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Opening remarks

The Maximum Principle (MP) was developed by L.S. Pontryagin, V.G.
Boltyanskii and R.V. Gamkrelidze in 1956–58 and, after the publication
of the book by Pontryagin, Boltyanskii, Gamkrelidze and Mischchenko
(1961), an enormous and ever lasting effort in the further development
and application of the MP to control and extremum problems took place,
with fundamental early contribution from A.Ya. Dubovitskii, A.A.
Milyutin, and many other mathematicians.

The question of obtaining MP optimality conditions in optimal control
problems with ODEs seems now completely solved. However, this seems
not the case for PDE control problems and, in this realm, we need to
transform the MP into a working tool to be applied to concrete problems.

I Study the MP for PDE control problems;

I Develop numerical strategies based on the MP.
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Needle variation

To obtain optimality conditions in optimal control problems different
classes of variations have been considered. In particular,

a) Uniformly small variations;
b) Needle-type variations.

The MP corresponds to minima including both the uniformly small and
needle variations of the control (intermediate between the classical weak
and strong minima).

I Uniformly small variations characterize the Lagrange framework.

I Needle-type variations characterize the MP framework.

One of the purposes of our work is to exploit the needle-variation
framework at the numerical level.

Alfio Borzì On the solution of some PDE control problems in the framework of the Pontryagin’s maximum principle



Two controlled PDE evolution models

Consider the Cauchy problem ẋ = b(x , t, u), x(0) = x0.
The corresponding Liouville equation is given by

∂

∂t
ρ(x , t) +

∂

∂x
(b(x , t, u) ρ(x , t)) = 0, ρ(x , 0) = ρ0(x).

This problem describes the ensemble of trajectories of the ODE model for
a density of initial conditions ρ0. It also describes the transport of a
density of non-interacting identical particles.
In both cases, the control u is in the (coefficient) drift b.

We also consider the heat equation that models a diffusion process

∂

∂t
y(x , t)− D ∆y(x , t) = u, y(x , 0) = y0(x).

In this model, the control u represents a (distributed) source term.
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A Liouville control problem
A transport-type Liouville control problem can be formulated as follows

max J(ρ, u) :=

∫
B
ρ(x ,T ) dx ,

such that
ρt +∇ · (b(x , t, u) ρ) = 0,
ρ(x , 0) = ρ0,

where x ∈ Rn and b : Rn ×R× U → Rn and ρt = ∂ρ
∂t , ∇ is the Cartesian

gradient w.r.t. x and ∇· denotes divergence.

The initial density ρ0 ≥ 0 is normalized to 1 and has compact support in
A ⊂ Rn. We also assume that u(t) ∈ U, U ⊂ Rm, m ≤ n. The set of
values of the control U the target set B ⊂ Rn are compact and nonempty.
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Control setting and flow field

We consider the following set of admissible controls

U = {u = (u1, . . . um) ∈ L∞(0,T ;Rm), u(t) ∈ U for all t ∈ [0,T ]}.

The drift b satisfies the following Assumption A1

The map b : Rn × [0,T ]× U → Rn is continuous;

The map b(·, t, u) ∈ C k(Rn), k > 2;

There are constants L,C such that, for all x , x ′ ∈ Rn, t ∈ [0,T ], u ∈ U :

|b(x , t, u)− b(x ′, t, u)| ≤ L |x − x ′|, and |b(x , t, u)| ≤ C (1 + |x |).

With this assumption and u ∈ U , the Cauchy problem ẋ = b(x , t, u),
x(0) = x0, admits a unique absolutely continuous solution,
x : [0,T ]→ Rn; see Carathéodory theorem.

The unique solution s 7→ V s
t (x) to the Cauchy problem

ẏ(s) = b(s, y(s)), y(t) = x , defines the map (s, t, x) 7→ V s
t (x), which is

called the flow of the vector field b.
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Existence of an optimal control

Theorem: Let b satisfies the conditions of Assumption A1, it is
measurable in t for all fixed x ∈ Rn, and supx∈Rd |b(x , t, u)| ≤ β(t) a.e.
for some positive function β ∈ L1([0,T ]), then the Liouville problem with
ρ0 ∈ D′0(Rn)) admits a unique solution ρ ∈ AC ([0,T ];D′0(Rn)), where
D′k(Rn), k ∈ N, k ≥ 0, denotes the subspace of distributions of order k .

Theorem [N.I. Pogodaev, 2016]: Let b = (b1, . . . , bn) has the form

b(x , t, u) = b0(x , t) +
m∑
j=1

Φj(uj(t)) bj(x , t), (1)

where b0 = (b1
0, . . . , b

n
0) and bj = (b1

j , . . . , b
n
j ), j = 1, . . . ,m, satisfy

Assumption A1, and the Φj are convex functions. Further, assume that
the target set B be closed. Then the Liouville control problem has a
solution in U .
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MP characterization of the optimal control
Theorem [N.I. Pogodaev, 2016]: Let B be a compact set with the interior
ball property, ρ0 ∈ C 1(Rn) and b satisfies all conditions of Assumption
A1. Let u∗ be an optimal control for the Liouville control problem, and
ρ∗ be the corresponding density function. Then, for almost every
t ∈ [0,T ], the following holds∫

∂Bt

ρ∗(x , t) b(x , t, u∗(t)) · η∗Bt (x) dσ(x)

= min
w∈U

∫
∂Bt

ρ∗(x , t) b(x , t,w) · η∗Bt (x) dσ(x),

where Bt =
(
V̄ t
T

)∗
(B), with

(
V̄
)∗

being the optimal (adjoint) flow
corresponding to the vector field (x , t) 7→ b(x , t, u∗(t)), ηBt (x) is the
measure-theoretic outer unit normal to Bt at x , σ is (n − 1)-dimensional
Hausdorff measure.

If a ∂B is a C 2 surface, then B satisfies the interior ball condition. This is
also true for domains with C 1,1 boundary. In these cases, ηB(x) is the
usual outer unit normal to B.
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Lagrange characterization of the optimal control

If all Φj are differentiable w.r.t. u, we have

Theorem: The first-order optimality condition for the Liouville control
problem is given by

−
∫ T

0

∫
Rn

{
∇·

(
∂b

∂u
(x , t, u∗(t)) ρ∗(x , t)

)}
q∗(x , t)·(u(t)−u∗(t)) dxdt ≤ 0, ∀u ∈ U ,

where u∗ denotes the optimal control, ρ∗ = ρ(u∗) represents the solution
to the Liouville problem with u = u∗. Further, q∗ = q(u∗) denotes the
solution to the adjoint Liouville equation

qt + b(x , t, u) · ∇q = 0,
q(x ,T ) = χB(x),

with u = u∗, where χB denotes the characteristic function of the set B.
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A reformulation of the MP condition
We use the following∫

Rn

(∇ · v(x))χB(x) dx =

∫
∂B

(v(x) · ηB(x)) dσ(x),

and notice that χ∗Bt coincides with the optimal adjoint function q∗(x , t).
We obtain the following reformulation of the MP condition∫

Rn

∇ · (b(x , t, u∗(t)) ρ∗(x , t)) q∗(x , t) dx

= min
w∈U

∫
Rn

∇ · (b(x , t,w) ρ∗(x , t)) q∗(x , t) dx .

If the drift b has the structure (1), we obtain

u∗(t) = argmin
w∈U

m∑
j=1

Φj(wj)

∫
Rn

∇ · (bj(x , t) ρ∗(x , t)) q∗(x , t) dx .
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Opening remarks for numerical optimization
Notice that the integral term in

u∗(t) = argmin
w∈U

m∑
j=1

Φj(wj)

∫
Rn

∇ · (bj(x , t) ρ∗(x , t)) q∗(x , t) dx .

does not depend on u (i.e. w). However, we do not know ρ∗ and q∗,
which are determined by u∗. So we should better write

u∗(t) = argmin
w∈U

m∑
j=1

Φj(wj)

∫
Rn

∇ · (bj(x , t) ρ(u∗)(x , t)) q(u∗)(x , t) dx .

This fact suggests that we have to take into account the dependence of ρ
and q on the control u, namely ρ = ρ(u) and q = q(u).

For this reason, we consider the following optimization problem

min
w∈U

m∑
j=1

Φj(wj)

∫
Rn

∇ · (bj(x , tk) ρ(w)(x , tk)) q(w)(x , tk) dx , (P)

at each tk

Alfio Borzì On the solution of some PDE control problems in the framework of the Pontryagin’s maximum principle



Numerical local control-to-state and control-to-adjoint maps
The straightforward implementation of (P) seems not advantageous for a
numerical scheme. However, considering local numerical approximations
of the Liouville equation and its adjoint, we have the maps ρkh = ρkh(w)
and qkh = qkh (w) at the time step tk on the mesh Ωh.

Illustration: we choose m = 1, b0 = 0, b1 = 1, Φ1(u) = u in (1) and
assume that U is such that w ≥ 0. Further, assume that the control is
piecewise constant in the intervals (tk , tk+1), tk = kδt, δt = T/N.
Denote the control’s values in these intervals with uk+1/2,
k = 0, . . . ,N − 1.
Let xi = ih, and use first-order upwind schemes

ρk+1
i (w) := ρk+1

i = ρki − w ∆t D−x ρ
k
i .

Similarly for the adjoint variable, we have

qki (w) := qki = qk+1
i + w ∆t D+

x q
k+1
i .

where D+
x vi = (vi+1 − vi )/h and D−x vi = (vi − vi−1)/h.
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A discrete MP optimization problem

We discretize (P) and obtain the following numerical MP (NMP)
optimization problem

min
w∈U

w
∑
xi∈Ωh

h

2
[D+

x (ρki + ρk+1
i (w))]

1
2

[qki (w) + qk+1
i ], (Ph)

Notice that in this illustrative example a cubic polynomial in w is
obtained. If Φ(u) = |u|, a cubic polynomial in |w | is obtained. A similar
result is obtained in two dimensions and we argue that this is true in all
dimensions with a multivariate cubic polynomial, and the optimal
solution (u∗)k+1/2 may belong to the interior of U or to its boundary.

To solve (Ph), we consider a uniform grid of values in U and find the
minimum by fast direct search.
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A more sophisticated numerical setting
We consider the Sanders’ TVD finite-volume scheme.
This scheme is the only known TVD-FV scheme preserving higher-order
accuracy even at smooth extrema of the solution. This scheme uses the
TVD property of the reconstructing polynomial rather than that of the
solution.

Theorem: The scheme of Sanders can be written in a conservative form.

Theorem[R. Sanders, 1988]: The Sanders scheme is positive in the sense
that ρ0 ≥ 0⇒ ρkj ≥ 0 under the CFL condition
maxx∈Ω |b′(x , t, u)|λ < 1, λ = ∆t/h, ∀t ∈ [0,T ].

Theorem: The Sanders’ scheme is second-order accurate in the L1-norm
as follows

‖ρh(x ,T )− ρ(x ,T )‖1 ≤ D(T ) h2,

under the given CFL condition.

Also with Sanders’ scheme, our NMP requires to optimize a cubic
polynomial at each time step.
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A new MP optimization scheme
Input: Number of iter. M, initial guess for the control, u = u(0):
compute the corresponding ρ and q.

1. for r = 1, . . . ,M (outer iteration loop)

2. for k = 0, . . . ,N − 1 (first inner iteration loop; forward update)

3. Solve the NMP to obtain uk+1/2, and update ρk+1 using the
discrete Liouville equation.

4. end

5. for k = N − 1, . . . , 0 (second inner iteration loop; backward update)

6. Solve NMP to compute u
k+1/2
(r) := uk+1/2, and update qk using the

discrete adjoint Liouville equation.

7. end

8. break if convergence criteria is fulfilled: ‖u(r) − u(r−1)‖L2
δt(0,T ) < ε .

9. If r < M repeat the outer iteration.
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Numerical experiment I: Setting

Case 1: we consider b(x , t, u) = u. Let U = [−1, 2.5] and B = [rT , sT ].
The optimal control without constraints is given by ū = (rT + sT )/(2T ).
We chose T = 2 and rT = 2, sT = 3, N = 100. The domain Ω = (−8, 8)
is discretized with 100 subintervals.
For a given u = u(t), we have Bt = [rt , st ], where

rt = rT +

∫ t

T

u(τ)dτ, st = sT +

∫ t

T

u(τ)dτ.

Further, we have ηBt (rt) = −1 and ηBt (st) = 1.
The initial density is given by

ρ0(x) =

{
1, −c1/2 < x + 2 < c1/2,

0, otherwise,

where c = (3/4)2/3. Hence A = [−2− c1/2,−2 + c1/2].
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Numerical experiment I: Results
We apply the MP scheme to solve the problem above with the initial
guess u(t) = 1.5. Our MP iteration converges to the optimal solution
with just 2 iterations.
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Figure: Case 1: MP solution ρ (left) at t = T . Right: the optimal
control.

Changing the initial guess for u and the discretization parameters does not
change the solution.
A similar problem is solved in the Lagrange framework using a Projected-NCG
scheme. In this case, a mollification of the initial condition and ca. 10 times
more CPU time are required.
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Numerical experiment II: Setting & Results

Case 2: we consider b(x , t, u) = −2 + 4u sin(πt). Let U = [−2, 2] and
B = [rT , sT ] with T = 2 and rT = 3.5, sT = 4.5. Otherwise as Case 1.
We obtain a bang-bang control with switching at t = 1.

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

rh
o
(x

)

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

t

u
(t

)

Figure: Case 2: MP bang-bang solution ρ (left) at t = T . Right: the
optimal control.
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Numerical experiment III: Setting & Results
Case 3: we consider a vector field b that is a non-differentiable function
of u, namely b(x , t, u) = −2 + 4|u| sin(πt). Otherwise as Case 2.
As in Case 2, we obtain a switch at t = 1. However, because of the
different control mechanism, the control becomes zero after the switching
point.
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A parabolic optimal control problem

We discuss a parabolic control problem in the space-time cylinder
Q = Ω× (0,T ], Ω ⊂ R2, where Ω is a bounded convex domain with C 2

boundary. The purpose of the optimal control is to

min J(y , u) :=
1
2
||y − yd ||2L2(Q) +

α

2
||u||2L2(Q) + G (u) , α ≥ 0,

such that

yt(x , t)− D ∆y(x , t) = u(x , t), in Q

y(x , 0) = y0(x), in Ω× {t = 0}
y(x , t) = 0, on Ω× (0,T )

where y0 ∈ L∞ (Ω) ∩ H1
0 (Ω) denotes the initial condition, and u ∈ Uad ;

D > 0.
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A discontinuous cost functional

The cost functional J includes a ‘classical’ differentiable part, including a
tracking term with a desired trajectory yd ∈ L∞ (Q), and an L2 cost of
the control.
It contains the following discontinuous functional

G (u) := γ

∫
Q

gd,s (u (x , t)) dxdt, γ > 0,

where gd,s : R→ R is the following non-negative lower semi-continuous
function

gd,s (u) :=

{
|u − d | if |u − d | > s,

0 otherwise .

Notice that G (u) measures zero costs as far as the control u is in the L1

closed ball centered in d ∈ R with radius s > 0. If u is in the
complement of this ball, then the cost given by G is of L1 type.
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Existence of an optimal control
The proof of existence of an optimal control is a delicate issue. Since our
functional is (not weakly) lower semi-continuous, we need to consider
admissible control sets that are compact. This is not the case for

Uad :=
{
u ∈ L2 (Q) | u (x , t) ∈ KU , a.e. in Q

}
. (KU = [ua, ub].)

However, let for example Vc be given by
Vc := {v ∈W 1,2(Q) | ‖v‖W 1,2(Q) ≤ c} where c is a chosen positive
constant. Then Uad ∩ Vc is compact. Another possible choice is the set
of jump-continuous functions in Q with values in [ua, ub].

Assuming u ∈ L2 (Q), we have that there exists a unique solution
y ∈ L2

(
0,T ;H2 (Ω)

)
∩ L∞

(
0,T ;H1

0 (Ω)
)
. We denote this solution with

y = S(u), S being the continuous control-to-state map. Therefore we
can define Ĵ(u) := J(S(u), u).

Theorem: Let gd,s be a non-negative lower semi-continuous function with
(gd,s ◦ u) bounded for all u ∈ Uad and consider the set of controls
Uad ∩ Vc . Then the parabolic optimal control problem admits an optimal
solution u∗ ∈ Uad ∩ Vc .
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Sketch of proof of existence
The functional J is non-negative and we can construct a minimizing sequence with limn→∞ Ĵ (un) = J̄

where J̄ = infu∈Uad∩Vc Ĵ (u). Notice that W 1,q (Q) is a reflexive Banach space for 1 < q <∞, and the
set Uad ∩ Vc is convex, closed and bounded, then Uad ∩ Vc is weakly sequentially compact. Therefore,
there exists a subsequence which converges weakly un ⇀ ū in Uad ∩ Vc .
Further, W 1,q (Q) is compactly embedded in C(Q̄) equipped with the maximum norm, since the
boundary of Q is locally Lipschitz. Therefore there exists a minimizing subsequence, also denoted with
(un)n∈N, which converges strongly in C

(
Q̄
)
. This means that un (x, t)→ ū (x, t) for n →∞ for all

(x, t) ∈ Q.
We have

J̄ = lim inf
n→∞

(
Ĵc (un) + Gd,s (un)

)
≥ lim inf

n→∞
Ĵc (un) + lim inf

n→∞
Gd,s (un) .

Further, notice that Ĵc is lower semi-continuous and lim infn→∞ Ĵc (un) ≥ Ĵc (ū).
Now, notice that the composition (gd,s ◦ u) is lower semi-continuous and bounded for all u ∈ Uad . We
can apply Fatou’s Lemma as follows

lim infn→∞ Gd,s (un) ≥ lim infn→∞ γ
∫
Q gd,s (un (x, t)) dxdt

≥ γ
∫
Q lim infn→∞ gd,s (un (x, t)) dxdt ≥ γ

∫
Q gd,s (ū (x, t)) dxdt.

Therefore we have J̄ ≥ Ĵc (ū) + Gd,s (ū). Thus, ū ∈ Uad ∩ Vc is an optimal control.

Similarly, one can prove existence of an optimal control in Uad ∩ Vc for the case where a L0-cost of the
control appears

J (y, u) := Jc (y, u) + γ

∫
Q
ζ (u (x, t)) dxdt, ζ (u (x, t)) :=

{
1 if u (x, t) 6= 0
0 else.
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The adjoint parabolic equation

The adjoint equation corresponding to our parabolic optimal control
problem is given by (in weak form)

(−p′ (·, t) , v) + D (∇p (·, t) ,∇v) = (y (·, t)− yd (·, t) , v) in Q

p (·,T ) = 0 on Ω× {T = 0}
p = 0 on ∂Ω.

This problem is similar to the forward parabolic problem after a
transformation of the time variable t := T − τ and noticing that
y − yd ∈ L2

(
0,T ; L2 (Ω)

)
. Hence, there exists a unique solution

p ∈ L2
(
0,T ;H2 (Ω)

)
∩ L∞

(
0,T ;H1

0 (Ω)
)
and p′ ∈ L2

(
0,T ; L2 (Ω)

)
.
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The MP Hamiltonian

We apply the results of [Raymond and Zidani, 1999] to our optimal
control problem with a discontinuous cost functional. For this purpose,
we introduce the (weak) Hamiltonian

HQ (x , t, y , u, p) :=
1
2

(y (x , t)− yd (x , t))2 +
α

2
u2 (x , t) + γ gd,s (u (x , t))

+ p (x , t) u (x , t)− D
n∑

i=1

yxi (x , t) pxi (x , t) .

Further, we define

F (x , t, y , u) :=
1
2

(y (x , t)− yd (x , t))2 +
α

2
u2 (x , t) + γ gd,s (u (x , t)) .

Notice that J (y , u) =
∫
Q
F (x , t, y , u) dxdt. We do not require continuity

of F (x , t, y , ·).
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The intermediate adjoint and a lemma

We define the intermediate adjoint equation

(−p̃′ (·, t) , v) + D (∇p̃ (·, t) ,∇v) =

(
1
2

(y1 (·, t) + y2 (·, t))− yd (·, t) , v

)
,

p̃ (·,T ) = 0,

where y1 = S(u1) and y2 = S(u2), u1, u2 ∈ Uad .

We have the following

Lemma [Raymond and Zidani, 1999]: The following equation holds

J (y1, u1)− J (y2, u2) =

∫
Q

(HQ (x , t, y2, u1, p̃)− HQ (x , t, y2, u2, p̃)) dxdt,

where y1 = S(u1) and y2 = S(u2) and p̃ is the solution to the
intermediate adjoint equation.
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The needle variation
The classical approach to prove the MP is the method of needle variation
[Dmitruk and Osmolovskii, 2016]. Let Sk (x0, t0) be an open ball centered
at (x0, t0) ∈ Q with radius skx0,t0 such that limk→∞ |Sk (x0, t0) | = 0.
We define the needle variation at (x0, t0) of an admissible control
ū ∈ Uad as follows

uk (x , t) :=

{
ū (x , t) on Q\Sk (x0, t0)

u in Sk (x0, t0) ∩ Q,

where u ∈ KU .

Lemma: Let ū ∈ Uad be an admissible control and u ∈ KU . Furthermore,
let uk be defined as above and yk = S(uk). Then,

lim
k→∞

1
|Sk (x , t) |

(J (yk , uk)− J (ȳ , ū))

= HQ (x , t, ȳ (x , t) , u, p̄ (x , t))− HQ (x , t, ȳ (x , t) , ū (x , t) , p̄ (x , t)) ,

for almost all (x , t) ∈ Q, and ȳ = S(ū) and p̄ is the solution to adjoint
equation with y ← ȳ .
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The MP optimality condition
Theorem: Let (y∗, u∗, p∗) be an optimal solution to the parabolic
optimal control problem where y∗ = S(u∗) and p∗ is the solution to the
adjoint problem with y ← y∗. Then, the following holds

HQ (x , t, y∗ (x , t) , u∗ (x , t) , p∗ (x , t)) = min
u∈KU

HQ (x , t, y∗ (x , t) , u, p∗ (x , t))

for almost every (x , t) ∈ Q.

Recall the previous lemma and the construction of the needle variation of u∗. Notice that(
J (yk , uk )− J

(
y∗, u∗

))
≥ 0. Then, we have the following

0 ≤ lim
k→∞

1

|Sk (x0, t0) |
(
J (yk , uk )− J

(
y∗, ū

))
= HQ

(
x0, t0, y

∗ (x0, t0) , u, p∗ (x0, t0)
)
− HQ

(
x0, t0, y

∗ (x0, t0) , u∗ (x0, t0) , p∗ (x0, t0)
)
,

for almost all (x0, t0) ∈ Q. Therefore for almost every point of Q, we have

HQ
(
x0, t0, y

∗ (x0, t0) , u∗ (x0, t0) , p∗ (x0, t0)
)
≤ HQ

(
x0, t0, y

∗ (x0, t0) , u, p∗ (x0, t0)
)
,

for all u ∈ KU . Consequently, we obtain

HQ
(
x0, t0, y

∗ (x0, t0) , u∗ (x0, t0) , p∗ (x0, t0)
)

= min
u∈KU

HQ
(
x0, t0, y

∗ (x0, t0) , u, p∗ (x0, t0)
)
,

for almost every point of Q.
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A Hamiltonian system
Within the MP framework, we can define the strong Hamiltonian

Ĥ (x , t, y , u, p) :=
1
2

(y (x , t) − yd (x , t))2 +
α

2
u2 (x , t) + γgd,s (u (x , t))

+ p (x , t) u (x , t) + D p (x , t) ∆y (x , t) ,

and its ‘adjoint’

H̃ (x , t, y , u, p) :=
1
2

(y (x , t) − yd (x , t))2 +
α

2
u2 (x , t) + γgd,s (u (x , t))

+ p (x , t) u (x , t) + D y (x , t) ∆p (x , t) .

Then the strong formulation of the state equation is given by

∂

∂t
y =

∂

∂p
Ĥ,

where y (·, 0) = y0 and zero boundary conditions, and the strong formulation of
the adjoint equation is given by

∂

∂t
p = − ∂

∂y
H̃,

where p (·,T ) = 0 and zero boundary conditions.
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Opening remarks for numerical optimization

Consider a discretized setting for our space-time cylinder Q = Ω× (0,T )
with Ω = (a, b). We have

Qh,4t := {(xi , tm) , | xi = a + ih ∈ Ωh, tm = m4t, } ,

The space and time mesh-sizes are given by h := b−a
N , 4t := T

Nt
. We

assume that the grid points (xi1...in , tm) and tm = m4t are ordered
lexicographically.

We approximate state and adjoint equations using the implicit Euler
scheme and finite differences. ym

i and pmi denote the approximations to
y (a + ih,m4t) and p (a + ih,m4t), respectively, and
(yd)mi = yd (a + ih,m4t).

Our purpose is to investigate an iterative numerical needle variation
procedure.
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Local minimization of the Hamiltonian and updates
The basic idea is to minimize HQ pointwise. In order to calculate the
element of KU which minimizes the Hamiltonian HQ in a given point of
Qh,4t , we discretize KU and choose the corresponding minimizing
element (by array search) in KU to update the control u∗ at this point.

The need arises to update y∗ and p∗. Indeed, one could proceed
recalculating these functions after every control update, but this
approach requires a very large computational effort.

For this reason, we choose an integer recalc ∈ N (a fraction of the total
number of grid points) and proceed as follows. We test a number of grid
points equal to recalc ∈ {1, . . . ,Nt (N − 1)} and, if the control is
updated at least once, we re-compute the state variable y and the value
of the cost functional J.

If the value of J does not represent an improvement towards the
minimum, then we discard the control updates and go to the next recalc
grid points.

However, if the control update results in a reduction of the cost
functional, we keep the changes in u and y and correspondingly update
the adjoint variable p and go to the next recalc grid points.
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An iterative needle-variation (INV) scheme
1. Discretize Q and set recalc ∈ {1, ...,Nt (N − 1)n}, εJ , εH > 0, k ← 0.

2. Choose u0 ∈ Uad and set û ← u0; compute y0 with u ← u0 and p0 with y ← y0.

3. Set Jold ← J
(
yk−1, uk−1

)
and Hold ←

∫
Q HQ

(
x, t, yk−1, uk−1, pk−1

)
dxdt

4. Set counter ← 0, converged ← 1, uchanged ← 0 and i ← 0

5. For m = 0, 1, ...,Nt − 1, ij = 1, ...,N − 1, j ∈ {1, ..., n}; i ← i + 1;

5.1 Choose u ∈ KU such that u = argminũ∈KU HQ

(
xi , tm,

(
yk
)m
i1...in

, ũ,
(
pk
)m
i1,...,in

)
5.2 Set counter ← counter + 1, ûmi1...in

← u ;

If ûmi1...in 6= (uk )mi1...in
, then uchanged ← 1

5.3 If
(

(counter ≥ recalc or i = m (N − 1)n) and uchanged = 1
)
, then

Compute ŷ for u ← û

If J (ŷ, û)− J
(
yk , uk

)
< 0, then

Set k ← k + 1, Set yk ← ŷ and uk ← û

Compute pk with y ← yk

converged ← 0
Else

Set û ← uk−1

End
Set counter ← 0

End
5.4 If counter ≥ recalc, then counter ← 0 and uchanged ← 0

End

6. If converged = 1 or |J
(
yk , uk

)
− Jold | < εJ and

|
∫
Q HQ

(
x, t, yk (x, t) , uk (x, t) , pk (x, t)

)
dxdt − Hold | < εH , then stop, else go to 3.
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Numerical experiment I: Setting

In our numerical experiments, we consider Ω = (0, 1) and T = 1. The
initial guess of the control is the zero function.
We choose recalc = Nt(N−1)

Nre
where Nre = 50 represents the maximum

number of times the variable y and p are re-computed on all the grid
points. The numerical parameters are set as follows, N = 100, Nt = 200,
D = 1

5 , and if not otherwise stated α = 10−5, γ = 10−1. Furthermore,
we have, KU = [0, 10] discretized in steps of 1

100 , and the desired
trajectory

yd (x , t) =

{
5 if x̄ (t)− c ≤ x ≤ x̄ (t) + c

0 else

where x̄ (t) := x0 + 2
5 (b − a) sin

(
2π t

T

)
, x0 = b+a

2 , and c = 7
100 (b − a).

In J, we set d = 0, s = 1.
Further, εJ and εH are taken equal to machine precision.
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Numerical experiment I: Results

0

1

2

4

1

6

0.8

t

8

0.5
0.6

x

10

0.4

0.2
0 0

0

1

0.2

0.4

1

0.6

0.8

0.8

t

0.5

1

0.6

x

1.2

0.4

0.2
0 0

0

1

1

2

1

3

0.8

t

4

0.5
0.6

x

5

0.4

0.2
0 0

Figure: Optimal solution for the first experiment; from left to right: u, y ,
and yd .

The INV algorithm converges in 13 steps and we obtain the state and
control functions depicted in the Figure. The plot of the control function
shows the action of the discontinuous cost of the control given by g0,1
and the presence of the control’s upper bound at 10.
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Numerical experiment I: Robustness

We investigate the computational performance of the INV algorithm with
respect to different choices of the optimization parameters.

α γ k CPU time/s J ||y − yd ||
10−1 10−5 12 8.5 1.63 1.77
10−3 10−5 28 20.0 1.33 1.62
10−5 10−5 28 19.0 1.31 1.62
0 10−5 16 10.9 1.31 1.62
0 0 20 13.1 1.31 1.62

10−5 0 17 11.8 1.32 1.62
10−5 10−3 19 13.5 1.32 1.62
10−5 10−2 18 12.1 1.34 1.62
10−5 10−1 13 9.0 1.51 1.66
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Numerical experiment I: Complexity
We argue that the complexity of the INV algorithm satisfies

C (Ngp) ≤ Ngp (c1 + c2Ngp) ,

for c1, c2(Nre) > 0; Ngp = NtN. To validate this estimate, we solve the
same optimization problem as above using different scales of
discretization.

N
100 ×

Nt
100 1× 2 2× 2 2× 4 4× 4 4× 8 8× 8 8× 16 16× 16

CPU time/s 9.8 13.7 28.5 49.7 112.5 254.8 580.5 1408.9

500 000 1.0×10
6

1.5×10
6

2.0×10
6

2.5×10
6

200

400

600

800

1000

1200

1400
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Numerical experiment I (γ = 0): INV vs. projected gradient
& Armijo linesearch

α Ngp = N × Nt
INV pGM

CPU/s n. iter CPU/s n. iter
10−1 200× 400 2.9 13 3.1 103
10−1 400× 800 8.8 13 9.4 103
10−1 800× 1600 32.4 13 33.8 103
10−2 200× 400 7.0 30 27.0 927
10−2 400× 800 19.8 30 82.2 927
10−2 800× 1600 76.8 32 307.1 927
10−3 200× 400 6.3 30 190.2 6541
10−3 400× 800 18.3 29 568.4 6516
10−3 800× 1600 69.0 29 2125.2 6509
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Numerical experiment I (γ = 0): INV vs. projected NCG

α Ngp = N × Nt
INV pNCG

CPU/s n. iter CPU/s n. iter
10−1 200× 400 2.9 13 1.4 15
10−1 400× 800 8.8 13 3.5 15
10−1 800× 1600 32.4 13 14.0 15
10−3 200× 400 6.3 30 1.0 8
10−3 400× 800 18.3 29 2.7 8
10−3 800× 1600 69.0 29 9.3 8
10−5 200× 400 9.4 47 1.0 7
10−5 400× 800 18.7 29 2.5 7
10−5 800× 1600 69.2 29 55.4 84
10−7 200× 400 3.2 15 1.0 7
10−7 400× 800 11.8 19 2.5 7
10−7 800× 1600 66.3 32 8.4 7
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Numerical experiment II: Setting & Results
In this experiment, we consider a parabolic optimal control problem with
a L0-cost functional. We choose

yd (x , t) = 5 sin
(
2π

t

T

)
.

Further, we have KU = [−10, 10], α = 10−5, N = 800 and Nt = 800.
The results for the case with L0 costs and γ = 0.1 are reported in the
Figure. Similar results are obtained with g(u) =

√
|u|.
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Figure: Optimal solution for the second experiment; left: the control;
right: the state function.
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Closing remarks
The Liouville model allows to directly ‘lift’ ODE control problems in PDE
control problems and thus help in implementing the MP in the latter case.

The idea of needle variation seems the most appropriate to develop a
‘good’ MP numerical framework. Collective updates and multigrid
methods make this approach efficient and robust.
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