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Outline

o The trajectory optimization problem

Q Mathematical formulation: 1) Optimal control problem
e Mathematical formulation : 2) Hamilton-Jacobi approach
° HJB: Numerical aspects

e Numerical simulation
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Outline

o The trajectory optimization problem

=} F = = DA
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SSO mission - Ariane V

Aim
Maximize the payload my to be

steered from the Earth (Kourou) to a
Sun-Synchronous Orbit (SSO).
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HJB ascent

trajectory Balistic flight

trajectory

Figure: GEO mission with a ballistic flight
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from GEO to SSO

e Previous successfully solved mission : GEO target
(equatorial), reference trajectory given by CNES

e This SSO mission : no reference trajectory.

References:

e GEO: Bokanowski - Bourgeois - Désilles - Zidani
Global optimization approach for the climbing problem of
multi-stage launchers
Preprint HAL 2016

e SSO: Bokanowski - Bourgeois - Désilles - Zidani
IFAC 2017
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First old HJB attempts in our team

@ 3D/4D models: Bokanowski, Cristiani, Zidani and A-J. Varin (CNES),
~ 2010

@ use of the "Ultra Bee" antidiffusive scheme for solving front propagation,
with efficient sparse dynamic structure for encoding the front.
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@ The physical model involves 6+1 state variables, the position X of the
launcher in the 3D space, its velocity V and its mass M:

y = (X,V,M).

@ The forces acting on the rocket are: Gravity Mﬁ, Thrust FT) Drag I-TD),

and Coriolis forces due to the relative reference frame attached to the
Earth and which is non-inertial.

= Newton’s Law: % = \7 and

— —
av Fr  Fp KV %
o _§>+W+W—2§>A V-G A AX),

@ The launcher is controlled by means of:

- launch parameters p = (¢, w)

- incidence and sideslip angles «a(t), 4(t)
@ No bank angle : u(t) ~0
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Referential frame : spherical coordinates

(a) Orientation of the local vertical frame Ry (b) Dynamic frame Rp

0G = (r,L,0) V=(vx.7)
Vertical frame Ry Dynamic frame Rp

- .
r= ||@|| = altitude, L = longitude, ¢ = latitude v = || V|| velocity modulus
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Figure 3. Angles of the launcher

Assumptions:
e =0
@ the thrust force coincide with the axis of the launcher.
Controls:
. — -
@ «: incidence angle = angle between thrust Fr and V.

@ 0: sideslip angle = the angle between I?)T and Fv)
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The related equation - spherical coordinates

a vsin
a 7
dL vcosvysiny . , .
- T cosi Longitude’s dynamics
a Y cos cos
dt o oORTERRX
dv . Fr(r)cosacosd  FP(r,v,a) c
- = _ F
o grsiny + ge COS v COS x + M(D) M(t) + Fy
dvy v o . ge Fr(r)sina c
el — — Iy < T L F
ot cosv(r V) sin~ycos x M(D)v +F,
dx _  gesinxy vcosytanisiny = Fr(r)cosasiné c
ar vV COS r M(t) vcos vy X
% = —B(1) Mass’s dynamics
where

. Drag forces Fp vanish (Fp ~ Q) out of the atmosphere
. 9r, 9¢ @are components of the gravitational field with J> corrections
. (F¢, FS,FC) are Coriolis’ forces in the dynamic frame Rp.
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The related equation - spherical coordinates

ﬂ = wvsin

a = 7

a Y cos~cos

a — r TEOSX

av . Fr(r)cosacosd  FP(r,v,a) c
7 — _ F.
dt grsiny + ge¢ COSyCOS x + M(t) + M(t) + F)
dy v g . ge  Fr(n)sina c

i cosw(r v) sin~y cos x v T MOy + F5

dx gesiny vcos~tan{sinx  Fr(r)cosasind c

A 0 _ F.

dt v Cosy r M(t) v cos x
dmo _

dt 0

where

. Drag forces Fp vanish (Fp ~ Q) out of the atmosphere
. gr, g¢ are components of the gravitational field with J, corrections
. (F¢,FC,FC) are Coriolis’ forces in the dynamic frame Rp.
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Olivier Bokanowski SSO mission solved by HJB

gr and g, are components of the gravitational field
K V2 (4 _ 3gin?
9=z (1 + o ( r) (1 —3sin E))
— ok (T
ge = 2r2J2 ( r) sinfcos/,

(FS,FS, FS) are Coriolis’ forces

FE := Q2rcos/(sin~ycos’ — cos~ysin/cos y)
F,f = 2Qcos/sinx + 972’cosé(cosvcoswrsinysinﬁcosx)
FC = 972’% — 2Q (sin ¢ — tany cos £ cos x)

The state is represented by (x, m) = (r,¢,v,~, x, m) € RE.
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Constraints and target set

@ Low altitude target orbit = special constraint on the dynamic thermal flow
has to be satisfied during the phase 2 of the flight (starting at ignition of
Eg):

0.5p(r)v® < 555 Wm2 (1)

where p(r) is the density of the atmosphere at altitude r. Then the set of
state constraints, in RS, is defined by:
K = {y =(x,m)eR8 0.5p(r)v?< 555}. (2)
@ The target set, in R®, is defined by:
C = {y =(x,m) e R, sit.
e(x) =0, a(x) =800, i(x) =98.6°, m> 0}

where eccentricity e(x), major semi-axis a(x) and inclination i(x) are
known functions of the position x = (r,¢, v, ~,x) € R5.
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Flight sequence

>» Phase 0 - Atmospheric flight: The trajectory’s profile depends only on
the shooting azimut « and the angular velocity w: p = (¢, w) € P.

» Phase 1&2 - First boost until GTO: The trajectory depends on the
control input u := (a(-), §(+)). Drag force Fp = 0. The duration of the first
boost of the second engine E; is unknown

> Phase 3 - Ballistic flight: All engines are off. The duration of this phase,
78, IS unknown.

» Phase 4 - Second boost starts when the engine E; is ignited again and
it lasts until the total consumption of the propellant of E,. (The final time t;
is unknown, but is determined by the previous durations.)
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Mass dynamics

» The evolution of the mass can be summarized as follows

Phase 0 Phase 3
(atmosph.) Phase 1 Phase 2 (ballistic) Phase 4
m(t) — 28 0 0 0 0
my(t) —Be1(1) —Be1(t) 0 0 0
ms(t) 0 0 —Be2 0 —Be2
(time) to b 2 f3

where (o, Be1 and Beo are the mass flow rates for the boosters, the first
and the second stage.

» At the changes of phases, we have a (not negligible) discontinuity in the
rocket’s mass (corresponding to the ejection of the boosters or of the E1

Olivier Bokanowski SSO mission solved by HJB
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Summary of the phases

PHASE 4
ml

SSO or GEO

[ PHASE 3
' (ballistic phia

PHASE 0 and 1-2

SS0 mission solved by HJB
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Optimization problem

The considered problem is to determine :
@ the shooting parameters (¢, w),
@ the duration of the first boost of the second engine t, —
@ the duration of the ballistic flight 75
@ the control laws (during phases 1, 2 and 4)
in order to

maximize the payload mass my, reach the SSO orbit.

In particular all the propellant mass has to be consumed at the end of the
mission.
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Outline

Q Mathematical formulation: 1) Optimal control problem

=} F = = DA
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» Phase 0: First, we consider the set of all possible positions at {:
Xo := {yP(ty); for p = (¢,w) € P}.

» Phases 1,2&4: The total consumption time T is known. Hence & and 75
must satisfy
=+ T+ 78

We introduce a consumption time variable s such that
te[0,%] -s€l0,T]

t— 1y ift e [to,tz[
s(t):=< s.:=b—1Ily constant,ifte b, b+ 78]
t—m8—10 if t €]t + 78, t]

Set s, := b — t; be the duration of the first boost.

» Phase 3-Ballistic flight: The launcher’s motion is governed by an
uncontrolled and autonomous ODE z(t) = ¢(z(t)),z(0) = z. Let ¢ be
the transfer function, i.e z(t) = ®(t, zp).

+y) — . =
y(s?) = o(ra; y(s7))- )




The control problem (7P) can be formulated as (for a given y € Xp):
sup my(T),

there exists s, € [sJ'", sP'®], 75 € [74"™, TB¥].

S’y(S) = f(s,yy(s),u(s)), se<l0,s.]
yy(sl) = ®(7,yy(s.)),
Esg = f(s,yy(s), u(s)), sels..T]

y,(s)eK, Vsel0,T],

yy(T) €€,
u(s) e U a.e. se[0,T]

@ The target C corresponds to the GEO orbit

@ K represents an admissible constraints set on (0, T) (bounds on the heat
flux and other physical constraints)
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Figure: Relation between physical time t and “consumption” time s
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Outline

e Mathematical formulation : 2) Hamilton-Jacobi approach

=} F = = DA
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Level set approach for reachability:

@ Osher, Sethian - J. Comput. Phys., 1988
Fronts propagating with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations

@ Mitchell, Bayen, Tomlin - IEEE Trans. Automat. Control, 2005
A time-dependent Hamiliton-Jacobi formulation of reachable sets for
continuous dynamic games

@ O. Bokanowski, N. Forcadel and H. Zidani SICON, 2010
"Reachability and minimal times for state constrained nonlinear problems
without any controllability assumption”

@ Assellaou, Bokanowski, Desilles, Zidani - IFAC Proceedings 2016
"Windshear problem"
= SIMPLE BOUNDARY CONDITIONS FOR THE HJ-PDE
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Consider the controlled system:

{ Vs, (€) = f(& Y5, (). u(S)), £€(s,T),
Ysy(8) =V,

u)el, ae&ce(sT).
where U is a compact set in R?.

We use level set functions to represent feasibility:
We design ¢ : R® — R such that

e(y)<0 & yeC.
In the same way, we design an "obstacle" function g : R R such that
gy)<0 < yek.

Ex: o(y) = de(y), g(¥) := dic(y) (signed distance functions).
19-23 June 2017, Rome  25/49
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A reachability problem for the second boost on [s,, T]
> Consider the following control problem:

— u u
WO(Xv t) - Ulegad dC(ys,y(T) \/ Ererz?,)';') dIC(ys,y(e))

The function wy is Lipschitz continuous, and, on [s7" T] x RE:

min (— dsWo (S, y)+H(s,y, Dywo(s, y)), wo(s,y) — drc(}/)) =0,
wo(T,y) = de(y) \/ de(y),

where H(s, y,q) := maxycy ( —f(s,y,u)- CI)

> Moreover, we have:

Wo(s,¥)<0 &  Ve>0, U € Uag, de(Ysy(T))<e
and di(ysy(§)) <eVEels, T].
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A reachability problem associated to (P)

Now, consider the following control problem:

wisy)= ot {alyt, (1) max dily, (€) |

rgElrFin, rHax],

Sx E[sN, smax],

where )
yy(s) = f(s,y)(s),u(s)), se€l0,s.]
Vy(s]) = (78, yy(s. ),
yy(s) = f(s,yy(s), u(s)), sels., T]
yy(0) =y € Xp x [0, +oo]

Olivier Bokanowski SSO mission solved by HJB
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Let the following operator:

Mwo(s,y):= min_ wy(s, d(7, x)).

T[T 7 max]

Theorem
> The function w is Lipschitz continuous on [0, T] x R®

v
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Let the following operator:

Mwo(s,y):= min_ wy(s, d(7, x)).
TE[TF", TE]
Theorem

> The function w is Lipschitz continuous on [0, T] x R®
> W= wpon [s"¥ T] x R®

o
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Let the following operator:

Mwo(s,y):= min_ wy(s, d(7, x)).

T[T 7 max]

Theorem
> The function w is Lipschitz continuous on [0, T] x R®
> w = wpon [sM T] x R®
> Then w is the unique continuous viscosity solution of the following HJB
equation on [0, s7#] x RS:
min { max ( —Osw+ H(s,y,Dyw), w— Mwp(s, y)), w— d,g(y)} =0,
on (s™" sMa) x R®,

min ( dsw + H(s,y,D,w), w — d;c(y)> =0, on (0,s™) x RS,

w(sT™, y) = wo(s"™,y), y€RS.

o
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Procedure for solving (P)

- STEP 1. Compute the set X for a large sample of parameters (¢, w).
- STEP 2. Solve the first HJB equation to get an approximation of wp.
- STEP 3. Solve the HJB equation to obtain an approximation of w.
- STEP 4. Define on the set Xj the function
m*(x) = sup{m | w(0, (x, m)) < 0}. (4)

This function corresponds to the biggest payload mass that is possible to
steer to the GEO starting from x. Finally, the optimal mass is given by:

Mopt = SUP M™(X).
XEXo

- STEP 5: Reconstruction of an optimal trajectory.
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Outline

° HJB: Numerical aspects

=} F = = DA
Olivier Bokanowski SS0 mission solved by HJB



1) Spherical - Cartesian (SC) coordinates
Spherical coordinates for the position X = (r, L, ¢)
cartesian coordinates for V in the vertical frame Ry: V = (v, v, W),
equivalently:
V = vy, + vijy + vrky

o _

a  r

@ _

dt~  rcos/

a _

dat !

2 —
% = F;\f’r) cos 0 cos ju 4 ge — Qrcos (¢ sin £ — 2Qv; sin £ — M
% — T( Frn) cose sm,u+2Q(v,cos€+vlsm€)+w
2 2

v _ _ FT(r) sind + g, — Q2rcos? ¢ — 2Qv; cos ¢ — LTV

at M
dmo _
& -0
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1) Spherical - Cartesian (SC) coordinates
Spherical coordinates for the position X = (r, L, ¢)

cartesian coordinates for V in the vertical frame Ry: V = (v, v, W),
equivalently:
V = vy + vijy + Viky

d _ w
at r

ar
dt

2 p—
% = FT()COSOCOSM-i-g[ ercosésin£—2QvLsiné—M
% = F;é,)cosesinp+2Q(v,cos€+v[sin€)+w

2 2
% - T()S'”9+9r QPrcos? ¢ — 2Qv cos ¢ — LTV

dmy
at

= —Vr
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2) Analytic expression for the Numerical Hamiltonian

H(t, x,z,q) = max ) (— F(x,u)- q)

u=(a,md

a€lamin, amax]
€[5 min:dmax]

max b1 cos(ar) cos(d) + by cos(a) sin(d) + bs sin(a))

+C(t7 X? 27 q)
where

° by =0 be=5la b= G as.

@ C(t, x,z,q) does not depend neither on « nor 4,
@ q involves finites differences (ENO2) estimates of derivatives (g ~ Dw)

= A simple analytical expression for («*,6*) is obtained.
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3) State constraints & domain reduction

REF: The HJB approach for the optimal control of an abort landing problem,
CDC 2016, 55th IEEE, Assellaou, Bokanowski, Desilles, Zidani.
Idea: domain reduction technique

Allowed region in the plane (r,v) Allowed region in the plane (r,v)

12000
10000

8000

vimsl)

&000

ADDG

2000

U} 50 100 150 200 250 300 L} 50 100 150 200 250 300
rorp [km] rerp [km]

Figure: A priori domain reduction
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Details for boundary conditions
Consider the simplified problem y(t) € R with state constraint to be enforced:

y(t) € [a, b]
Introduce some n > 0 and the computational domain

Q,:=[a-n,b+n]
Define the L.S. functiong: R — R
g(x) := min(e, max(x — b,a— x)).

Define the OCP

w(t,x) = infe(y(T) \/ max g(yi(T))

Then
min(—w; + H(x,Vw), w—g) =0, x€eR
x)\ g(x)
Furthermore, assuming that ¢(.) < n, it holds
X¢Q,=(a—nb+n) = nzw(tx)=g(x)=

= w(t, x) =n
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Efficient computing

EFF-1/ Scalable scheme
EFF-2/ Minimize tests

EFF-3/ Parallelizability

EFF-4/ Avoid boundary testing
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EFF-1/ Scalable scheme
Consider the PDE:

min(v; + H(x,Vv), v—9g(x)) =0

FD Scheme on mesh (x;):

umtt —yn
min <’At’ + h(Un),', U;7+1 _ g(XI)) = O,

which leads to
u™! = max < ul — At h(u");, g(x,-)>.
~———

1,FD
ul_n+ >

Numerical hamiltonian h: typically, a finite difference scheme of ENO type.
Example: ENO of second order needs only 5 points (i,i = 1,i £+ 2) in each
direction, total = 1 + 4d = O(d) neighboring points
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EFF-2/ Minimize tests in coding:

void HJB_FD::ENO2_RK1(double t, double deltat, double* vin, doublex vout)

{

// INITIALISATION // PERIODICITY & BORDER PREPARATION

for(j=0; j<ranksize;j++){

//- Dvnum is global

i = rank[jl; //- using tab rank
vi = vin[i];
for(d=0;d<dim;d++){

vl = vin[i - mesh->out_neighbors[d]];

v3 = vin[i - 2+mesh->out_neighbors[d]];
v2 = vin[i + mesh->out_neighbors[d]l];
v4 = vin[i + 2+mesh->out_neighbors[d]];
h = divdx[d];

vv = (v2-2.%vitvl);

Dvnum[2*d] = ((vi-v1) + .5%minmod((vi-2.*v1+v3),vv))*h;
Dvnum[2+d+1]= ((v2-vi) - .5*minmod((vi-2.*v2+v4),vv))*h;

}

double *xx=(mesh->*(mesh->getcoords)) (i) ;

vout[i] = vi - deltat * (xthis.*Hnum) (xx,Dvnum,t);
}
return;

}

Olivier Bokanowski
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EFF-3/ Paralellizability: OpenMP

void HJB_FD::ENO2_RK1_omp(double t, double deltat, double* vin, double* vout)
{
// INITIALISATION // PERIODICITY & BORDER PREPARATION

#pragma omp parallel for num_threads(OMP_NUM_THREADS)
private(d, i, j, vi, vi, v2, v3, v4, vv, h)
shared(t,deltat,vin,vout) default(none)

for(j=0; j<ranksize;j++){"
double dvnum[2*dim];

i = rank[jl;
vi = vin[il;
for(d=0;d<dim;d++){

vl = vin[i - mesh->out_neighbors[d]];
v3 = vin[i - 2*mesh->out_neighbors[d]];
v2 = vin[i + mesh->out_neighbors[d]];
v4 = vin[i + 2xmesh->out_neighbors[d]];
h = divdx[d];
vv = (v2-2.%vi+vl);
dvnum[2+d] = ((vi-v1) + .5*minmod((vi-2.*v1+v3),vv))*h;
dvnum[2*d+1]= ((v2-vi) - .5%minmod((vi-2.*v2+v4),vv))*h;
}
double *xx=(mesh->*(mesh->getcoords)) (i);
vout[i] = vi - deltat * (xthis.*Hnum) (xx,dvnum},t);
}
return;

}
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EFF-4/ Avoid boundary testing: boundary ENLARGMENT
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Numerical scheme

e We use the ROC-HJ c++ solver
http://uma.ensta-paristech.fr/files/ROC-HJ/

and in particular a finite difference scheme, with Open-MP parallelization
techniques. (developpers: O.B., J. Zhao, A. Desilles, H. Zidani)

e Other solvers available: I. Mitchell’'s Matlab toolbox, ...
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Outline

e Numerical simulation

=} F = = DA
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Approximation of the optimal trajectories

Figure: trajectory - atmospheric part

=} F = = DA
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Approximation of Xy (Step 1)

Xo :=A{y"(t1) | pe P, ¥°(t) = f(p,y’(1)), ¥°(0) = yo},

' L latitude ()
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60 0015 00045
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Optimization of the shooting parameter p

Assume we have the knowledge of the value w(0, x, z):

Figure: Values of w(0, x, m*(x)) with x = I'(p), for different shooting parameters
p=(,w).

= we determine an optimal mass mp; = m* and corresponding shooting
parameters p* = (*,w*).
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HJB : connecting different box computations for the

different phases

Grid 2 for boost 2

/

pd

sr GEO

B

N

Ballistic flight transter

Ve

Grid 1 for boost 1

// Switch domain
/

possible  start
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HJB - Numerical computations

| Grid (B1-1) | Number of points [ CPU(s) |
Grid 1 20x30x10x10x 8x3 900
Grid 2 30x40x15x15x 12 x4 3520
Grid 3 40 x 60 x 20 x 20 x 16 x 5 18900

Table: Grid sizes (for B1-1) and CPU times

[ Grid (B1-1) | ¢ (deg) [ w(degs™") | s.(s) | 78(s) | mapt (kg) |

Grid 1 105.00 0.69 956.15 | 2605.82 | 15449.90
Grid 2 105.00 0.69 956.44 | 2625.82 | 15563.13
Grid 3 103.99 0.69 955.41 | 2605.82 | 15624.87

Table: Optimal initial parameters, phase durations and payload mass

| Grid [ v(deg) | ra(km) [ rp (km) [ i(deg) |

Grid1 | 61.48 | 826.32 | 148.60 | 105.25
Grid2 | 61.37 | 848.93 | 142.89 | 102.36
Grid3 | 68.98 | 780.66 | 133.36 | 100.28

Table:

Optimal transfer orbit parameters (for ballistic phase)
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Figure: Optimal trajectory with HJB (in inertial frame)
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Conclusion - Going further

e Trajectories for the SSO pb where obtained using the HJB
approach
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aspects of FD schemes, level set functions used for target
and state constraints, trajectory reconstruction from
state-constraint value function, ....
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Conclusion - Going further

e Trajectories for the SSO pb where obtained using the HJB
approach

e Non discussed issues: memory, diffusive/non-diffusive
aspects of FD schemes, level set functions used for target
and state constraints, trajectory reconstruction from
state-constraint value function, ....

e Going further: try using the HJ computation to initialize PMP
/ shooting method (Cristiani-Martinon JOTA 2010)
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