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A finite horizon diffusion control problem involving “discrete”
and “continuum” controls

Maximize

J(t,x,p,u) = E [ftT e~ Jr o (&nun)dr pus (£ ug)dis
te ftT 6NT(ET’UT)dT¢(§T) | §t =x|

e & € R, the state process, satisfies the stochastic differential equation
dés = (s, Us)ds + o' (s, Us)dWs

o /1= (us)o<s<T, @nd u := (Us)o<s<T are admissible control processes,
s € M afinite setand us € U C RP,

o (Ws)s>0 is a d-dimensional Brownian motion,

e 4™(x,u) > 0 is the discount rate.

Define v : [0, T] x R — R, v(t, x) = sup,, , J(t, X, i1, U).



The Hamilton-Jacobi-Bellman (HJB) equation
Theorem

Under suitable assumptions, the value function v is the unique (continuous)
viscosity solution of the HJB equation

ov

% — H(x, v(t, x), Dv(t, x), D?v(t,x)) = 0,

x €RY, pt [0, T),
V(Tax):w(x)a XERda

satisfying also some growth condition at infinity (in space).

With the Hamiltonian:
Hix,r,p,T) = max H(x,r,p,T) ,
Hm(X7 r7 p? r) : max Hm!u(x7 r? p’ r) b
ueld

H™ (X, r,p,T) ::% tr (a’"(x, u)o™(x,u)" r) +fM(x,u)-p—8"(x,u)r +£7(x,u) .



Standard grid based discretizations solving HJB equations suffer the
curse of dimensionality malediction:

for an error of ¢, the computing time of finite difference or finite
element methods is at least in the order of (1/¢)9/2.

Some possible curse of dimensionality-free methods:

e Idempotent methods introduced by in the deterministic
case, and by in the stochastic case.

e Probabilistic numerical methods based on a backward stochastic
differential equation interpretation of the HJB equation, simulations and
regressions:

Quantization for stopping time problems.
Introduction of a new process without control: when
o does not depend on control; and

in the fully-nonlinear case.
Control randomization: .
Fixed point iterations: for semilinear PDE (which are
not HJB equations).
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A Finance example

Problem: pricing and hedging an option with uncertain volatility and
several underlying stock processes.

e The dynamics: d¢; = 0;£;dB;, where the Brownians B; have uncertain
correlations: (dB;, dB;) = p; jds.
o We know: 1 € cvx(M) with M a finite set.

o Maximize
J(t,x,p) = E(E(T))[&(t) =x] , with
= i — mi i d Ky — Ky
Wes) = AERT= g, TEIE

p(x) = (x—K)" —(x—Ka)", xeR,
xT =max(x,0), Ki <Kz .

K4 Ko




A Finance example

e Since the dynamics is linear, we can reduce to us € M.
e The parameters with respect to the previous model: M is a finite subset of
the set of positive definite symmetric matrices with 1 on the diagonal and

fm=0
=0
£M=0
[c™(&)a™()"1ij = oitioj&juij -
e Proposed with 2 stocks in and solved
using randomized control+regression.
e Solved in dimension 2 in with a probabilistic max-plus

method.
In both cases: o1 = 0.4, 0o =0.3, K1 = -5, K. =5, T =0.25, and

1 myp

M= {m= [m12 1

]mm:iﬂ} p=08.



The algorithm of

Decompose the Hamiltonian H of HIB as H = £ + G with

£0xrp.0) =g 1 (@00 + 1) -p . a(x) = o{x)e(x)

and 0rG > 0,forallx e R, re R,p e R4,T € Sg.

Theorem ( )
If v is the viscosity solution of HJB, X; is the diffusion with generator L:

dXt = f(Xt)dt +Q(Xt)dW[ 9 Xo =X

then Y; = v(t,X;), Z; = Dv(t, X;) and Ty = D?v(t, X;) satisfy the
second-order backward stochastic diff. eq.:

dY; = —G(X;, Y1, Zi, T1)dt + Z[ o(X;)dW,

dz; = Aidt + TdX;

Yr =(X7) .



Idea of the algorithm of : after time discretization, simu-

late X;, then apply a regression estimator to compute Y;

Denote by X the Euler discretization of X;:
X(t+ h) = X(1) + (X () h+ o(X()(Wern — W) -
The following is a time discretization of HJB:
Vit x) = Tep(V(t+ h,))(X), t€Th:={0,h2h,....T —h},
with
Te,n(9)(x) = DEp(8)(X) + hG(x, D p(8)(X), D n(8)(X). DEA(9)(X))
and Dih(qﬁ) the approximation of the ith differential of e"“¢ given by:
Di p(9)(x) =E(D'¢(X(t+ h)) | X(t) = x)
=E($(X(t+ )P n(Wern— Wi | X(t) = x), i=0,1,2,



Lemma ( )

When tr(a(x)~'0rG) < 1, 0rG is lower bounded by some > 0 matrix and G is
Lipschitz continuous, T; p is L-almost monotone on the set F of Lipschitz
continuous functions R — R, for some constant L = O(h):

QP eF, o<y = T(¢) < T($)+ Lsup(y - ¢)

e Then = convergence and error estimation of
the time discretization scheme.

e Under these conditions, and given the convergence of the regression
estimator approximating the D{,h(qb), the full
algorithm converges.

o Note that theoretically, the sample size necessary to obtain the
convergence of the estimator is at least in the order of 1/h%/2. Also the
dimension of the linear regression space should be in this order.



The critical constraint tr(a(x)~'9rG) < 1 does not allow in general to

handle the case of the Hamiltonian H directly, since it may be nonsmooth

and with noncomparable diffusion coefficients.

In particular, it fails for the finance example with |my2| = p > 0.5.
proposed a monotone scheme which combine

a usual finite difference scheme to the above scheme. This allows one to

relax the critical constraint, but still fails for the above finance example.

In , we only assumed that the Hamiltonians %™ satisfy

the critical constraint, and applied the above scheme to the Hamiltonians

H™, that is

VI(t,x) = Tea(V(t+ h,))(X), teTh,
Ten(9)(x) = ITE% th()(x)

with 7,7 constructed as above but with respect to a decomposition

H™ = L™+ G™ depending on m.

Here, we propose another approximation of E(D24(X(t + h)) | X(t) = x)
or D?¢(x) depending on the point x via o™ (x, u) and leading to a
monotone operator T; .



A monotone probabilistic scheme for fully nonlinear PDEs
Theorem

LetY € R9*‘ and denote A= Y X" . For a nonnegative integer k, consider
the polynomial

4
P k(W Z (=T w2z |l %* - K, w e RY
B 1 _ tr(A) Z, 1 125113 _
%=geener 0 K= g2 akpz o VN0

Forv e ¢}, and X as before, we have

E [Pea(h™/2(Wern — W) | X() = x| =0

h'E [v(t + b, X(t+ B))Pr ("2 (Woen — Wp)) | X(t) = x}
%tr(g(X)AgT (x) D?v(t, x)) + O(h) ,

where the error O(h) is uniform in (t, x) € [0, T] x RY



Let ¥(x, u) € RI*¢ be such that
o™(x, u)o™(x, u)" — a(x) = a(X)E"(x, U)E"(x, u) o(x)" .
Corollary (Consistency)

Define

GI¥(x,1,p) = G™(x,1,p.T) — g tr ((X)E"(x, ) E"(x, ) (X))

D2nzu(0)(X) i= h'E [6(X(t + h)Ps k(" /2(Wen — W) | X(1) = x|

Tin(8)(x) == DY p(4)(x)

+hmax  (G7(x, DI6)(X), DLa(8)(X)) + D2 zoguuy (D)) -

Then, for v € C, t € Tp, and x € RY, we have

Ten(v(t+h,))(X) = v(t,x) _ dv

h B E‘FIH(X, V(t7x)7DV(t7X)’D2V(t’X))+O(h) :




Theorem (Monotonicity)
Let T; » be as before.

Assume that tr(X™(x, u)X™(x, u)") < a for all x, m, u.
Assume also that 6" is upper bounded, and that there exists a bounded map
g™ (in x and u) such that f™(x, u) — " (x) = a(x)X"(x, u)g™(x, u).

Then, for k such that a < 4k + 2, there exists hy such that
T:.n is monotone for h < hg

over the set of bounded continuous functions RY — R,
and there exists C > 0 such that

T:.» is Ch-almost monotone for all h > 0.

Note that when k =0, T; pis as in



T is additively a-subhomogeneous if

AERA>0,0eF = T(d+A) < T(p)+al .

Lemma (Sub-homogeneity)
Assume that 6™ is lower bounded in x and u.

Then, T; j is additively o.p-subhomogeneous
over the set of bounded continuous functions R — R, for some constant
ap =1+ Ch with C > 0.

Corollary (Stability)
Under the previous assumptions and if+) and ¢™ are bounded, and
vA(T, x) = 1(x) for all x € RY, then, v is bounded.

Corollary

Assume that HJB has a strong uniqueness property for viscosity solutions
and let v be its unique viscosity solution.

Then, when h — 0%, v converges to v locally uniformely in't € [0, T] and
x €RY.



The idempotent method of

Given m and u, denote by £™ the Euler discretization of the process ¢:
EMU(t+ h) = EMU(t) + FM(EMU(E), u)h + o™ (E™H (1), u)(Wern — W) -
The following is a time discretization of HJB:
Vit x) = Tea(V(t + h,-))(X), t€Th=1{0,h2h,....,T —h},
with

@) = sup  {hem(x, u)+ e~ M"IE[GE™ (1 + h)) | €m(1) = x| -

meM, ueld

Under appropriate assumptions, v converges to the solution of HJB
when h goes to zero.



The deterministic case

Ifc™ = 0, then T; , is max-additive:

Ten(oV @) = Ten(d) V Ten(d') .

Moreover, if ™ = 0, then T; , is max-plus linear:
Ten(A+¢) = A+ Ten(o) -

Let q,”h be “max-plus basis” functions, then

V(t+hx) = max (\+gi7(x) = V(tx) = max (\+qi(x) .
i=1,...,

.....

with gf = T »(g/*") and

we only need to compute the effect of the dynamic programming
operator T; , on the finite basis q] , i=1,...,N.
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The deterministic case

e First type of max-plus methods: project the operator T; 5, or the gf on a

fixed basis, see and
— same difficulty as grid based methods.
e Second type of max-plus methods : Assume that the

H™ correspond to LQ problems, then
Ten(@)(x) = max T77,(6)(x)

with
q quadratic = T/";(q) quadratic.
So,

v'(T, ) finite sup of quad. forms — v"(t, -) finite sup of quad. forms.

e The number of quadratic forms for v/(0, -) is exponential in the number of
time step only. So the method is curse of dimensionality-free.
e |t can be reduced by pruning.



The stochastic case

Theorem ( )

Assume 6™ = 0, ¢ is constant, f™ is affine, {™ is concave quadratic (with
respect to (x, u)), and ) is the supremum of a finite number of concave
quadratic forms. Then, for all t € Ty, there exists a set Z; and a map

gt : RY x Z, — R such that for all z € Z;, g(-, 2) is a concave quadratic form
and

Vh(t7 X) = Supgt(xv Z) .
ZEZ[

Moreover, the sets Z; satisfy

Zi = M x{zp: W — Zip | Borel measurable}

where W = RY is the space of values of the Brownian process.

The proof uses the max-plus (infinite) distributivity property.



In the deterministic case, the sets Z; are finite, and their cardinality is
exponential in time: #2; = M x #Z;.p = --- = MMt x #Zr with M = #M
and Ny = (T —t)/h.

In the stochastic case, the sets Z; are infinite as soonas t < T.

If the Brownian process is discretized in space, then W can be replaced
by the finite subset with fixed cardinality p, and the sets Z; become finite.

Nevertheless, their cardinality increases doubly exponentially in time:
plNt—1

H#Zp =M x (#£Zpp)P == M7 x (#Z7)P" where p > 2 (p = 2 for
the Bernouilli discretization).

Then, proposed to apply a pruning method to
reduce at each time step t € 7, the cardinality of Z;.
Here, we shall replace the above time discretization scheme by the

monotone probabilistic scheme and pruning by a random sampling
based on a fixed process.



The probabilistic max-plus method

Let W = RY. The operator T, of the monotone probabilistic scheme can be
written as

Tt,h(¢)(x) = Gt,h,x((lgt,hx) X € Rd 5

where

benx = (Sen(x,-))

Sen: R xW = RY, (X, W) = Spn(x, W) = x + [(X)h + a(x)W ,

Genx(6) = DY x() + hmemafleu (G (x, DY hx (), D nx(9)) + th,h,z(x,u),k(&)] ]
= E(¢(Wern — W1))
= B($(Wern — W) (@(X)") " ™ (Wesn — W)
D p s k()(x) = h'E [J’( Wirh — Wo)Ps k(h™"/2(Woih — Wz))] .



Let D be the set of measurable functions from W to R with at most some given
growth or growth rate. One can observe that

Gt h.x is an operator from D to R and ¢y px € D if ¢ € D;

Using the same arguments as for T; , one obtain the stronger property
that the operator G; » x is monotone additively «s-subhomogeneous from
Dto R, for h < hg.

Assume that £ corresponds to a linear dynamics, then x — qNS,,hyx is a
random quadratic form if ¢ is a quadratic form;

Assume that H corresponds to a LQ problem, then

X > ¢ random quadratic = Gt,h,X(gZX) quadratic.
Assume that #™ corresponds to a LQ problem, then
Genx(9) = RS Gl x(0)

with
X — ¢ random quadratic —> G{f’m(&x) quadratic.



Theorem ( )

Let G be a monotone additively «.-subhomogeneous operator from D — R,
for some constant o« > 0. Let (Z,2l) be a measurable space, and let VV be
endowed with its Borel o-algebra. Let ¢ : VW x Z — R be a measurable map
such that for all z € Z, ¢(-, z) is continuous and belongs to D. Letv € D be

such that v(W) = sup,. ¢(W, z). Assume that v is continuous and
bounded. Then,

G(v) = sup G(¢%)

zeZ
where $7 - W — R, W — ¢(W,z(W)), and

Z ={z : W — Z, measurable and such that ¢* ¢ D}.
This says that any monotone continuous map distributes over max and
generalizes the max-plus distributivity.

Formally, we have G(v) = G(¢7?), when v(W) = ¢(W, z(W)).



Theorem ( , compare with )
Assume that, foreach m € M, 6™ and ¢™ are constant, f" is affine with
respect to (x, u), £ is concave quadratic with respect to (x, u), and that ¢ is
the supremum of a finite number of concave quadratic forms.

Consider the monotone probabilistic scheme with T; , as above.

Assume that the operators Gy}, , are monotone additively
ap-subhomogeneous from D to R, for some constant a, = 1+ Ch with C > 0.
Assume also that the value function v" belongs to D and is locally Lipschitz
continuous with respect to x.

Then, for all t € Ty, there exists a set Z; and a map g; : R x Z; — R such
that for all z € Z;, 9:(-, z) is a concave quadratic form and

Vh(t7 X) = Supgt(xa Z) .
zeZ;

Moreover, the sets Z; satisfy

Zi =M x{Zph: W — Z,p, | Borel measurable} .



The probabilistic max-plus method: the sampling algorithm

Denote q(x,z) := 2xT Qx +b-x+cforz=(Q,b,c) € Qg =S, x R x R.
Input: M = #M, e > 0, Zr C Qq such that [/(x) — maxzcz g(x, z)| < ¢ and
#Z1 < Nip,

N = (Ny,, Ny, Ny) (the numbers of samples with Ny < Nj,).

Output: Zy C Qq, t € ThU{T}, and vV,

Initialization: Define vN(T, x) = max,cz, q(x, z). Construct a sample of
(X(0), (Wi p, — Wh)ieT,) of size N, indexed by w € Qp,, and deduce X(t,w).

Fort=T—-h,T—-2h,...,0do

1. Construct independent subsamples of sizes Ny and N, of Qu, , then take
the product of samplings,
leading to (wg,wy) for £ € Qp,, := [Nx] x [Ny].
Induce the sample X(t,we) (resp. (Wsn — Wi)(wp)) for £ € Qu, of X(1)
(resp. Wiin — Wh).
Denote by W)Y C W the set of (Win — W;)(w)) for £ € Q.



The probabilistic max-plus method: the sampling algorithm cont.
2. For each w € Qy_ denote x; = X(t,w).
(a) Choose z;,p : W{V — Zyyn such that, for all £ € Qp,, we have
Ztin(Wepn — Wt)(wfe)) € Arg;nax Q(St,h(Xn (Wign — Wt)(wfe)), Z) .
Z&ELiih
Let @: ».x be the element of D given by W € W — q(S;.n(x, W), Zi n(W)).
(b) For each m, approximate x +— Gﬂhﬁx(iytyh’,() by a linear regression
estimation on the set of quadratic forms using the sample
(X(t,we), (Wi — W)(w))), with £ € Qy,,, and denote by 2" € Qg the
parameter of the resulting quadratic form.
(c) Choose z; € Q4 optimal among the z[" € Q4 at the point x;, that is
such that q(x:, z;) = maxmem g( X, Z7).
3. Denote by Z; the set of the parameters z; € Q4 obtained in this way, and
define

viN(t x) = maxqg(x,z) Yx eRY .
zeZ;



The probabilistic max-plus method: the sampling algorithm cont.

Computational time:

O(d?N2 x Ny + d®M x Ny x Ny x Ny)
where the first term corresponds to step (a) and the second one to steps (b)
and (c).

Note also that Ny can be choosen to be in the order of a polynomial in d since
the regression is done on the set of quadratic forms,
so0 in general the second term is negligeable.



The pricing and hedging an option example

e The dynamics: d¢; = 0;£;dB;, where the Brownians B; have uncertain
correlations: (dB;, dB;) = p; ;ds.
e We know: p € cvx(M) with M a finite set.

e Maximize
J(tx, 1) = E[p(E(T)) &) =x] , with
P(x) = p(maxx; — min x;), x € RY K — K4
i odd j even

d(x)=(x-K)"—(x—K)", xeR,
xT =max(x,0), Ki <Kz . 3
Ky Ko




M is a finite subset of the set of positive definite symmetric matrices with

1 on the diagonal and

[c™(&)a™(&)"1ij = oikioj&ji) -
We take K1 = -5, K =5, T =0.25, and h = 0.01.

In dimension 2, we take o = (0.4,0.3), and

1 mqo

M={m= [mm 1

‘||m12=:|:p}.

In dimension 5, we take 0 = (0.4,0.3,0.2,0.3,0.4) and

1 mi> 0 0 0

myo 1 0 0 0

M={m=1] 0 o 1 0 0
0 0 0 1 mgs

0 0 0 Mys 1
We tested the cases p =0, p = 0.4 and 0.8.

| M2 = %p, Mys = £p} .
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Figure 1: Value function obtained at t = 0, and x. = 50 as a function of
X1 — X2 € [-30,30]. Here p = 0, Ni, = 1000, or 2000, Ny = 10, Ny, = 1000.



Figure 2: Value function obtained at t = 0, and x. = 50 as a function of
X1 — X2 € [-30,30]. Here p = 0.8, N, = 1000, or 2000 or 3000, Ny = 10, Ny, = 1000.



Figure 3: Value function obtained in dimension5at xo = x3 = x4 = xs =50 as a
function of x; — x> € [-30, 30]. Here p = 0.8, Ni, = 3000, Nx = 50, N,y = 1000. The
time by time iteration is ~ 2500s and the total time is ~ 19h on a 12 core.



Figure 4: Comparizon between the value function obtained in dimension 5 at t = 0,
and x> = x3 = xs = xs = 50 as a function of x; — x> € [-30, 30], and a lower bound
from the dimension 2. Here p = 0.8, Ni, = 3000, Ny = 50, N, = 1000.



Conclusion

e We proposed an algorithm to solve HJB equations, combining ideas
included in the idempotent algorithm of
and in the probabilistic numerical scheme of

e The advantages with respect to the pure probabilistic scheme are that the
regression estimation is over a linear space of small dimension.

e The advantages with respect to the pure idempotent scheme is that one
may avoid the pruning step: the number of quadratic forms generated by
the algorithm is linear with respect to the sampling size times the number
of discrete controls.

e We improved the probabilistic numerical scheme of

to obtain a monotone scheme and so apply the probabilistic
max-plus method in general situations.

e The theoretical results suggest that it can also be applied to Isaacs
equations of zero-sum games.

e Open: improve the optimization step to decrease the complexity.



