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Image Recovery 
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Continuous degradation model: 

 
 

 

 

 

 

 

 
Integral equation can be expressed as 

 

 

Perturbed observed image 

Degradation model 

f k u e  

Point Spread Function 

Blur and noise-free image Data noise 



Space variant - space invariant blur 
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Hand shaking Object motion 

Blur is the same 

Blur is different 

5 / 25 

Two causes for motion blur 
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Continuous degradation model: 

 
 

 

 

 

 

Integral equation can be expressed as 

 

 

Discretization yields 
 

 

with matrix K  block Toeplitz with Toeplitz blocks 

Perturbed observed image 

Degradation model 

f k u e  

f = Ku

Point Spread Function 

Blur and noise-free image Data noise 



Solution Ku=f: add 0.1% noise to rhs 

u=K-1f 

u=K-1f 
-1 -1 -1 -1

f = f + e

u = K (f + e) = K f + K e = u + K e

Shaw.m 



Regularization 

• Minimize the energy functional 
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Data term: enforces the match 

between the sought image and the 

observed image via the blur model 
 
 
 

Smoothness term: brings in 

regularity assumptions about the 

unknown image 
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Regularization: discrete setting 
 

Solve the minimization problem 
 

• A is a regularization operator, λ  is a positive regularization parameter that controls 

the trade-off between the data fitting term and the regularization term. 

 

 

 p = 2, q = 2,   Tikhonov regularization 

 

 p = 2, q = 1,   TV regularization (ℓ2-TV) A(u) the       
  gradient magnitude of u.  

 

 p = 1, q = 1,   TV regularization (ℓ1-TV) A(u) the       
  gradient magnitude of u.  

 10 
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Regularization: TV 

 
 

•  

 

 

 

•with 

•representing the ith rows of the x and y-directional finite 
difference operators, respectively 
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ℓ1-TV regularization 

ℓ1-TV regularization  

has problems in preserving textures 

blocky smoothed image 



Adaptive Fractional  (AF) 

Variational model  

Replace the TV regularization term ∥u∥TV with a spatially 

adaptive fractional order TV regularization term. 

 

• fractional order a of derivatives to better preserve textures, 

• spatial adaptivity of a in order to allow flexibility in choosing 

the correct regularizing operator, 

• spatial adaptivity of λ in order to locally control the extent of 

restoration over image regions according to their content, 

• effective texture detection methodology based on the 

noise auto-correlation energy which makes no assumption 

about the noise level of the image. 



Adaptive Fractional  

Variational model  

 1 1
Ku - f

u
min A ( u ) ,a

where   
  

     n2 × n2    diagonal matrix  i representing the regularization  

       parameter for the ith pixel,  

             ai represents the fractional order of differentiation 

       for the ith pixel,  

       is the fractional-order discrete gradient operator,   

       with components representing the x and y-   

       directional fractional finite difference operators. 
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Fractional derivatives for texture 

preserving 
a1.0 a1.5 

a1.8 a2.0 

ℓ1-TV model  

preserves 

edges 

but fails to 

preserve fine 

scale features 

such as 

textures 

The high-pass 

capability becomes 

stronger with 

larger a 



Adaptive Fractional Variational 

Algorithm  
First phase:     apply the texture detector to the observed image f to obtain 

a texture map.  

 

 The texture map is partitioned into C subclasses according 

to the texture measure. 

 

 

 

 The regularization parameters λi in the diagonal matrix Λ

 are then chosen according to ai’s;  

 Non-texture class has λ = 1.0 

  

 

Second phase: apply TV regularization (ℓ1-TV) to the non-texture  regions  

 apply a fractional order  TV  regularization  (ℓ1-TVa) in the 

texture classes.  

 

if  the ith pixel belongs to the non - texture class

if  the ith pixel belongs to one of the C texture subclasses
1

1

ˆ ˆ, ...,i

C

a
a a


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The numerical algorithm 
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where  

Ki    is the i-th row of K,  

fi    is the intensity of the i-th pixel of the observed image 

(**) 



The numerical algorithm 

[a] M. Nikolova and R. Chan, The equivalence of half-quadratic minimization and the gradient 

 linearization iteration, IEEE Trans. Image Proc.,vol. 16, pp. 1623–1627, 2007. 

[b] D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization and 

 FFTs, IEEE Trans. Image Proc., vol. 4, pp. 932–946, 1995. 

Half-quadratic regularization 
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Alternating minimization 

procedure 
 
 
 
 
 
 
 
 
 
For each iteration step k: 

 

1.  Explicit solution:  

 

 

2.  Explicit solution 

 

 

3.  Compute  u by imposing  
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For each iteration step k = 0, 1, . . ., we solve successively 
 



Alternating minimization 

procedure 
 

3. Compute  u by solving  
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discretization matrix of the adaptive fractional gradient operator 

 

diagonal matrix of the adaptive regularization parameters 



Adaptive-Fractional (AF) Algorithm 

Input:    degraded image f , number of texture classes C; 

Output:  approximate solution u(k) of (**); 

 

 1.  {i, ai ,i = 1,..,n2 } = TD(f;C)   compute the texture-adaptive                                                        

         parameters  on the degraded image f; 

       2. Initialize the iterative process by setting u(0) = f; 

 3. For k = 1, 2, . . . until convergent, solve 

 

 

 

           endfor 

       ( ) ( ) ( 1) ( )ˆ ˆ
T

k T k k T k
D u G K D u K u K D u f

a a

  

   
  

G



 Solver:    the conjugate gradient method 

 Stopping criterium: norm of the residual is less than or equal to 10-4.  

 No storage problems  for  large dimension matrices K and Ga 

 the only requirement is matrix-vector products.  

 The product which involves matrix K makes use of FFT convolution. 

 

How to compute  the matrix-vector product     ( 1)ˆ ˆ( )
T k
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Convergence 

1

4 iw

Theorem  
 

For the sequence u(k) generated by the half-quadratic AF Algorithm, if 

                 

                                                                                                 (*) 

we have: 

 

•                          is monotonic decreasing and convergent; 

 

•        

 
•                         converges to the unique minimizer u*  of (u) from any initial guess u(0) 

     

Remark: in our case, for a ∈ [1, 2], ker((Ga)TGa) is spanned at most by the two vectors: 1n
2 , a  n2 

vector of ones, and (1, 2, . . . , n2), while the blurring matrix K is a low-pass filter.  
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Grunwald-Letnikov  

Fractional-order derivatives 
The discrete fractional-order gradient at a pixel (i, j) is defined as 
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where L > 0 is the number of pixels used 

for the approximation, and a
s , for a 

generic a = ai,j, are the real coefficients 

defined as 
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The generalized binomial coefficients         are computed by the following 

recurrence relationships 
s
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For a = 1 and a = 2 the coefficients exactly vanish for s > 1 and s > 2, respectively, 

and in fact they reduce to the discretizations of the first and second order derivatives 

respectively.  
 
Finally, we point out that the coefficients sum up to zero independently on α ∈ [1, 2]. 

Grunwald-Letnikov  

Fractional-order derivatives 

( 1)
( 1) ( 1) ,      ,   
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s s

s
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s ss

a a a
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a
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     

Coefficients  a
s   for different values of a ∈ [1, 2]  and increasing s values.  

Only the first ten coefficients a
0,…,a

9  are reported since they vanish to zero very fast. 

the first fourth s values the remaining coefficients in a 

different plot scale 



Fractional-order Gradient 

operator 
  2 2

,      2     matrix
x y

G G G n n
a a a 

Non-adaptive a, Assuming Dirichlet homogeneous boundary    

         conditions 

block Toeplitz withToeplitz blocks            

  

x n

y n

G I U

G U I

a a

a a

 
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⊗     denotes the Kronecker product,  

In     is the n-order identity matrix  

Ua    is the n×n Toeplitz lower triangular banded matrix whose first column is  

        (a
0,

a
1,…,a

L-1) 

Adaptive a, the two matrices retain the same sparsity structure but 

are no longer Toeplitz: each row will contain different coefficients 

depending on the fractional-order of differentiation selected for the 

corresponding pixel 



Numerical Experiments 

 1
Ku - f

TVu
min u ,ℓ1-TV method 

ℓ2-TV method    Rudin-Osher-Fatemi model 

 = 0.1 

AF algorithm 

ai = 1,   i = 0.1,   for all i  in the difference matrix Ga and in the diagonal matrix  

 = 10−3 ,    = 10−6 ,  the number of nodes L = 8   

Signal-to-Noise Ratio (SNR) 10

ˆ( )
ˆ( , ) : 10log

ˆ

u E u
SNR u u dB

u u






u   available approximation of the desired blur- and noise-free image  û  
E(û )    mean gray-level value of the uncorrupted image 

Neumann homogeneous boundary conditions for the difference matrix Ga 



Numerical Experiments 

The matrix K  represents a Gaussian blurring operator  

generated by the Matlab function blur.m in Regularization Tools 

[P.C.Hansen].  

 

Band specifies the half-bandwidth of the Toeplitz blocks 

Sigma  is the variance of the Gaussian point spread function.  

 

The larger sigma, the more blurring.  

Enlarging band increases the storage requirement, the arithmetic 

work required for the evaluation of matrix-vector products with K, 

and to some extent the blurring. 



Numerical Experiments 

f   contaminated either by additive Gaussian noise or by salt-and  

pepper noise.  

 

In the case of Gaussian noise,  

             blurred image  

                               e represents the noise.  

 

    noise-level 

 

In the salt-and-pepper noise white and black pixels randomly 

occur, while unaffected pixels always remain unchanged.  

The salt-and-pepper noise is quantified by the percentage of 

corrupted pixels 

 

 

2n
f 

f f e 

e

f
 



Numerical Experiments 

We partitioned the texture-map only into four classes,  

three texture classes and one non-texture class,  

associated fractional order and regularization parameter values  
 

a1 = 1.9, 1 = 0.05,  a2 = 1.8, 2 = 0.05,  
a3 = 1.7, 3 = 0.05   a4 = 1.0, 4 = 1.0,  
 
For this particular case, the diagonal entries of the matrix Λ may 

assume one of the four different values 1 ,2 ,3 and 4. 

The core of the algorithm:  

outer iteration loop (step 3) : at most 10 outer iterations 

inner iteration loop required by CG for the linear system:  

     with 10−4 as stopping tolerance  - an average of 18 inner iterations.   



Example 1 

%5 salt-and-pepper noise 

 

Gaussian blur,  

band = 3 , sigma = 1.5 
AF 



texture map                                    texture classes 

Example 1 



       ℓ2-TV AF 

Example 1 



Example 2 

true  

image 
255x255 

Observed image 
spatially-invariant Guassian blur 

band = 3  

sigma = 1.5,  

10% noise 

texture  

map 



ℓ1-TV ℓ2-TV AF 

Example 2 



      true image 510x510                observed image 
             Gaussian blur, band = 3. sigma =1.5, 10% Gaussian noise 

Example 3 



texture map from original              texture map from corrupted 

Example 3 



               ℓ1-TV                                  AF 

Example 3 



Example 4 

True image 

256x256      
    

SNR=8.17 

Observed Image 

10% Gaussian noise 

Gaussian blur  

band = 3 , sigma = 1.5 



texture map                         texture classes 

 

Example 4 



Example 4 

  AF          %10 Gaussian noise 

            Gaussian blur 

              band = 3 , sigma = 1.5 

SNR=8.17 SNR=9.79 



Example 4 

  AF               ℓ1-TV   
       
             
               

SNR=8.44 SNR=9.79 
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Regularization: adaptive norm 
 

Solve the minimization problem 
 

A is a regularization operator, λ  is a positive regularization parameter that controls the trade-

off between the data fitting term and the regularization term. 

 

 p = 2, q = 2,   Tikhonov regularization Gaussian noise, oversmoothed 

 

 p = 2, q = 1,   TV regularization (ℓ2-TV) 

 p = 1, q = 1,   TV regularization (ℓ1-TV)  Impulse noise, blocky restored  images) 

 

 

Main goal: adaptively consider a suitable norm  (q = 1 or q = 2) driven by  a 
coherence map of  the  image structures (smooth regions or edges). 

 

 

Ku - f u
p q

p qu
min A( ) ,

q

 
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Gaussian noise  
band = 5, sigma = 3 

noise 5% 
p = 2, q = 2,  

SNR = 9.62 

adaptive-norm p = 1 

 SNR = 20.93 

L1-TV  p = 1, q = 1 

SNR = 20.30 

Adaptive Norm (AN) 

image restoration model  
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Coherence matrix construction 

1. Compute  the tensor matrix 

 

 
2. Compute  1   2  eigenvalues of Sd 

 
 
 
 
 
 
 
 
 

  S ( u ) : K u ud  d      

Kd  is a Gaussian kernel 

The matrix Sd is symmetric positive semi-definite and its 

eigenvalues 1   2  integrate the variation of the gray values 

within a neighborhood of size O(d).  

 
1 = 2 =0      constant areas,  
1  >> 2 =0  straight edges. 
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Coherence matrix construction 

 

3. Compute normalized coherence value at pixel i-th 

 

 

 

 

 

4. Construct the diagonal matrix C        
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Adaptive Norm (AN) 

image restoration model 
 

Solve the minimization problem 
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p q

p qu
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C diagonal coherence 

matrix 
Regularization operator 



Alternating minimization procedure 

 
 
 
 
 
 
 
 
 
For each iteration step k: 

 

1.    Explicit solution:  

 

 

2.   Explicit solution 

 

3.  Compute  u by solving  
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 





 



  







L

L

L

L

1
1 1

2
i( k ) ( k )

i iv u
a




  

1
1 1

2

( k ) ( k )
i i iw K u f




  

For each iteration step k = 0, 1, . . ., we solve successively 
 

1
1 2

T ( k ) T T ( k ) ( k ) T ( k )ˆA CD ( u )CA L ( I C )L K D ( u )K u K D ( u ) f        
 
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Example 1 

corrupted image (SNR = 9.43) 

Band=5, sigma=3 Noise 2% 
coherence map 
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Example 1 

Restoration by AN    p = 1,  

1= 0.5,  2 = 80  (SNR=17.47) k = 10 

Restoration  by L1-TV, p = 1,q = 1   

= 0.5   (SNR = 17.15) 
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Example 2 

Gaussian noise  

band = 7, sigma = 5 

Noise 2% 

L2-TV , p = 2, q = 1   

= 10    

SNR = 10.68 

AN , p = 1,  

1= 0.2, 2 = 10  

SNR=16.76. 
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Example 2 

band sigma %noise SNR (L1-TV) SNR (AN) 

7 

7 

7 

7 

5 

5 

5 

5 

1% 

2% 

5% 

10% 

22.09 

20.08 

16.74 

13.69 

22.90 

20.95 

17.61 

15.20 

5 

5 

5 

5 

3 

3 

3 

3 

1% 

2% 

5% 

10% 

23.63 

21.07 

18.02 

15.10 

24.53 

22.16 

18.76 

15.68 

3 

3 

3 

3 

1 

1 

1 

1 

1% 

2% 

5% 

10% 

26.35 

23.20 

18.69 

14.62 

26.78 

23.98 

19.38 

15.35 

 



Conclusion  

  Spatially-Adaptive Methods for image deblurring and denoising. 

 Texture-preserving: the regularization operator is constructed by 

using fractional order derivatives 

 The choice of the fractional order for each pixel in the image 

is driven by the texture map of the image 

 The regularization parameters are also chosen adaptively 

according to the texture map.  

 Edge-preserving: norm adapted to the image features  

 Simple iterative alternating algorithms to solve the models based 

on the half-quadratic strategy. 

 
 

 

Thanks for your attention !  

  

 

 


