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SHAPES WITH OCCLUSIONS



OVERLAPPING PARTITIONS OF R2

Model for image segmentation that incorporates (partially) the
way that an image g derives from a 2D projection of a 3D scene.

Structure of the model:

(i) a collection of overlapping sets with finite perimeter

{E1, . . . , En}, Ei ⊂ R2 ∀i

(ii) a function ψ ∈ BVloc(R2; N) with integer values defined by{
ψ(x) ∈

{
i ∈ {1, . . . , n} : x ∈ Ei

}
ψ(x) = 0 if x /∈ ∪ni=1Ei.

The set {x ∈ R2 : ψ(x) = i} represents the visible part of Ei.



THE FUNCTION Ψ REPRESENTS VISIBLE REGIONS
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A FUNCTIONAL FOR IMAGE SEGMENTATION WITH OCCLUSIONS

(iii) a function u ∈ SBVloc(R2) with ∇u ≡ 0, as in piecewise con-
stant Mumford-Shah segmentation, such that the inclusion
Ju ⊆ Jψ between the sets of jumps holds.

We define the functional

Gλ(u, n, {E1, . . . , En}, ψ) = λ
∫
R2

(u− g)2dx+
n∑
i=1

F(Ei)

where g ∈ L∞(Ω) with compact support is the input image.

F(Ei) is a curvature depending functional that is added to an
energy of the Mumford-Shah type.



CURVATURE DEPENDING PART

Gλ(u, n, {E1, . . . , En}, ψ) =
∫
R2

(u− g)2dx+
n∑
i=1

F(Ei)

F(Ei) is a curvature depending functional:

F(Ei) :=
∫
∂Ei

[1 + |κi(x)|p]dH1(x)

κi(x) is the curvature of ∂Ei at x, p > 1.

The functional G is defined on the domain

D =
{

(u, n, {E1, . . . , En}, ψ) : Ju ⊆ Jψ ⊆ ∪ni=1∂
∗Ei

}



EFFECT OF CURVATURE

F(Ei) =
∫
∂Ei

[1 + |κi|2]dH1

E_1 E_2
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THE NITZBERG-MUMFORD-SHIOTA FUNCTIONAL

Partial ordering of sets Ei that represents relative depth

if i < j then Ei occludes Ej

The visible part of the region Ei is the set E′i:

E′1 = E1, E′i = Ei \
i−1⋃
j=1

Ej

Energy of an ordered family of overlapping regions:

G0
λ(E1, . . . , En) = λ

n+1∑
i=1

∫
E′i

(ci − g)2dx+
n∑
i=1

F(Ei)

ci are constants and E′n+1 is the background region.

Interwoven shapes are not allowed.



VALUES OF Ψ FOR INTERWOVEN SHAPES
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A SIMPLE, SPECIFIC INSTANCE OF g FUNCTION

Let M ∈ N and {p1, . . . , p2M} ⊂ R2; let {D1, D2} ⊂ C2(R2) be

connected sets with the following properties (not interwoven):

D1 ∩D2 6= ∅, ∂D1 ∩ ∂D2 = {p1, . . . , p2M}.

∂D1 and ∂D2 intersect transversally at {p1, . . . , p2M},

g(x) = c1χD1
(x) + c2χD2\D1

(x), (c1, c2) ∈ R2

We have g ∈ SBVloc(R2) with ∇g ≡ 0, and

Jg = ∂D1
⋃

(∂D2 \D1) .

We refer to Jg as the set of visible boundaries of the image g.

The set ∂D2 \D1 is the visible part of the boundary ∂D2.



SETS D1 and D2
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CASE M=1: ELASTICA

∂D1 ∩ ∂D2 = {p1, p2}: we consider the curves joining p1 and p2.

Σ({D1, D2}) is the set of all curves σ of class W2,p such that

σ(0) = p1, σ(1) = p2;
dσ
dt (0) is parallel to the tangent line Tp1(∂D2) of ∂D2 at p1,
dσ
dt (1) is parallel to the tangent line Tp2(∂D2) of ∂D2 at p2.

The variational problem

(P)1 min {F(σ) : σ ∈ Σ({D1, D2})}

has a solution, which is called an elastica curve.



SPECIAL ASSUMPTION ON ELASTICA

Let σ̂ be a solution of the variational problem (P)1 such that
(σ̂) ⊂ D1

If σ̂ is simple then the set (σ̂)∪(∂extD2 \D1) can be parameterized
by means of a closed simple curve γ̂.

We say that the set of visible boundaries Jg admits a simple
completion if there exists a simple curve σ̂ solving the variational
problem (P)1 and such that (σ̂) ⊂ D1, and

∂intD2 \D1 ⊂ {x ∈ R2 which are inside γ̂}.

The inside of γ̂1 is the set of points of index I(γ̂, x) = 1.

The visible holes of D2 are in the inside of γ̂.



CONSTRUCTION OF A COMPETITOR SET
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A SET THAT WE ARE NOT ABLE TO RECONSTRUCT (FAR HOLE)
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PROBLEM

Starting from the grey level datum g we try to understand when

the functional

Gλ(u, n, {E1, . . . , En}, ψ) = λ
∫
R2

(u− g)2dx+
n∑
i=1

F(Ei)

is asymptotically (as λ→ +∞) minimized by just two sets:

n = 2, E1 = D1, E2 = D̂2

D̂2 is constructed by completing the visible boundaries of D2

∂D2 \D1

with an elastica connecting the points p1, p2.

Then ψ will give an information about the visible regions of sets.



RESULTS IN THE CASE M = 1

Let w be the collection

w := (u, n, {E1, . . . , En}, ψ).

We denote by W the set of all collections w. The domain of
the functional Gλ is

D :=
{
w ∈ W : Ju ⊆ Jψ ⊆ ∪ni=1∂

∗Ei
}
,

The constraint Ju ⊆ Jψ is not closed.

Theorem 1 Assume that the set of visible boundaries Jg admits
a simple completion. Then we have

lim
λ→+∞

inf
w∈D

Gλ(w) =
∫
Jg\{p1,p2}

[1 + |κ(x)|p] dH1(x)

+ min
σ∈Σ({D1,D2})

F(σ).



RESULTS IN THE CASE M = 1

Proposition 1 Assume that the set of visible boundaries Jg ad-

mits a simple completion. Then we have

min
(n,{E1,...,En})


n∑
i=1

F(Ei) : Jg ⊆ ∪ni=1∂
∗Ei

 = F(D1) + F(D̂2)

=
∫
Jg\{p1,p2}

[1 + |κ(x)|p] dH1(x) + min
σ∈Σ({D1,D2})

F(σ).



RESULTS IN THE CASE M = 1

Collecting the previous results we obtain a corollary, which shows

the link between the asymptotic property of functional Gλ and

the variational problem considered in Proposition 1.

Corollary 1 Assume that the set of visible boundaries Jg admits

a simple completion. Then we have

lim
λ→+∞

inf
w∈D

Gλ(w) = min
(n,{E1,...,En})


n∑
i=1

F(Ei) : Jg ⊆ ∪ni=1∂
∗Ei


= F(D1) + F(D̂2).



CASE M > 1 AND D1 WITH CONNECTED BOUNDARY

We assume that the set D1 has connected boundary.

∂D1 ∩ ∂D2 = {p1, . . . , p2M}.

We denote T-junctions the points p1, . . . , p2M .

By means of an oriented parametrization of ∂D1 the T-junctions
p1, . . . , p2M can be ordered along ∂D1 in such a way that

p1 < p2 < · · · < p2M .

We say that two T-junctions pi and pj with pj > pi are compatible
if j − i− 1 is either 0 or an even integer.

Compatibility will permit us to consider families of elastica curves
joining pairs of T-junctions without crossings.



ELASTICA CONNECTING PAIRS OF COMPATIBLE T-JUNCTIONS

D

p
p

2

1

p
p

p2
6 5 4

p
3

1

3

12

D



ELASTICA CONNECTING PAIRS OF COMPATIBLE T-JUNCTIONS

Σ({D1, D2}) is the set of families of curves {σ1, . . . , σM} s.t.

σi(0), σi(1) ∈ {p1, . . . , p2M}, with σi(0) and σi(1) compatible, ∀i;

there exists a bijective application

between {p1, . . . , p2M} and {σ1(0), σ1(1), . . . , σM(0), σM(1)}

for any i ∈ {1, . . . ,M}
dσi

dt (0) is parallel to the tangent line Tσi(0)(∂D2) of ∂D2 at σi(0),

dσi

dt (1) is parallel to the tangent line Tσi(1)(∂D2) of ∂D2 at σi(1).



SPECIAL ASSUMPTION ON ELASTICAE

The variational problem

(P)2 min


M∑
i=1

F(σi) : {σ1, . . . , σM} ∈ Σ({D1, D2})


has a solution.

We say that the set of visible boundaries Jg admits a simple
completion if there exists a family {σ1, . . . , σM} of simple curves
solving the variational problem (P)2 such that σi(0) and σi(1)
are compatible T-junctions for any i, and

(σi) ⊂ D1 for any i ∈ {1, . . . ,M},(
(σi) ∩ (σj)

)
\ ∂D1 = ∅ for any i, j ∈ {1, . . . ,M}, i 6= j.

The property that each elastica joins compatible T-junctions is
a necessary condition in order that elasticae do not intersect.



CONSTRUCTION OF A COMPETITOR SET
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RESULTS IN THE CASE M > 1

First, we prove an asymptotic result for the functional Gλ as

λ→ +∞.

Theorem 2 Assume that the set of visible boundaries Jg admits

a simple completion. Then we have

lim
λ→+∞

inf
w∈D

Gλ(w) =
∫
Jg\{p1,...,p2M}

[1 + |κ(x)|p] dH1(x)

+ min


M∑
i=1

F(σi) : {σ1, . . . , σM} ∈ Σ({D1, D2})

 .



RESULTS IN THE CASE M > 1

Then we find a minimizer for the following variational problem.

Proposition 2 Assume that the set of visible boundaries Jg ad-

mits a simple completion. Then we have

min
(n,{E1,...,En})


n∑
i=1

F(Ei) : Jg ⊆ ∪ni=1∂
∗Ei

 = F(D1) + F(D̂2)

=
∫
Jg\{p1,...,p2M}

[1 + |κ(x)|p] dH1(x)

+ min


M∑
i=1

F(σi) : {σ1, . . . , σM} ∈ Σ({D1, D2})

 .



RESULTS IN THE CASE M > 1

Collecting the previous results we obtain the following corollary,

which shows the link between the asymptotic property of func-

tional Gλ and the variational problem considered in Proposition

2.

Corollary 2 Assume that the set of visible boundaries Jg admits

a simple completion. Then we have

lim
λ→+∞

inf
w∈D

Gλ(w) = min
(n,{E1,...,En})


n∑
i=1

F(Ei) : Jg ⊆ ∪ni=1∂
∗Ei


= F(D1) + F(D̂2).



VALUES OF Ψ FOR INTERWOVEN SHAPES
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INTERWOVEN SHAPES

Analogous results should be obtained for interwoven shapes, at

least in the case of connected sets D1 and D2 having connected

boundaries ∂D1 and ∂D2.

Work in progress...



APPROXIMATION BY Γ–CONVERGENCE

The building block of the variational model is the functional

F(E) =
∫
∂E

[1 + |κ|2]dH1, (p = 2)

The functional F can be approximated by means of a family of
functionals (Fε)ε in the sense of Γ-convergence:

Fε(u) =
∫

Ω

[
ε|∇u|2 +

V (u)

ε

]
dx+

1

2ε

∫
Ω

[
2ε∆u−

V ′(u)

ε

]2

dx

where Ω ⊂ R2 is a bounded image domain and the potential V
is given by V (u) = u2(1− u)2.

When ε → 0+ the family of functionals (Fε)ε Γ-converges to
the functional F. The functionals (Fε)ε depend on a smooth
function u and are more convenient for numerical computation.



RELAXATION OF THE GEOMETRIC PART

F(E) =
∫
∂E

[1 + |κ(x)|p] dH1(x)

The functional F is not lower semicontinuous with respect to
the L1(R2) convergence of characteristic functions of sets.

The functional F is defined on the family M of measurable sets

F(E) :=


∫
∂E

[1 + |κ(x)|p] dH1(x) if E ∈ C2(R2)

+∞ elsewhere on M

and it is relaxed (Bellettini, Dal Maso and Paolini (1993)):

F(E) = inf

{
lim inf
h→+∞

F(Eh) : {Eh} ⊂ C2, χEh → χE in L1(R2)

}





THE CONSTRAINT Ju ⊆ Jψ IS NOT CLOSED

arc of multiplicity 2



THE FUNCTIONAL F ON SYSTEMS OF CURVES

Let γ : [0,1]→ R2 be a closed curve of class W2,p.

trace of γ: (γ) = {γ(t) : t ∈ [0,1]}

A system Γ of curves is a finite family of closed curves of class

W2,p:

Γ = {γ1, . . . , γm}, (Γ) =
m⋃
i=1

(γi)

Functional F on the system Γ:

F(Γ) =
m∑
i=1

∫ l(γi)
0

[1 + |κ|p]ds

where l(γ) is the length of γ and s is the arclength.


