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A finite horizon diffusion control problem involving “discrete”
and “continuum” controls

Maximize

J(t , x , µ,u) := E
[∫ T

t e−
∫ s

t δ
µτ (ξτ ,uτ )dτ `µs (ξs,us)ds

+e−
∫ T

t δµτ (ξτ ,uτ )dτψ(ξT ) | ξt = x
]
,

• ξs ∈ Rd , the state process, satisfies the stochastic differential equation

dξs = fµs (ξs,us)ds + σµs (ξs,us)dWs ,

• µ := (µs)0≤s≤T , and u := (us)0≤s≤T are admissible control processes,
µs ∈M a finite set and us ∈ U ⊂ Rp,
• (Ws)s≥0 is a d-dimensional Brownian motion,
• δm(x ,u) ≥ 0 is the discount rate.

Define v : [0,T ]× Rd → R, v(t , x) = supµ,u J(t , x , µ,u).



The Hamilton-Jacobi-Bellman (HJB) equation

Theorem
Under suitable assumptions, the value function v is the unique (continuous)
viscosity solution of the HJB equation

−∂v
∂t −H(x , v(t , x),Dv(t , x),D2v(t , x)) = 0, x ∈ Rd , pt ∈ [0,T ),

v(T , x) = ψ(x), x ∈ Rd ,

satisfying also some growth condition at infinity (in space).

With the Hamiltonian:

H(x , r , p, Γ) := max
m∈M

Hm(x , r , p, Γ) ,

Hm(x , r , p, Γ) := max
u∈U
Hm,u(x , r , p, Γ) ,

Hm,u(x , r , p, Γ) :=
1
2

tr
(
σm(x , u)σm(x , u)T Γ

)
+ f m(x , u) · p − δm(x , u)r + `m(x , u) .



Standard grid based discretizations solving HJB equations suffer the
curse of dimensionality malediction:
for an error of ε, the computing time of finite difference or finite
element methods is at least in the order of (1/ε)d/2.

Some possible curse of dimensionality-free methods:

• Idempotent methods introduced by McEneaney (2007) in the deterministic
case, and by McEneaney, Kaise and Han (2011) in the stochastic case.
• Probabilistic numerical methods based on a backward stochastic

differential equation interpretation of the HJB equation, simulations and
regressions:
• Quantization Bally, Pagès (2003) for stopping time problems.
• Introduction of a new process without control: Bouchard, Touzi (2004) when
σ does not depend on control; Cheridito, Soner, Touzi and Victoir (2007) and
Fahim, Touzi and Warin (2011) in the fully-nonlinear case.

• Control randomization: Kharroubi, Langrené, Pham (2013).
• Fixed point iterations: Bender, Zhang (2008) for semilinear PDE (which are

not HJB equations).
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A Finance example

Problem: pricing and hedging an option with uncertain volatility and
several underlying stock processes.

• The dynamics: dξi = σiξidBi , where the Brownians Bi have uncertain
correlations:

〈
dBi ,dBj

〉
= µi,jds.

• We know: µ ∈ cvx(M) withM a finite set.
• Maximize

J(t , x , µ) := E [ψ(ξ(T )) | ξ(t) = x ] , with

ψ(x) = φ(max
i odd

xi − min
j even

xj ), x ∈ Rd ,

φ(x) = (x − K1)+ − (x − K2)+, x ∈ R ,

x+ = max(x ,0), K1 < K2 .

K2 − K1

K1 K2



A Finance example

• Since the dynamics is linear, we can reduce to µs ∈M.
• The parameters with respect to the previous model: M is a finite subset of

the set of positive definite symmetric matrices with 1 on the diagonal and

f m = 0

δm = 0

`m = 0

[σm(ξ)σm(ξ)T ]i,j = σiξiσjξjµi,j .

• Proposed with 2 stocks in Kharroubi, Langrené, Pham (2013) and solved
using randomized control+regression.
• Solved in dimension 2 in A., Fodjo (CDC 2016) with a probabilistic max-plus

method.
• In both cases: σ1 = 0.4, σ2 = 0.3, K1 = −5, K2 = 5, T = 0.25, and

M = {m =

[
1 m12

m12 1

]
| m12 = ±ρ} ρ = 0.8 .



The algorithm of Fahim, Touzi and Warin

Decompose the Hamiltonian H of HJB as H = L+ G with

L(x , r ,p, Γ) :=
1
2

tr (a(x)Γ) + f (x) · p , a(x) = σ(x)σ(x)T > 0 ,

and ∂ΓG ≥ 0, for all x ∈ Rd , r ∈ R,p ∈ Rd , Γ ∈ Sd .

Theorem ( Cheridito, Soner, Touzi and Victoir, 2007)
If v is the viscosity solution of HJB, Xt is the diffusion with generator L:

dXt = f (Xt )dt + σ(Xt )dWt , X0 = x

then Yt = v(t ,Xt ), Zt = Dv(t ,Xt ) and Γt = D2v(t ,Xt ) satisfy the
second-order backward stochastic diff. eq.:

dYt = −G(Xt ,Yt ,Zt , Γt )dt + Z T
t σ(Xt )dWt

dZt = Atdt + ΓtdXt

YT = ψ(XT ) .



Idea of the algorithm of Fahim, Touzi and Warin: after time discretization, simu-

late Xt , then apply a regression estimator to compute Yt

Denote by X̂ the Euler discretization of Xt :

X̂ (t + h) = X̂ (t) + f (X̂ (t))h + σ(X̂ (t))(Wt+h −Wt ) .

The following is a time discretization of HJB:

vh(t , x) = Tt,h(vh(t + h, ·))(x), t ∈ Th := {0,h,2h, . . . ,T − h} ,

with

Tt,h(φ)(x) = D0
t,h(φ)(x) + hG(x ,D0

t,h(φ)(x),D1
t,h(φ)(x),D2

t,h(φ)(x)) ,

and Di
t,h(φ) the approximation of the i th differential of ehLφ given by:

Di
t,h(φ)(x) :=E(Diφ(X̂ (t + h)) | X̂ (t) = x)

=E(φ(X̂ (t + h))P i
t,x,h(Wt+h −Wt ) | X̂ (t) = x), i = 0,1,2 ,

P0
t,x,h(w) =1 ,

P1
t,x,h(w) =(σ(x)T )−1h−1w ,

P2
t,x,h(w) =(σ(x)T )−1h−2(wwT − hI)(σ(x))−1 .



Lemma ( Fahim, Touzi and Warin, 2011)

When tr(a(x)−1∂ΓG) ≤ 1, ∂ΓG is lower bounded by some > 0 matrix and G is
Lipschitz continuous, Tt,h is L-almost monotone on the set F of Lipschitz
continuous functions Rd → R, for some constant L = O(h):

φ, ψ ∈ F , φ ≤ ψ =⇒ T (φ) ≤ T (ψ) + L sup(ψ − φ) .

• Then Barles and Souganidis (90)⇒ convergence and error estimation of
the time discretization scheme.

• Under these conditions, and given the convergence of the regression
estimator approximating the Di

t,h(φ), the full Fahim, Touzi and Warin
algorithm converges.

• Note that theoretically, the sample size necessary to obtain the
convergence of the estimator is at least in the order of 1/hd/2. Also the
dimension of the linear regression space should be in this order.



• The critical constraint tr(a(x)−1∂ΓG) ≤ 1 does not allow in general to
handle the case of the Hamiltonian H directly, since it may be nonsmooth
and with noncomparable diffusion coefficients.
• In particular, it fails for the finance example with |m12| = ρ ≥ 0.5.
• Guo, Zhang and Zhuo (2015) proposed a monotone scheme which combine

a usual finite difference scheme to the above scheme. This allows one to
relax the critical constraint, but still fails for the above finance example.
• In A. and Fodjo (2016), we only assumed that the Hamiltonians Hm satisfy

the critical constraint, and applied the above scheme to the Hamiltonians
Hm, that is

vh(t , x) = Tt,h(vh(t + h, ·))(x), t ∈ Th ,

Tt,h(φ)(x) = max
m∈M

T m
t,h(φ)(x) ,

with T m
t,h constructed as above but with respect to a decomposition

Hm = Lm + Gm depending on m.
• Here, we propose another approximation of E(D2φ(X̂ (t + h)) | X̂ (t) = x)

or D2φ(x) depending on the point x via σm(x ,u) and leading to a
monotone operator Tt,h.



A monotone probabilistic scheme for fully nonlinear PDEs

Theorem

Let Σ ∈ Rd×` and denote A = ΣΣT . For a nonnegative integer k, consider
the polynomial

PΣ,k (w) = ck

∑̀
j=1

([ΣT w ]j )
4k+2‖Σ.j‖−4k

2 − K , w ∈ Rd

ck =
1

E [N4k+4 − N4k+2]
, K :=

tr(A)

4k + 2
=

∑`
j=1 ‖Σ.j‖2

2

4k + 2
, N = N(0,1).

For v ∈ C4
b , and X̂ as before, we have

E
[
PΣ,k (h−1/2(Wt+h −Wt )) | X̂ (t) = x

]
= 0

h−1E
[
v(t + h, X̂ (t + h))PΣ,k (h−1/2(Wt+h −Wt )) | X̂ (t) = x

]
=

1
2

tr(σ(x)AσT (x) D2v(t , x)) + O(h) ,

where the error O(h) is uniform in (t , x) ∈ [0,T ]× Rd .



Let Σm(x ,u) ∈ Rd×` be such that

σm(x ,u)σm(x ,u)T − a(x) = σ(x)Σm(x ,u)Σm(x ,u)T σ(x)T .

Corollary (Consistency)
Define

Gm,u
1 (x , r ,p) = Gm,u(x , r ,p, Γ)− 1

2
tr
(
σ(x)Σm(x ,u)Σm(x ,u)T σ(x)T Γ

)
D2

t,h,Σ,k (φ)(x) := h−1E
[
φ(X̂ (t + h))PΣ,k (h−1/2(Wt+h −Wt )) | X̂ (t) = x

]
Tt,h(φ)(x) := D0

t,h(φ)(x)

+ h max
m∈M,u∈U

(
Gm,u

1 (x ,D0
t,h(φ)(x),D1

t,h(φ)(x)) +D2
t,h,Σm(x,u),k (φ)(x)

)
.

Then, for v ∈ C4
b , t ∈ Th, and x ∈ Rd , we have

Tt,h(v(t + h, ·))(x)− v(t , x)

h
=
∂v
∂t

+H(x , v(t , x),Dv(t , x),D2v(t , x)) + O(h) .



Theorem (Monotonicity)
Let Tt,h be as before.

Assume that tr(Σm(x ,u)Σm(x ,u)T ) ≤ ā for all x ,m,u.

Assume also that δm is upper bounded, and that there exists a bounded map
gm (in x and u) such that f m(x ,u)− f m(x) = σ(x)Σm(x ,u)gm(x ,u).

Then, for k such that ā < 4k + 2, there exists h0 such that
Tt,h is monotone for h ≤ h0

over the set of bounded continuous functions Rd → R,
and there exists C > 0 such that
Tt,h is Ch-almost monotone for all h > 0.

Note that when k = 0, Tt,h is as in (Fahim, Touzi and Warin (2011)).



T is additively α-subhomogeneous if

λ ∈ R, λ ≥ 0, φ ∈ F =⇒ T (φ+ λ) ≤ T (φ) + αλ .

Lemma (Sub-homogeneity)
Assume that δm is lower bounded in x and u.

Then, Tt,h is additively αh-subhomogeneous
over the set of bounded continuous functions Rd → R, for some constant
αh = 1 + Ch with C ≥ 0.

Corollary (Stability)
Under the previous assumptions and if ψ and `m are bounded, and
vh(T , x) = ψ(x) for all x ∈ Rd , then, vh is bounded.

Corollary
Assume that HJB has a strong uniqueness property for viscosity solutions
and let v be its unique viscosity solution.
Then, when h→ 0+, vh converges to v locally uniformely in t ∈ [0,T ] and
x ∈ Rd .



The idempotent method of McEneaney, Kaise and Han

Given m and u, denote by ξ̂m,u the Euler discretization of the process ξ:

ξ̂m,u(t + h) = ξ̂m,u(t) + f m(ξ̂m,u(t),u)h + σm(ξ̂m,u(t),u)(Wt+h −Wt ) .

The following is a time discretization of HJB:

vh(t , x) = Tt,h(vh(t + h, ·))(x), t ∈ Th = {0,h,2h, . . . ,T − h} ,

with

T m
t,h(φ)(x) = sup

m∈M, u∈U

{
h`m(x ,u) + e−hδm(x,u)E

[
φ(ξ̂m,u(t + h)) | ξ̂m,u(t) = x

]}
.

Under appropriate assumptions, vh converges to the solution of HJB
when h goes to zero.



The deterministic case

If σm ≡ 0, then Tt,h is max-additive:

Tt,h(φ ∨ φ′) = Tt,h(φ) ∨ Tt,h(φ′) .

Moreover, if δm ≡ 0, then Tt,h is max-plus linear:

Tt,h(λ+ φ) = λ+ Tt,h(φ) .

Let qt+h
i be “max-plus basis” functions, then

vh(t + h, x) = max
i=1,...,N

(λi + qt+h
i (x)) =⇒ vh(t , x) = max

i=1,...,N
(λi + qt

i (x)) ,

with qt
i = Tt,h(qt+h

i ) and

we only need to compute the effect of the dynamic programming
operator Tt,h on the finite basis qT

i , i = 1, . . . ,N.
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The deterministic case

• First type of max-plus methods: project the operator Tt,h or the qt
i on a

fixed basis, see Fleming and McEneaney (2000) and A.,Gaubert,Lakoua
(2008) =⇒ same difficulty as grid based methods.
• Second type of max-plus methods (McEneaney, 2007): Assume that the
Hm correspond to LQ problems, then

Tt,h(φ)(x) = max
m∈M

T m
t,h(φ)(x)

with
q quadratic =⇒ T m

t,h(q) quadratic.

So,

vh(T , ·) finite sup of quad. forms =⇒ vh(t , ·) finite sup of quad. forms.

• The number of quadratic forms for vh(0, ·) is exponential in the number of
time step only. So the method is curse of dimensionality-free.
• It can be reduced by pruning.



The stochastic case

Theorem ( McEneaney, Kaise and Han, 2011)
Assume δm = 0, σm is constant, f m is affine, `m is concave quadratic (with
respect to (x ,u)), and ψ is the supremum of a finite number of concave
quadratic forms. Then, for all t ∈ Th, there exists a set Zt and a map
gt : Rd × Zt → R such that for all z ∈ Zt , gt (·, z) is a concave quadratic form
and

vh(t , x) = sup
z∈Zt

gt (x , z) .

Moreover, the sets Zt satisfy

Zt =M×{z̄t+h :W → Zt+h | Borel measurable} ,

whereW = Rd is the space of values of the Brownian process.

The proof uses the max-plus (infinite) distributivity property.



• In the deterministic case, the sets Zt are finite, and their cardinality is
exponential in time: #Zt = M ×#Zt+h = · · · = MNt ×#ZT with M = #M
and Nt = (T − t)/h.

• In the stochastic case, the sets Zt are infinite as soon as t < T .

• If the Brownian process is discretized in space, thenW can be replaced
by the finite subset with fixed cardinality p, and the sets Zt become finite.

• Nevertheless, their cardinality increases doubly exponentially in time:

#Zt = M × (#Zt+h)p = · · · = M
pNt −1

p−1 × (#ZT )pNt where p ≥ 2 (p = 2 for
the Bernouilli discretization).

• Then, McEneaney, Kaise and Han proposed to apply a pruning method to
reduce at each time step t ∈ Th the cardinality of Zt .

• Here, we shall replace the above time discretization scheme by the
monotone probabilistic scheme and pruning by a random sampling
based on a fixed process.



The probabilistic max-plus method

LetW = Rd . The operator Tt,h of the monotone probabilistic scheme can be
written as

Tt,h(φ)(x) = Gt,h,x (φ̃t,h,x ) x ∈ Rd ,

where

φ̃t,h,x = φ(St,h(x , ·)) ,

St,h : Rd ×W → Rd , (x ,W ) 7→ St,h(x ,W ) = x + f (x)h + σ(x)W ,

Gt,h,x (φ̃) = D0
t,h,x (φ̃) + h max

m∈M, u∈U

[
Gm,u

1 (x ,D0
t,h,x (φ̃),D1

t,h,x (φ̃)) + D2
t,h,Σ(x,u),k (φ̃)

]
,

D0
t,h,x (φ̃) = E(φ̃(Wt+h −Wt )) ,

D1
t,h,x (φ̃) = E(φ̃(Wt+h −Wt )(σ(x)T )−1h−1(Wt+h −Wt )) ,

D2
t,h,Σ,k (φ̃)(x) := h−1E

[
φ̃(Wt+h −Wt )PΣ,k (h−1/2(Wt+h −Wt ))

]
.



Let D be the set of measurable functions fromW to R with at most some given
growth or growth rate. One can observe that

• Gt,h,x is an operator from D to R and φ̃t,h,x ∈ D if φ ∈ D;

• Using the same arguments as for Tt,h, one obtain the stronger property
that the operator Gt,h,x is monotone additively αh-subhomogeneous from
D to R, for h ≤ h0.

• Assume that L corresponds to a linear dynamics, then x 7→ φ̃t,h,x is a
random quadratic form if φ is a quadratic form;

• Assume that H corresponds to a LQ problem, then

x 7→ φ̃x random quadratic =⇒ Gt,h,x (φ̃x ) quadratic.

• Assume that Hm corresponds to a LQ problem, then

Gt,h,x (φ̃) = max
m∈M

Gm
t,h,x (φ̃)

with
x 7→ φ̃x random quadratic =⇒ Gm

t,h,x (φ̃x ) quadratic.



Theorem ( A., Fodjo, 2016)
Let G be a monotone additively α-subhomogeneous operator from D → R,
for some constant α > 0. Let (Z ,A) be a measurable space, and letW be
endowed with its Borel σ-algebra. Let φ :W × Z → R be a measurable map
such that for all z ∈ Z, φ(·, z) is continuous and belongs to D. Let v ∈ D be
such that v(W ) = supz∈Z φ(W , z). Assume that v is continuous and
bounded. Then,

G(v) = sup
z̄∈Z

G(φ̄z̄)

where φ̄z̄ :W → R, W 7→ φ(W , z̄(W )), and

Z = {z̄ :W → Z , measurable and such that φ̄z̄ ∈ D}.

This says that any monotone continuous map distributes over max and
generalizes the max-plus distributivity.

Formally, we have G(v) = G(φ̄z̄), when v(W ) = φ(W , z̄(W )).



Theorem ( A., Fodjo, 2016, compare with McEneaney, Kaise and Han, 2011)
Assume that, for each m ∈M, δm and σm are constant, f m is affine with
respect to (x ,u), `m is concave quadratic with respect to (x ,u), and that ψ is
the supremum of a finite number of concave quadratic forms.
Consider the monotone probabilistic scheme with Tt,h as above.
Assume that the operators Gm

t,h,x are monotone additively
αh-subhomogeneous from D to R, for some constant αh = 1 + Ch with C ≥ 0.
Assume also that the value function vh belongs to D and is locally Lipschitz
continuous with respect to x.
Then, for all t ∈ Th, there exists a set Zt and a map gt : Rd × Zt → R such
that for all z ∈ Zt , gt (·, z) is a concave quadratic form and

vh(t , x) = sup
z∈Zt

gt (x , z) .

Moreover, the sets Zt satisfy

Zt =M×{z̄t+h :W → Zt+h | Borel measurable} .



The probabilistic max-plus method: the sampling algorithm

Denote q(x , z) := 1
2 xT Qx + b · x + c for z = (Q,b, c) ∈ Qd = S−d × Rd × R.

Input: M = #M, ε > 0, ZT ⊂ Qd such that |ψ(x)−maxz∈ZT q(x , z)| ≤ ε and
#ZT ≤ Nin,
N = (Nin,Nx ,Nw ) (the numbers of samples with Nx ≤ Nin).
Output: Zt ⊂ Qd , t ∈ Th ∪ {T}, and vh,N .
Initialization: Define vh,N(T , x) = maxz∈ZT q(x , z). Construct a sample of
(X̂ (0), (Wt+h −Wt )t∈Th ) of size Nin indexed by ω ∈ ΩNin , and deduce X̂ (t , ω).

For t = T − h,T − 2h, . . . ,0 do

1. Construct independent subsamples of sizes Nx and Nw of ΩNin , then take
the product of samplings,
leading to (ω`, ω

′
`) for ` ∈ ΩNrg := [Nx ]× [Nw ].

Induce the sample X̂ (t , ω`) (resp. (Wt+h −Wt )(ω′`)) for ` ∈ ΩNrg of X̂ (t)
(resp. Wt+h −Wt ).
Denote byWN

t ⊂ W the set of (Wt+h −Wt )(ω′`) for ` ∈ ΩNrg .



The probabilistic max-plus method: the sampling algorithm cont.

2. For each ω ∈ ΩNin denote xt = X̂ (t , ω).
(a) Choose z̄t+h :WN

t → Zt+h such that, for all ` ∈ ΩNrg , we have

z̄t+h((Wt+h −Wt )(ω′`)) ∈ Argmax
z∈Zt+h

q
(
St,h(xt , (Wt+h −Wt )(ω′`)), z

)
.

Let q̃t,h,x be the element of D given by W ∈ W 7→ q(St,h(x ,W ), z̄t+h(W )).
(b) For each m, approximate x 7→ Gm

t,h,x (q̃t,h,x ) by a linear regression
estimation on the set of quadratic forms using the sample
(X̂ (t , ω`), (Wt+h −Wt )(ω′`)), with ` ∈ ΩNrg , and denote by zm

t ∈ Qd the
parameter of the resulting quadratic form.
(c) Choose zt ∈ Qd optimal among the zm

t ∈ Qd at the point xt , that is
such that q(xt , zt ) = maxm∈M q(xt , zm

t ).
3. Denote by Zt the set of the parameters zt ∈ Qd obtained in this way, and

define
vh,N(t , x) = max

z∈Zt

q(x , z) ∀x ∈ Rd .



The probabilistic max-plus method: the sampling algorithm cont.

Computational time:

O(d2N2
in × Nw + d3M × Nin × Nx × Nw )

where the first term corresponds to step (a) and the second one to steps (b)
and (c).

Note also that Nx can be choosen to be in the order of a polynomial in d since
the regression is done on the set of quadratic forms,
so in general the second term is negligeable.



The pricing and hedging an option example

• The dynamics: dξi = σiξidBi , where the Brownians Bi have uncertain
correlations:

〈
dBi ,dBj

〉
= µi,jds.

• We know: µ ∈ cvx(M) withM a finite set.

• Maximize

J(t , x , µ) := E [ψ(ξ(T )) | ξ(t) = x ] , with

ψ(x) = φ(max
i odd

xi − min
j even

xj ), x ∈ Rd ,

φ(x) = (x − K1)+ − (x − K2)+, x ∈ R ,

x+ = max(x ,0), K1 < K2 .

K2 − K1

K1 K2



• M is a finite subset of the set of positive definite symmetric matrices with
1 on the diagonal and

[σm(ξ)σm(ξ)T ]i,j = σiξiσjξjµi,j .

• We take K1 = −5, K2 = 5, T = 0.25, and h = 0.01.
• In dimension 2, we take σ = (0.4,0.3), and

M = {m =

[
1 m12

m12 1

]
| m12 = ±ρ} .

• In dimension 5, we take σ = (0.4,0.3,0.2,0.3,0.4) and

M = {m =


1 m12 0 0 0

m12 1 0 0 0
0 0 1 0 0
0 0 0 1 m45

0 0 0 m45 1

 | m12 = ±ρ, m45 = ±ρ} .

• We tested the cases ρ = 0, ρ = 0.4 and 0.8.



Figure 1: Value function obtained at t = 0, and x2 = 50 as a function of
x1 − x2 ∈ [−30, 30]. Here ρ = 0, Nin = 1000, or 2000, Nx = 10, Nw = 1000.



Figure 2: Value function obtained at t = 0, and x2 = 50 as a function of
x1 − x2 ∈ [−30, 30]. Here ρ = 0.8, Nin = 1000, or 2000 or 3000, Nx = 10, Nw = 1000.



Figure 3: Value function obtained in dimension 5 at x2 = x3 = x4 = x5 = 50 as a
function of x1 − x2 ∈ [−30, 30]. Here ρ = 0.8, Nin = 3000, Nx = 50, Nw = 1000. The
time by time iteration is ' 2500s and the total time is ' 19h on a 12 core.



Figure 4: Comparizon between the value function obtained in dimension 5 at t = 0,
and x2 = x3 = x4 = x5 = 50 as a function of x1 − x2 ∈ [−30, 30], and a lower bound
from the dimension 2. Here ρ = 0.8, Nin = 3000, Nx = 50, Nw = 1000.



Conclusion

• We proposed an algorithm to solve HJB equations, combining ideas
included in the idempotent algorithm of McEneaney, Kaise and Han (2011)
and in the probabilistic numerical scheme of Fahim, Touzi and Warin (2011).
• The advantages with respect to the pure probabilistic scheme are that the

regression estimation is over a linear space of small dimension.
• The advantages with respect to the pure idempotent scheme is that one

may avoid the pruning step: the number of quadratic forms generated by
the algorithm is linear with respect to the sampling size times the number
of discrete controls.
• We improved the probabilistic numerical scheme of Fahim, Touzi and Warin

(2011) to obtain a monotone scheme and so apply the probabilistic
max-plus method in general situations.
• The theoretical results suggest that it can also be applied to Isaacs

equations of zero-sum games.
• Open: improve the optimization step to decrease the complexity.


