assume that y(t) satisfy the scalar (for simplicity) SDE
{

dyx,t(s) = σ(s, yx,t(s))dW (s)

yx,t(t) = x.

Weak Euler scheme with tk = t0 + k∆t and yk ≃ yx,t(tk):

{

yk+1 = yk + σ(tk, yk)∆Wk

y0 = x.

with ∆Wk distributed as

P (∆Wk = ±
√

∆t) =
1

2
.

Then (if σ(·, ·), h(·) are smooth enough), y1 ≃ yx,t(∆t) satisfies

E{h(yx,t(∆t))} =
1

2

(

h(y1(
√

∆t)) + h(y1(−
√

∆t))
)

+ O(∆t2)
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Construction of the SL scheme (in R
2)

Generalized characteristics :
{

dyx,tn+1
(s) = σ(Du(yx,tn+1

(s), tn+1 − s))dŴ (s)

yx,tn+1
(0) = x

Discrete characteristics :
{

y1 = x + σ(Du(x, tn+1))∆Ŵ

y0 = x

with

P (∆Ŵk = ±
√

∆t) =
1

2
Time-discretization:

u∆t(x, tn+1) =
1

2
u∆t(x + σ(Du(x, tn))

√
∆t, tn) +

+
1

2
u∆t(x − σ(Du(x, tn))

√
∆t, tn).
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Construction of the SL scheme (in R
2):

Fully discrete scheme for Du 6= 0

• I[·] bilinear interpolation

• Dn
j ≃ Du(xi, tn) central differences

• σn
j = σ(Dn

j )

un+1
j =

1

2

(

I[un](xj + σn
j

√
∆t) + I[un](xj − σn

j

√
∆t)

)

• needs a suitable treatment of singularity

• convergence analysis via Barles–Souganidis theory
• consistency
• monotonicity
• L∞ stability
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Weak notion of consistency

Let φ ∈ C(R2 × [0, T ]) and
(∆xm,∆tm) → 0 and (xjm

, tnm
) → (x, t). Then, the scheme

Sj is said to be consistent with

φt(x, t) + F (Dφ,D2φ)(x, t) = 0

if











lim inf
m→∞

φ(xjm
, tnm+1) − Sjm

(φnm)

∆tm
≥ φt + F (Dφ,D2φ)(x, t)

lim sup
m→∞

φ(xjm
, tnm+1) − Sjm

(φnm

∆tm
≤ φt + F (Dφ,D2φ)(x, t).

(4)
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Treatment of singularities

The MCM equation is undefined at points such that Du = 0.
Therefore, in general

F (Dφ,D2φ) 6= F (Dφ,D2φ)

• from the analytical viewpoint, suitable conditions ensure
existence and uniqueness

• from the numerical viewpoint, it suffices for the scheme to be
consistent with the (suitably scaled) heat equation when
Du = 0:

• without a threshold: min-max technique

• with threshold:

{

explicit treatment of the heat equation

implicit treatment of the heat equation
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Treatment with threshold

When |Dn
j | ≤ C∆xs,the scheme switches to an approximation of

the heat equation

ut =
1

2
∆u.

In this case, the evolution operator under the threshold satisfies
the condition

F (Du,D2u) ≤ −1

2
∆u ≤ F (Du,D2u)

and a consistent numerical approximation allows to recover the
weak consistency condition.
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• explicit treatment: the discrete laplacian is computed on a
“large” (O(

√
∆t)) stencil:

un+1
j =

1

4

∑

i

I[un](xj + δi),

with δi = (±
√

∆t,±
√

∆t).

• implicit treatment:

un+1
j = un

j + ∆t∆hun+1,

in which the part of the solution above the threshold is used
as a boundary condition.
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Treatment by a Min-Max scheme

un+1
j = min

µ∈S1

(

max(I[un](xj +
√

2∆tµ), I[un](xj −
√

2∆tµ)
)

The minmax operation basically selects the direction orthogonal to
Du, but does not require a special handling of stationary points.

• Advantages:

• defined also at singular points
• monotone by construction

• Drawbacks: more expensive and less accurate

References: Catté - Dibos - Koepfler, Kohn - Serfaty
(semi-discrete versions).
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Convergence

All the versions of the scheme are consistent (for a suitable ∆t/∆v
relationship), but only the minmax scheme is also monotone.
For the basic scheme, following Crandall & Lions, we introduce an
additional discretization parameter ρ and rewrite the scheme as

un+1
j − un

j

∆t
=

1

2ρ2

(

I[un](xj + σn
j ρ) + I[un](xj − σn

j ρ) − un
j

)

.

• convergence is proved for this scheme with a further vanishing
viscosity term (for monotonicity)

• three discretization parameters:
• ∆x space step
• ∆t time step
• ρ step for the second directional derivative
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Affine Morphological Scale Space

This model is a derivation of the MCM equation:







ut(x, t) = div
(

Du(x,t)
|Du(x,t)|

)1/3
|Du(x, t)|

u(x, 0) = u0(x).
(5)

• the collection of images (x → u(x, t))t≥0 satisfying (5)
represents the Affine Morfological Scale Space

• existence and uniqueness in the class of viscosity solution.

References: Alvarez - Guichard - Lions - Morel, Sapiro -
Tannenbaum
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Affine Morphological Scale Space

The AMSS is the only semigroup Tt : u0 → u(·, t) s.t.

Monotonicity if u ≤ v, then Tt(u) ≤ Tt(v) (no enhancement of
the original image, just smoothing)

References: Alvarez - Guichard - Lions - Morel
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Affine Morphological Scale Space

The AMSS is the only semigroup Tt : u0 → u(·, t) s.t.

Monotonicity if u ≤ v, then Tt(u) ≤ Tt(v) (no enhancement of
the original image, just smoothing)

Grey scale invariance Tt(g ◦ u) = g ◦ Tt(u), g monotone scalar
function (independence from the grey-level scale)

References: Alvarez - Guichard - Lions - Morel
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Affine Morphological Scale Space

The AMSS is the only semigroup Tt : u0 → u(·, t) s.t.

Monotonicity if u ≤ v, then Tt(u) ≤ Tt(v) (no enhancement of
the original image, just smoothing)

Grey scale invariance Tt(g ◦ u) = g ◦ Tt(u), g monotone scalar
function (independence from the grey-level scale)

Translation invariance Tt(τh ◦ u) = τh ◦ Tt(u), h ∈ R
2 and

τhf(x) = f(x + h) (independence of image analysis
from change of position of objects)

References: Alvarez - Guichard - Lions - Morel
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Affine Morphological Scale Space

The AMSS is the only semigroup Tt : u0 → u(·, t) s.t.

Monotonicity if u ≤ v, then Tt(u) ≤ Tt(v) (no enhancement of
the original image, just smoothing)

Grey scale invariance Tt(g ◦ u) = g ◦ Tt(u), g monotone scalar
function (independence from the grey-level scale)

Translation invariance Tt(τh ◦ u) = τh ◦ Tt(u), h ∈ R
2 and

τhf(x) = f(x + h) (independence of image analysis
from change of position of objects)

Affine invariance Tt(u ◦ φ) = Tt·det|φ|u ◦ φ, φ affine map
(invariance of image analysis under any planar
projection of a planar shape)

References: Alvarez - Guichard - Lions - Morel
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Affine invariance
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Some references

• Finite Difference scheme (FDS)
(Guichard - Morel)

• Level Lines Affine Shortening (LLAS)
The algorithm has three steps:

• extraction of the level lines of the bilinear interpolation of the
initial image (Monasse - Guichard);

• independent evolution of each level line by affine curve
shortening (Moisan - Koepfler - Cao);

• reconstruction of a new image from the evolved level lines.

(Ciomaga - Monasse - Morel)
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Properties of the MCM
1/3 operator

Define curv(u) = div
(

Du(x,t)
|Du(x,t)|

)

and observe

|Du|curv(u)
1

3 = (|Du|3curv(u))
1

3 ,

and

|Du|3curv(u) = |Du|2(|Du|curv(u)) =

|Du|2
(

σ̂(Du)tD2uσ̂(Du) 1
|Du|2

)

= σ̂(Du)tD2uσ̂(Du),

where σ̂(Du) := (Du)⊥.
Then (5) can be rewritten as

ut = (σ̂(Du)tD2uσ̂(Du))1/3

Reference: Guichard - Morel, “Image Analysis and PDEs”



The MCM equation Semi-Lagrangian scheme The AMSS model Area Preserving Flows

Construction of the SL scheme

• ∆x-Central Finite Difference
Dn

j ≃ Du(xj , tn) and σ̂n
j ≡ σ̂(Dn

j ) = (Dn
j )⊥
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Construction of the SL scheme

• ∆x-Central Finite Difference
Dn

j ≃ Du(xj , tn) and σ̂n
j ≡ σ̂(Dn

j ) = (Dn
j )⊥

• ρ-Discretization of directional derivative

σ̂(Du)tD2uσ̂(Du) ≃
u(xj + ρσ̂n

j , t) + un(xj − ρσ̂n
j , t) − 2un

j

ρ2
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Construction of the SL scheme

• ∆x-Central Finite Difference
Dn

j ≃ Du(xj , tn) and σ̂n
j ≡ σ̂(Dn

j ) = (Dn
j )⊥

• ρ-Discretization of directional derivative

σ̂(Du)tD2uσ̂(Du) ≃
u(xj + ρσ̂n

j , t) + un(xj − ρσ̂n
j , t) − 2un

j

ρ2

• ∆t-Discretization of time derivative

un+1
j − un

j

∆t
=

(

un(xj + ρσ̂n
j , t) + un(xj − ρσ̂n

j , t) − 2un
j

ρ2

)

1

3
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Construction of the SL scheme

• ∆x-Central Finite Difference
Dn

j ≃ Du(xj , tn) and σ̂n
j ≡ σ̂(Dn

j ) = (Dn
j )⊥

• ρ-Discretization of directional derivative

σ̂(Du)tD2uσ̂(Du) ≃
u(xj + ρσ̂n

j , t) + un(xj − ρσ̂n
j , t) − 2un

j

ρ2

• ∆t-Discretization of time derivative

un+1
j − un

j

∆t
=

(

un(xj + ρσ̂n
j , t) + un(xj − ρσ̂n

j , t) − 2un
j

ρ2

)

1

3

• Interpolation on characteristics feet

un+1
j = un

j +∆t

(

I[un](xj + ρσ̂n
j ) + I[un](xj − ρσ̂n

j ) − 2un
j

ρ2

)

1

3
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Convergence

• consistency (in the weak sense) is checked under suitable
relationship between ∆x, ∆t and ρ

• monotonicity is enforced for the version with a vanishing
viscosity term

• convergence follows from Barles–Souganidis theorem

References: Carlini - Ferretti, Mengucci (Tesi di Laurea)
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Filtering a noisy image – MCM

Noise 50% MCM



The MCM equation Semi-Lagrangian scheme The AMSS model Area Preserving Flows

Filtering a noisy image – MCM vs. MCM
1/3

MCM AMSS
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Filtering a ’pixelled’ image
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Comparison: Level Lines Affine Shortening
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MCM
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∆t = 0.2, C = 0.005, niter = 80
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SL
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Comparison: SL scheme vs Level Lines Affine Shortening
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Comparison: SL scheme vs Level Lines Affine Shortening

LLAS SL
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Comparison: SL scheme vs Level Lines Affine Shortening
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Semi-Lagrangian scheme for Area Preserving Flows

To preserve the enclosed area while smoothing the curve the
following level set model has been proposed

{

ut = div
(

Du(x,t)
|Du(x,t)|

)

|Du| − π
A0

x · Du

u(x, 0) = u0(x)
(6)

• A0 is the area of the initial set Ω0.

• the new term − π
A0

x ·Du represents a transport along a vector
field with unit divergence which, assuming the origin is
contained in Ω0, has the effect to push outwards the interface
so that the area is preserved.

References: Sapiro - Tannenbaum
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Semi-Lagrangian scheme for Area Preserving Flows

• ∆x-Central Finite Difference

Dn
j ≃ Du(xj , tn) and σn

j ≡ σ(Dn
j ) =

(

Dn
j

|Dn
j
|

)⊥
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Semi-Lagrangian scheme for Area Preserving Flows

• ∆x-Central Finite Difference

Dn
j ≃ Du(xj , tn) and σn

j ≡ σ(Dn
j ) =

(

Dn
j

|Dn
j
|

)⊥

• Interpolation on characteristics feet by a I[·] bi-linear
interpolation
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Semi-Lagrangian scheme for Area Preserving Flows

• ∆x-Central Finite Difference

Dn
j ≃ Du(xj , tn) and σn

j ≡ σ(Dn
j ) =

(

Dn
j

|Dn
j
|

)⊥

• Interpolation on characteristics feet by a I[·] bi-linear
interpolation

• Fully-discrete

un+1
j =

1

2

[

I[un]
((

1 − ∆t
π

A0

)

xj +
√

2∆t σn
j

)

+I[un]
((

1 − ∆t
π

A0

)

xj −
√

2∆t σn
j

)]

References: Carlini - Ferretti, Balzerani (Tesi di Laurea)
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Numerical Tests

Figure: Original star shape (top), star shape with random droplets
(center) and filtered by APMCM (bottom)
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Numerical Tests
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Figure: APMCM flow (blue line) and Initial shape (red line)
corresponding to the value u = 0.5
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Area Comparison APMCM vs MCM
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Figure: Area evolution An, n = 0, . . . , 50 for APMCM (left) MCM(right)
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Numerical Tests

Figure: Noisy image, obtained Gaussian noise, and filtered image
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Numerical Tests
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Figure: Area evolution: An, n = 0, . . . , 5. Real image with Gaussian
noise
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Numerical Tests

Figure: Noisy 3d shape, APMCM filtering
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Numerical Tests

Figure: Noisy 3d shape, APMCM filtering
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Numerical Tests

Figure: Noisy 3d shape, APMCM filtering
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Numerical Tests

Figure: Noisy 3d shape, APMCM filtering
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