Direct numerical solution of cell problems

 in homogenization of HJ equations via generalized Newton's method for intonsistent nonlinear systemsSimone-Cacace and Fabio Camilli Úniversita degli Studi Roma Tre

NUMOC 2017

19-23 June 2017, Rome

Spoiler

- Ergodic problems for Hamilton-Jacobi equations
- Small- δ, large- t and theoretical formulas approximations
- The new approach: a Newton-like method for inconsistent systems
- Numerical results for:
- Eikonal Hamiltonians
- q-power Hamiltonians
- Non-convex Hamiltonians
- Second order Hamiltonians
- Weakly coupled systems
- Dislocation dynamics
- Stationary MFG in Euclidean Spaces (single and multi-population)
- Stationary MFG on Networks
- Homogenization of Mean Field Games with Small Noise

Ergodic problems for Hamilton-Jacobi equations

Consider the problem

$$
\begin{cases}v_{t}^{\varepsilon}+H\left(\frac{x}{\varepsilon}, D v^{\varepsilon}\right)=0 & \text { in } \mathbb{R}^{n} \times(0,+\infty) \\ v^{\varepsilon}(\cdot, 0)=v_{0} & \text { in } \mathbb{R}^{n}\end{cases}
$$

where the Hamiltonian $H(x, p): \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function, 1-periodic in x and coercive in p. The viscosity solution v^{ε} converges, as $\varepsilon \rightarrow 0$, to the viscosity solution v of the effective problem

$$
\begin{cases}v_{t}+\bar{H}(D v)=0 & \text { in } \mathbb{R}^{n} \times(0,+\infty) \\ v(\cdot, 0)=v_{0} & \text { in } \mathbb{R}^{n}\end{cases}
$$

where, for each $p \in \mathbb{R}^{n}$, the value $\lambda=\bar{H}(p)$ is the unique number such that the cell problem

$$
H(x, D u+p)=\lambda \quad \text { in } \mathbb{T}^{n}
$$

admits a 1-periodic viscosity solution u in the torus \mathbb{T}^{n}.
The function $\bar{H}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called the effective Hamiltonian.
The solution u is not unique in general, not even for addition of constants.

Computing \bar{H} via regularization of the cell problem

Small- δ method
The viscosity solution of

$$
\delta u^{\delta}+H\left(x, D u^{\delta}+p\right)=0 \quad \text { in } \mathbb{T}^{n}
$$

satisfies

$$
-\delta u^{\delta} \rightarrow \bar{H}(p) \text { as } \delta \rightarrow 0, \quad \text { uniformly in } \mathbb{R}^{n}
$$

Large- t method
The viscosity solution of

$$
\begin{cases}u_{t}+H(x, D u+p)=0 & \text { in } \mathbb{R}^{n} \times(0,+\infty) \\ u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{n}\end{cases}
$$

satisfies

$$
-u(x, t) / t \rightarrow \bar{H}(p) \quad \text { as } t \rightarrow+\infty, \quad \text { uniformly in } \mathbb{R}^{n}
$$

Computing H via theoretical formulas

inf-sup formula

$$
\bar{H}(p)=\inf _{u \in C^{\infty}\left(\mathbb{T}^{n}\right)} \sup _{x \in \mathbb{T}^{n}} H(x, D u+p)
$$

Variational approximation

The infimum is approximated for $k \rightarrow+\infty$ by the solution to

$$
\operatorname{div}\left(e^{k H(x, D u+p)} H_{p}(x, D u+p)\right)=0, \quad x \in \mathbb{T}^{n}
$$

Auxiliary boundary value problem for Homogeneous Hamiltonians

$$
\begin{array}{cc}
\bar{H}(x, p)=\max _{\|a\|=1}\{(p \cdot a) c(x, a)\} & \Longrightarrow \quad \bar{H}(p)=\max _{\|a\|=1}\{(p \cdot a) \bar{c}(a)\} \\
\left\{\begin{array}{l}
H\left(\frac{x}{\varepsilon}, D u^{\varepsilon}(x)\right)=1 \\
u^{\varepsilon}(0)=0
\end{array}\right. & \xrightarrow{\varepsilon \rightarrow 0} \quad\left\{\begin{array}{l}
\bar{H}(D u(x))=1 \\
u(0)=0
\end{array}\right. \\
u(x)=u^{\varepsilon}(x)+\mathcal{O}(\varepsilon) \quad \text { and } \quad \frac{1}{\bar{c}(x /|x|)}=\frac{u^{\varepsilon}(x)}{|x|}+\mathcal{O}(\varepsilon)
\end{array}
$$

A new approach: solving the cell problem directly

What is wrong with $H(x, D u+p)=\lambda$?

The problem is ill-posed, one equation in two unknowns: while the ergodic constant λ is unique, the viscosity solution u is in general not unique.

Nevertheless, we can perform in the torus \mathbb{T}^{n} our favorite discretization (FD, FE, FV, DG, SL) getting a system of nonlinear equations of the form

$$
\mathcal{S}(h, \mathbf{x}, \mathbf{U}, p)=\Lambda
$$

where h is a discretization parameter (meant to go to zero), \mathbf{x} is the vector of grid nodes, \mathbf{U} is a grid function and Λ is a real number.

The operator \mathcal{S} is a generic scheme, which is assumed to enjoy all the properties needed to ensure the convergence $(\mathbf{U}, \Lambda) \rightarrow(u, \lambda)$ as $h \rightarrow 0$.

In particular, \mathcal{S} should employ a numerical Hamiltonian which is able to correctly select approximations of viscosity solutions (Lax-Friedrichs, Engquist-Osher, Godunov).

A Newton-like method for inconsistent nonlinear systems

The main assumption:
for each fixed h there exists a unique Λ for which $\mathcal{S}(h, \mathbf{x}, \mathbf{U}, p)=\Lambda$ admits a solution \mathbf{U} (in general not unique).

Collecting the unknowns (\mathbf{U}, Λ) in a single vector \mathbf{X} of length N and recasting the M equations (given by \mathcal{S}) as functions of \mathbf{X}, we get the nonlinear $\operatorname{map} \mathbf{F}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ defined by $\mathbf{F}(\mathbf{X})=\mathcal{S}(h, \mathbf{x}, \mathbf{U}, p)-\Lambda$.

The discrete cell problem is equivalent to

$$
\text { find } \mathbf{X} \in \mathbb{R}^{N} \text { such that } \mathbf{F}(\mathbf{X})=\mathbf{0} \in \mathbb{R}^{M}
$$

Assuming that \mathbf{F} is Fréchet differentiable with Jacobian $\mathbf{J}_{\mathbf{F}} \in \mathbb{R}^{M \times N}$, we would like to approximate the zeros of \mathbf{F} by using the Newton's method

$$
\mathrm{J}_{\mathbf{F}}\left(\mathbf{X}^{(k)}\right) \delta=-\mathbf{F}\left(\mathbf{X}^{(k)}\right), \quad \mathbf{X}^{(k+1)}=\mathbf{X}^{(k)}+\delta, \quad k \geq 0
$$

but this system can be inconsistent for arbitrary M and N, i.e., underdetermined if $M<N$ and overdetermined if $M>N$.

The generalized least-squares solution

We denote by $\mathbf{J}_{\mathbf{F}}^{\dagger}$ the Moore-Penrose pseudoinverse of the Jacobian $\mathbf{J}_{\mathbf{F}}$, namely the unique $N \times M$ matrix such that

$$
J_{F} J_{F}^{\dagger} J_{F}=J_{F}, \quad J_{F}^{\dagger} J_{F} J_{F}^{\dagger}=J_{F}^{\dagger}, \quad\left(J_{F} J_{F}^{\dagger}\right)^{T}=J_{F} J_{F}^{\dagger}, \quad\left(J_{F}^{\dagger} J_{F}\right)^{T}=J_{F}^{\dagger} J_{F}
$$

It can be easily proved that

$$
\delta^{\star}:=-\mathbf{J}_{\mathbf{F}}^{\dagger}\left(\mathbf{X}^{(k)}\right) \mathbf{F}\left(\mathbf{X}^{(k)}\right)
$$

is the unique vector of smallest Euclidean norm which minimizes the Euclidean norm of the residual $\mathbf{J}_{\mathbf{F}}\left(\mathbf{X}^{(k)}\right) \boldsymbol{\delta}+\mathbf{F}\left(\mathbf{X}^{(k)}\right)$.

- In the overdetermined case $(M>N)$, if $J_{\mathbf{F}}$ has full column rank N

$$
\mathbf{J}_{\mathbf{F}}^{\dagger}=\left(\mathbf{J}_{\mathbf{F}}^{T} \mathbf{J}_{\mathbf{F}}\right)^{-1} \mathbf{J}_{\mathbf{F}}^{T}
$$

- In the underdetermined case $(M<N)$, if $J_{\mathbf{F}}$ has full row rank M

$$
\mathbf{J}_{\mathbf{F}}^{\dagger}=\mathbf{J}_{\mathbf{F}}^{T}\left(\mathrm{~J}_{\mathrm{F}} \mathrm{~J}_{\mathrm{F}}^{T}\right)^{-1}
$$

Efficient implementation via QR factorization avoiding $\mathbf{J}_{\mathbf{F}}^{\dagger}$

- Overdetermined case $(M>N)$, full column rank N : factoring $J_{\mathbf{F}}=\mathbf{Q R}$, $\mathbf{Q}=\left(\mathbf{Q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{2}}\right) \in \mathbb{R}^{M \times M}$ orthogonal, $\mathbf{Q}_{\mathbf{1}} \in \mathbb{R}^{M \times N}$ and $\mathbf{Q}_{\mathbf{2}} \in \mathbb{R}^{M \times(M-N)}$,

$$
\mathbf{R}=\binom{\mathbf{R}_{\mathbf{1}}}{\mathbf{0}} \in \mathbb{R}^{M \times N}, \mathbf{R}_{\mathbf{1}} \in \mathbb{R}^{N \times N} \text { upper triangular and } \mathbf{0} \in \mathbb{R}^{(M-N) \times N},
$$

yields $\mathbf{J}_{\mathbf{F}}^{\dagger}=\mathbf{R}_{1}^{-1} \mathbf{Q}_{1}^{T}$, and $\delta^{\star}=-\mathbf{R}_{1}^{-1} \mathbf{Q}_{1}^{T} \mathbf{F}\left(\mathbf{X}^{(k)}\right)$ via back-substitution.

- Underdetermined case $(M<N)$, full row rank M : factoring $\mathbf{J}_{\mathbf{F}}^{T}=\mathbf{Q R}$, $\mathbf{Q}=\left(\mathbf{Q}_{\mathbf{1}} \mathbf{Q}_{\mathbf{2}}\right) \in \mathbb{R}^{N \times N}$ orthogonal, $\mathbf{Q}_{\mathbf{1}} \in \mathbb{R}^{N \times M}$ and $\mathbf{Q}_{\mathbf{2}} \in \mathbb{R}^{N \times(N-M)}$, $\mathbf{R}=\binom{\mathbf{R}_{\mathbf{1}}}{\mathbf{0}} \in \mathbb{R}^{N \times M}, \mathbf{R}_{\mathbf{1}} \in \mathbb{R}^{M \times M}$ upper triangular and $\mathbf{0} \in \mathbb{R}^{(N-M) \times M}$, yields $J_{\mathbf{F}}^{\dagger}=\mathbf{Q}_{1} \mathbf{R}_{1}^{-T}$, and $\delta^{\star}=-\mathbf{Q}_{1} \mathbf{R}_{1}^{-T} \mathbf{F}\left(\mathbf{X}^{(k)}\right)$ via back-substitution.

The algorithm

Given an initial guess $\mathbf{X} \in \mathbb{R}^{N}$ and a TOLERANCE $\varepsilon>0$,

REPEAT

- Assemble $\mathbf{F}(\mathbf{X}) \in \mathbb{R}^{M}$ and $J_{\mathbf{F}}(\mathbf{X}) \in \mathbb{R}^{M \times N}$
- Solve $\mathbf{J}_{\mathbf{F}}(\mathbf{X}) \boldsymbol{\delta}=-\mathbf{F}(\mathbf{X})$ in the least-SQuares sense, using the QR factorization of $\mathbf{J}_{\mathbf{F}}(\mathbf{X})$ if $M>N$ or $\mathrm{J}_{\mathbf{F}}(\mathbf{X})^{T}$ if $M<N$
- Update $\mathbf{X} \leftarrow \mathbf{X}+\boldsymbol{\delta}$

UNTIL $\|\boldsymbol{\delta}\|_{2}<\varepsilon$ AND $/$ OR $\|\mathbf{F}(\mathbf{X})\|_{2}<\varepsilon$
Implementation in C employing the free library SuiteSparseQR, which is designed to efficiently compute in parallel the QR factorization and the least-squares solution to large and sparse linear systems.

Numerical tests performed on a Lenovo Ultrabook X1 Carbon, using 1 CPU Intel Quad-Core i5-4300U 1.90Ghz with 8 Gb Ram, running under the Linux Slackware 14.1 operating system.

Implementation tricks

> - Sometimes Newton-like methods do not converge, due to oscillations around a minimum of the residual function $\|\mathbf{F}(\mathbf{X})\|_{2}$.
> In this case we introduce a dumping parameter in the update step:
> $\mathbf{X} \leftarrow \mathbf{X}+\mu \delta$ for some $0<\mu<1$ (usually a fixed value of μ works fine).
> A more efficient (but costly) selection of the dumping parameter can be implemented using line search methods.

- It may happen that $\mathrm{J}_{\mathbf{F}}(\mathbf{X})$ is nearly singular or rank deficient, so that the least-squares solution cannot be computed.
In the spirit of the Levenberg-Marquardt method, we can regularize $\mathbf{J}_{\mathbf{F}}(\mathbf{X})$ with $\tau \mathbf{I}+\mathbf{J}_{\mathbf{F}}(\mathbf{X})$, for some $\tau>0$.
- Newton-like methods classically require that F is Fréchet differentiable. In the spirit of nonsmooth-Newton methods, we can replace the usual differential with any element of the sub-differential.
For instance, $H(x, p)=\frac{1}{q}|p|^{q}-V(x)$ with $q \geq 1 \Longrightarrow H_{p}(x, p)=|p|^{q-2} p$, is singular at $p=0$ for $1 \leq q<2$. We typically choose $H_{p}(x, 0)=0$.

Eikonal Hamiltonians

$$
\frac{1}{2}|D u+p|^{2}-V(x)=\lambda \quad \text { in } \mathbb{T}^{n}
$$

where $p \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ and V is a 1 -periodic potential.
A formula for the effective Hamiltonian is available in dimension $n=1$:

$$
\bar{H}(p)=\left\{\begin{array}{ll}
-\min V & \text { if }|p| \leq p_{c} \\
\lambda & \text { if }|p|>p_{c}
\end{array} \quad \text { s.t. }|p|=\int_{0}^{1} \sqrt{2(V(s)+\lambda)} d s\right.
$$

where $p_{c}=\int_{0}^{1} \sqrt{2(V(s)-\min V))} d s$.
\bar{H} has a plateau in the whole interval $\mathcal{P}_{\bar{H}}=\left[-p_{c}, p_{c}\right]$.

Eikonal Hamiltonians in 1D

$V(x)=\sin (2 \pi x), \min V=-1$ and $\mathcal{P}_{\text {f }}=\left[-p_{c}, p_{c}\right], p_{c}=4 / \pi \sim 1.2732$

Convergence: λ vs number of iterations

Eikonal Hamiltonians in 1D

$$
V(x)=\sin (2 \pi x), \min V=-1 \text { and } \mathcal{P}_{H}=\left[-p_{c}, p_{c}\right], p_{c}=4 / \pi \sim 1.2732
$$

Correctors

Eikonal Hamiltonians in 1D

$$
V(x)=\sin (2 \pi x), \min V=-1 \text { and } \mathcal{P}_{H}=\left[-p_{c}, p_{c}\right], p_{c}=4 / \pi \sim 1.2732
$$

Convergence under grid refinement: error vs h

$$
p=2 \notin \mathcal{P}_{H}
$$

$p=0.5 \in \mathcal{P}_{H}$

Eikonal Hamiltonians in 1D

$$
V(x)=\sin (2 \pi x), \min V=-1 \text { and } \mathcal{P}_{H}=\left[-p_{c}, p_{c}\right], p_{c}=4 / \pi \sim 1.2732
$$

Effective Hamiltonian and number of iterations for $p \in[-2,2]$

$\bar{H}(p)$

Iterations(p)

N	N_{p}	Av.CPU $/ p$ (secs)	Av.Its $/ p$	Tot.CPU (secs)
100	100	0.01	13	1.18

Direct Newton vs Small- δ and or Large- t

$$
\begin{gathered}
\delta w+H_{p}\left(x, D u^{(k)}+p\right) \cdot D w=-\delta u^{(k)}-H\left(x, D u^{(k)}+p\right) \\
\frac{1}{\Delta t} w+H_{p}\left(x, D u^{(k)}+p\right) \cdot D w=-\frac{1}{\Delta t}\left(u^{(k)}-u^{n}\right)-H\left(x, D u^{(k)}+p\right) \\
u^{(k+1)}=u^{(k)}+\mu w \quad \text { for each } k \geq 0, \quad 0<\mu \leq 1
\end{gathered}
$$

Small- $\delta: u_{\delta}=\lim _{k \rightarrow \infty} u^{(k)} \quad$ Large-t: $u=\lim _{n \rightarrow \infty} u^{n}$, where $u^{n+1}=\lim _{k \rightarrow \infty} u^{(k)}$
Coincide for $u^{(0)} \equiv 0$ and $u^{(0)}=u^{n}$ for each n, with $u^{0} \equiv 0$ and $\delta=\frac{1}{\Delta t}$

Eikonal Hamiltonians in 2D

$$
V_{a}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1}\right)+\cos \left(2 \pi x_{2}\right)
$$

Convergence under grid refinement and correctors

$$
p=(0,0)
$$

$$
p=(2,2)
$$

Eikonal Hamiltonians in 2D

$$
V_{a}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1}\right)+\cos \left(2 \pi x_{2}\right)
$$

Effective Hamiltonian for $p \in[-4,4]^{2}$

Surface

Level sets

N	N_{p}	Av.CPU $/ p$ (secs)	Av.Its $/ p$	Tot.CPU (secs)
25^{2}	51^{2}	0.4	16	970.45

Eikonal Hamiltonians in 2D

$$
V_{b}\left(x_{1}, x_{2}\right)=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right)
$$

Effective Hamiltonian for $p \in[-4,4]^{2}$

Surface

Level sets

N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
25^{2}	51^{2}	0.2	7	480.75

Eikonal Hamiltonians in 2D

$$
V_{c}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1}\right)+\cos \left(2 \pi x_{2}\right)+\cos \left(2 \pi\left(x_{1}-x_{2}\right)\right)
$$

Effective Hamiltonian for $p \in[-4,4]^{2}$

N	N_{p}	Av.CPU $/ p$ (secs)	Av.Its $/ p$	Tot.CPU (secs)
25^{2}	51^{2}	0.24	10	630.77

q-power Hamiltonians

$$
\frac{1}{q}|D u+p|^{q}-V(x)=\lambda \quad \text { in } \mathbb{T}^{n}
$$

where $p \in \mathbb{R}^{n}, \lambda \in \mathbb{R}, V$ is a 1-periodic potential and $q \geq 1$.
The singularity at the origin of the derivative of $|\cdot|^{q}$ for $1 \leq q<2$ is handled by choosing, in a nonsmooth-Newton fashion, an element of the sub-differential. Here, we simply choose 0 if $D u+p=0$ at some point.

q-power Hamiltonians in 1D

$V(x)=\sin (2 \pi x)$

Effective Hamiltonians for $p \in[-4,4]$ and correctors for $p=0$

q	N	N_{p}	Av.CPU/q (secs)
$1,3 / 2,2,5 / 2,3$	100	200	2.5

q-power Hamiltonians in 1D

$$
V(x)=\sin (2 \pi x)
$$

Extension of the plateau $\mathcal{P}_{\vec{H}}$: p_{c} vs q

q-power Hamiltonians in 2D

Effective Hamiltonian level sets for $p \in[-4,4]^{2}$

(a) $q=1$ and V_{a}

(b) $q=3$ and V_{b}

(c) $q=5$ and V_{c}

Test	N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
(a)	25^{2}	51^{2}	0.6	28	1633.12
(b)	25^{2}	51^{2}	0.2	9	522.37
(c)	25^{2}	51^{2}	0.4	18	1042.18

Non-convex Hamiltonians

$$
\frac{1}{2}\left(|D u+p|^{2}-1\right)^{2}-V(x)=\lambda \quad \text { in } \mathbb{T}^{n}
$$

where $p \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ and V is a 1-periodic potential.
A formula for the effective Hamiltonian is still available in dimension $n=1$:

$$
\bar{H}(p)=\left\{\begin{array}{ll}
-\min V & \text { if }|p| \leq p_{c} \\
\lambda & \text { if }|p|>p_{c}
\end{array} \text { s.t. }|p|=\int_{0}^{1} \sqrt{1+\sqrt{2(V(s)+\lambda)}} d s\right.
$$

where $p_{c}=\int_{0}^{1} \sqrt{1+\sqrt{2(V(s)-\min V)}} d s$.
\bar{H} has a plateau in the whole interval $\mathcal{P}_{\bar{H}}=\left[-p_{c}, p_{c}\right]$.

Non-convex Hamiltonians in 1D

$V(x)=\sin (2 \pi x)$

Effective Hamiltonian for $p \in[-2,2]$

(a) Engquist-Osher

(b) Lax-Friedrichs

Test	N	N_{p}	Av.lts $/ p$	Tot.CPU (secs)
(a)	100	100	38	3.15
(b)	100	100	126	8.97

Second order Hamiltonians

$$
H\left(x, p, D^{2} u+s\right)=\lambda \quad \text { in } \mathbb{T}^{n}
$$

where $p \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$ and $s \in \mathcal{S}^{n}$ (symmetric $n \times n$ matrices).
Assuming H continuous and uniformly elliptic, there exists a unique $\lambda=\bar{H}(p, s)$ and a unique (up to a constant) u such that the cell problem admits a viscosity solution.

A simple case in dimension one:

$$
-\alpha\left|D^{2} u+s\right|\left(D^{2} u+s\right)+\frac{1}{2}|p|^{2}-V(x)=\lambda \quad \text { in } \mathbb{T}^{n}
$$

where $p, s \in \mathbb{R}, \alpha>0$ and V is a 1-periodic potential.
Again, the singularity of the derivative of $|\cdot|$ is handled in a nonsmooth-Newton fashion.

Second order Hamiltonians in 1D

$$
V(x)=\sin (2 \pi x)
$$

Effective Hamiltonian surface for $(p, s) \in[-4,4]^{2}$

Test	N	$N_{p, s}$	Av.CPU $/(p, s)($ secs $)$	Av.Its $/(p, s)$	Tot.CPU (secs)
(a)	100	51^{2}	0.009	7	25.29
(b)	100	51^{2}	0.009	8	25.26
(c)	100	51^{2}	0.011	10	30.78

Second order Hamiltonians in 1D

$$
V(x)=\sin (2 \pi x)
$$

Effective Hamiltonian level sets for $(p, s) \in[-4,4]^{2}$

(b) $\alpha=1 / 2$

(c) $\alpha=1 / 10$

Test	N	$N_{p, s}$	Av.CPU $/(p, s)($ secs $)$	Av.lts $/(p, s)$	Tot.CPU (secs)
(a)	100	51^{2}	0.009	7	25.29
(b)	100	51^{2}	0.009	8	25.26
(c)	100	51^{2}	0.011	10	30.78

Second order Hamiltonians in 1D

$V(x)=\sin (2 \pi x)$

Correctors for $(p, s)=(0,0)$

(a) $\alpha=1$
(b) $\alpha=1 / 2$
(c) $\alpha=1 / 10$

Test	N	$N_{p, s}$	Av.CPU $/(p, s)($ secs $)$	Av.Its $/(p, s)$	Tot.CPU (secs)
(a)	100	51^{2}	0.009	7	25.29
(b)	100	51^{2}	0.009	8	25.26
(c)	100	51^{2}	0.011	10	30.78

Weakly coupled systems

$$
H_{i}\left(x, D u_{i}+p\right)+C(x) u=\lambda \quad \text { in } \mathbb{T}^{n}, \quad i=1 \ldots, M,
$$

where $p \in \mathbb{R}^{n}, \lambda \in \mathbb{R}, u=\left(u_{1}, \ldots, u_{M}\right)$ and $C(x)=\left\{C_{i j}(x)\right\}_{i, j} \in \mathbb{R}^{M \times M}$. Assuming the Hamiltonians H_{i} continuous and coercive, and the coupling matrix C continuous, irreducible and such that

$$
C_{i j}(x) \leq 0 \text { for } j \neq i, \quad \sum_{j=1}^{M} C_{i j}(x)=0, \quad i=1, \ldots, M
$$

there exists a unique λ such that the system admits a viscosity solution.
A simple case of two weakly coupled Eikonal Hamiltonians in $\mathbb{T}^{n}(n=1,2)$

$$
\left\{\begin{array}{l}
\frac{1}{2}\left|D u_{1}+p\right|^{2}-V_{1}(x)+c_{1}(x)\left(u_{1}-u_{2}\right)=\lambda \\
\frac{1}{2}\left|D u_{2}+p\right|^{2}-V_{2}(x)+c_{2}(x)\left(u_{2}-u_{1}\right)=\lambda
\end{array}\right.
$$

with V_{1}, V_{2} 1-periodic and c_{1}, c_{2} nonnegative 1-periodic.

Weakly coupled systems in 1D

$$
\begin{array}{cl}
V_{1}(x)=\sin (2 \pi x) & V_{2}(x)=\cos (2 \pi x) \\
c_{1}(x)=1-\cos (4 \pi x) & c_{2}(x)=1+\sin (4 \pi x)
\end{array}
$$

$$
\mathcal{P}_{\bar{H}}=\{\bar{H}(p)=0.8417\}=[-0.925,0.788] \subset[-1.29,1.36]=: \mathcal{I}
$$

Effective Hamiltonian and number of iterations for $p \in[-2,2]$

$\bar{H}(p)$

Iterations (p)

N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
2×100	100	0.03	17	3.19

Weakly coupled systems in 1D

$$
\begin{aligned}
& V_{1}(x)=\sin (2 \pi x) \quad V_{2}(x)=\cos (2 \pi x) \\
& c_{1}(x)=1-\cos (4 \pi x) \quad c_{2}(x)=1+\sin (4 \pi x) \\
& \mathcal{P}_{\bar{H}}=\{\bar{H}(p)=0.8417\}=[-0.925,0.788] \subset[-1.29,1.36]=: \mathcal{I} \\
& \text { Correctors for } p=-2
\end{aligned}
$$

Weakly coupled systems in 1D

$$
\begin{array}{cl}
V_{1}(x)=\sin (2 \pi x) & V_{2}(x)=\cos (2 \pi x) \\
c_{1}(x)=1-\cos (4 \pi x) & c_{2}(x)=1+\sin (4 \pi x)
\end{array}
$$

$$
\mathcal{P}_{\bar{H}}=\{\bar{H}(p)=0.8417\}=[-0.925,0.788] \subset[-1.29,1.36]=: \mathcal{I}
$$

Correctors for $p=-1$

N	N_{p}	Av.CPU $/ p$ (secs)	Av.Its $/ p$	Tot.CPU (secs)
2×100	100	0.03	17	3.19

Weakly coupled systems in 1D

$$
\begin{array}{cl}
V_{1}(x)=\sin (2 \pi x) & V_{2}(x)=\cos (2 \pi x) \\
c_{1}(x)=1-\cos (4 \pi x) & c_{2}(x)=1+\sin (4 \pi x)
\end{array}
$$

$$
\mathcal{P}_{\bar{H}}=\{\bar{H}(p)=0.8417\}=[-0.925,0.788] \subset[-1.29,1.36]=: \mathcal{I}
$$

Correctors for $p=0$

N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
2×100	100	0.03	17	3.19

Weakly coupled systems in 1D

$$
\begin{aligned}
& V_{1}(x)=\sin (2 \pi x) \quad V_{2}(x)=\cos (2 \pi x) \\
& c_{1}(x)=1-\cos (4 \pi x) \quad c_{2}(x)=1+\sin (4 \pi x) \\
& \mathcal{P}_{\vec{H}}=\{\bar{H}(p)=0.8417\}=[-0.925,0.788] \subset[-1.29,1.36]=: \mathcal{I} \\
& \text { Correctors for } p=1
\end{aligned}
$$

Weakly coupled systems in 1D

$$
\begin{aligned}
V_{1}(x)=\sin (2 \pi x) & V_{2}(x)=\cos (2 \pi x) \\
c_{1}(x)=1-\cos (4 \pi x) & c_{2}(x)=1+\sin (4 \pi x)
\end{aligned}
$$

$$
\mathcal{P}_{\bar{H}}=\{\bar{H}(p)=0.8417\}=[-0.925,0.788] \subset[-1.29,1.36]=: \mathcal{I}
$$

Correctors for $p=2$

N	N_{p}	Av.CPU $/ p$ (secs)	Av.Its $/ p$	Tot.CPU (secs)
2×100	100	0.03	17	3.19

Weakly coupled systems in 2D

$$
\begin{aligned}
V_{1}\left(x_{1}, x_{2}\right)=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) & V_{2}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right) \\
c_{1}\left(x_{1}, x_{2}\right)=1-\cos \left(4 \pi x_{1}\right) \cos \left(4 \pi x_{2}\right) & c_{2}\left(x_{1}, x_{2}\right)=1+\sin \left(4 \pi x_{1}\right) \sin \left(4 \pi x_{2}\right)
\end{aligned}
$$

Effective Hamiltonian for $p \in[-4,4]^{2}$

Surface

Level sets

N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
2×25^{2}	51^{2}	1.39	12	3640.38

Weakly coupled systems in 2D

$$
\begin{array}{cl}
V_{1}\left(x_{1}, x_{2}\right)=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) & V_{2}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right) \\
c_{1}\left(x_{1}, x_{2}\right)=1-\cos \left(4 \pi x_{1}\right) \cos \left(4 \pi x_{2}\right) & c_{2}\left(x_{1}, x_{2}\right)=1+\sin \left(4 \pi x_{1}\right) \sin \left(4 \pi x_{2}\right)
\end{array}
$$

Correctors for $p=(0,0)$

N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
2×25^{2}	51^{2}	1.39	12	3640.38

Weakly coupled systems in 2D

$$
\begin{array}{cl}
V_{1}\left(x_{1}, x_{2}\right)=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) & V_{2}\left(x_{1}, x_{2}\right)=\cos \left(2 \pi x_{1}\right) \cos \left(2 \pi x_{2}\right) \\
c_{1}\left(x_{1}, x_{2}\right)=1-\cos \left(4 \pi x_{1}\right) \cos \left(4 \pi x_{2}\right) & c_{2}\left(x_{1}, x_{2}\right)=1+\sin \left(4 \pi x_{1}\right) \sin \left(4 \pi x_{2}\right)
\end{array}
$$

Correctors for $p=(2,2)$

N	N_{p}	Av.CPU $/ p$ (secs)	Av.lts $/ p$	Tot.CPU (secs)
2×25^{2}	51^{2}	1.39	12	3640.38

Dislocation dynamics

Dislocations: line defects in the lattice structure of crystals, responsible for the plastic properties of the materials.
Cell problem for a nonlocal Hamilton-Jacobi equation in dimension one: find $\lambda \in \mathbb{R}$ such that

$$
c_{p}[u]|D u+p|=\lambda \quad \text { in } \mathbb{T}^{1}
$$

admits a bounded and 1-periodic viscosity solution u, where

- $c_{p}[u]=\left(c(x)+L+M_{p}[u]\right)$
- $p \in \mathbb{R}$ is the density of dislocations, represented by the integer level sets of $u(x)+p x$ (particle points, looking at a cross section of a slip plane).
- c is a 1-periodic potential acting as an obstacle to the motion.
- $L \in \mathbb{R}$ is a constant external stress.
- $M_{p}[u]$ is a nonlocal operator describing interactions between dislocations.

Dislocation dynamics

The nonlocal interaction operator is given by

$$
M_{p}[u](x)=\int_{\mathbb{R}} \mathcal{J}(z)\{E(u(x+z)-u(x)+p z)-p z\} d z
$$

where $\mathcal{J}: \mathbb{R} \rightarrow \mathbb{R}^{+}$is a nonnegative kernel satisfying

$$
\mathcal{J}(-z)=\mathcal{J}(z) \quad \forall z \in \mathbb{R}, \quad \mathcal{J}(z) \sim \frac{1}{z^{2}} \quad \text { for }|z| \gg 1
$$

and $E: \mathbb{R} \rightarrow \mathbb{R}$ is the (odd) integer part

$$
E(\alpha)= \begin{cases}k & \text { if } \alpha=k \in \mathbb{Z} \\ k+1 / 2 & \text { if } k<\alpha<k+1, \quad k \in \mathbb{Z}\end{cases}
$$

Numerical approximation is simplified considering rational densities $p=P / Q$, for $P \in \mathbb{Z}$ and $Q \in \mathbb{N}$.

The integer part E is mollified around the jumps.
Engquist-Osher discretization of $D u$ according to the sign of $c_{p}[u]$.

Dislocation dynamics in 1D

No interactions: $\mathcal{J} \equiv 0, c(x)=2 \sin (2 \pi x)$
Effective Hamiltonian for $(p, L) \in[-4,4]^{2}$

Surface
Level sets

Q	N	$N_{p, L}$	Av.CPU $/(p, L)($ secs $)$	Av.Its $/(p, L)$	Tot.CPU (secs)
10	100	81^{2}	0.017	5	115.71

Dislocation dynamics in 1D

Regularization: \mathcal{J} smooth, $E(\alpha)=\alpha$ (no jumps), $c(x)=2 \sin (2 \pi x)$
Effective Hamiltonian for $(p, L) \in[-4,4]^{2}$

Surface

Level sets

Q	N	$N_{p, L}$	Av.CPU $/(p, L)($ secs $)$	Av.lts $/(p, L)$	Tot.CPU (secs)
10	100	81^{2}	0.032	7	215.74

Dislocation dynamics in 1D

Complete: $\mathcal{J}(z)=C / z^{2}, c(x)=2 \sin (2 \pi x)$
Effective Hamiltonian for $(p, L) \in[-4,4]^{2}$

Surface

Level sets

Q	N	$N_{p, L}$	Av.CPU $/(p, L)($ secs $)$	Av.lts $/(p, L)$	Tot.CPU (secs)
10	100	81^{2}	0.115	16	759.31

Dislocation dynamics in 1D

Complete: $\mathcal{J}(z)=C / z^{2}, c(x)=2 \sin (2 \pi x)$
Effective Hamiltonian for $(p, L) \in[0,4] \times[0.6,2]$

Q	N	$N_{p, L}$	Av.CPU $/(p, L)($ secs $)$	Tot.CPU (secs)
100	100	401×28	1.02	10612

Stationary Mean Field Games

$$
\begin{cases}-\nu \Delta u+H(x, D u)+\lambda=V[m] & x \in \mathbb{T}^{n} \\ \nu \Delta m+\operatorname{div}\left(m H_{p}(x, D u)\right)=0 & x \in \mathbb{T}^{n} \\ \int_{\mathbb{T}^{n}} u(x) d x=0, \int_{\mathbb{T}^{n}} m(x) d x=1, m \geq 0 . & \end{cases}
$$

Assuming $\nu>0, H$ smooth and convex, there exists a unique classical solution (u, m, λ).

A simple case for an Eikonal Hamiltonian in dimension two, with a cost function f and a local potential V :

$$
\begin{cases}-\nu \Delta u+|D u|^{2}+f(x)+\lambda=V(m) & x \in \mathbb{T}^{2} \\ \nu \Delta m+2 \operatorname{div}(m D u)=0 & x \in \mathbb{T}^{2} \\ \int_{\mathbb{T}^{2}} u(x) d x=0, \int_{\mathbb{T}^{2}} m(x) d x=1, m \geq 0 . & \end{cases}
$$

Overdetermined problem: $2 N+2$ equations in $2 N+1$ unknowns.
We do not impose the constraint $m \geq 0$: the normalization condition on m seems enough to force numerically its nonnegativity.

Stationary Mean Field Games in 2D

$$
\nu=1, \quad V(m)=m^{2}, \quad f(x)=\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+\sin \left(2 \pi x_{2}\right)
$$

λ vs number of iterations and level sets of (u, m)

N	λ	Its	Tot.CPU (secs)
50^{2}	0.9784	5	8.06

Stationary Mean Field Games in 2D

$$
\nu=0.01, \quad V(m)=m^{2}, \quad f(x)=\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+\sin \left(2 \pi x_{2}\right)
$$

λ vs number of iterations and level sets of (u, m)

Stationary Mean Field Games in 2D

$$
\nu=0.1, \quad V(m)=-\log (m), \quad f(x)=\sin \left(2 \pi x_{1}\right)+\cos \left(4 \pi x_{1}\right)+\sin \left(2 \pi x_{2}\right)
$$

λ vs number of iterations and level sets of (u, m)

N	λ	Its	Tot.CPU (secs)
50^{2}	-2.4358	77	42.33

Stationary multi-population Mean Field Games

A system of P Eikonal Hamiltonians in $\Omega=[0,1]^{n}$ for $n=1,2$ with a linear local potential V and Neumann boundary conditions:

$$
\begin{array}{ll}
-\nu \Delta u_{i}+\left|D u_{i}\right|^{2}+\lambda_{i}=V_{i}(m) & \text { in } \Omega, \quad i=1, \ldots, P \\
\nu \Delta m_{i}+2 \operatorname{div}\left(m_{i} D u_{i}\right)=0 & \text { in } \Omega, \quad i=1, \ldots, P \\
\partial_{n} u_{i}=0, \quad \partial_{n} m_{i}=0 & \text { on } \partial \Omega, \quad i=1, \ldots, P \\
\int_{\Omega} u_{i}(x) d x=0, \quad \int_{\Omega} m_{i}(x) d x=1, \quad m_{i} \geq 0 & i=1, \ldots, P,
\end{array}
$$

where $u=\left(u_{1}, \ldots, u_{P}\right), m=\left(m_{1}, \ldots, m_{P}\right), \lambda=\left(\lambda_{1}, \ldots, \lambda_{P}\right)$ and $V(m)=\left(V_{1}, \ldots, V_{P}\right)(m)=\Theta m$ with a weight matrix $\Theta=\left(\theta_{i j}\right)_{i, j=1, \ldots, P}$. Existence and uniqueness of the trivial solution $u_{i} \equiv 0, m_{i} \equiv 1, \lambda_{i}=\sum^{P} \theta_{i j}$ (for $i=1, \ldots, P$) can be proved assuming Θ positive semi-definite. $\quad j=1$ We drop it and look for nontrivial solutions, choosing $\theta_{i j}=1-\delta_{i j}$. Overdetermined problem: $P(2 N+2)$ equations in $P(2 N+1)$ unknowns. Again, we do not impose the constraint $m \geq 0$: the normalization condition on m seems enough to force numerically its nonnegativity.

Stationary multi-population Mean Field Games in 1D

$$
P=2, \quad \nu=0.05, \quad V\left(m_{1}, m_{2}\right)=\left(m_{2}, m_{1}\right)
$$

Two-population MFG solutions (u, m, λ)

m				
U				
λ	$(0.039,0.039)$	$(0.143,0.140)$	$(0.295,0.295)$	$(0.496,0.485)$
ITs	19	48	28	31
CPU	0.14	0.33	0.19	0.21

Stationary multi-population Mean Field Games in 1D

$$
P=2, \quad \nu=10^{-4}, \quad V\left(m_{1}, m_{2}\right)=\left(m_{2}, m_{1}\right)
$$

Two-population MFG solutions (u, m, λ)

Stationary multi-population Mean Field Games in 2D

P-population MFG solutions m for $\nu=10^{-4}$ and $P=2,3,4$

Stationary Mean Field Games on Networks

Network: a connected set $\Gamma=(\mathcal{V}, \mathcal{E})$ with

- Vertices $\mathcal{V}:=\left\{v_{i}\right\}_{i \in I}$
- Edges $\mathcal{E}:=\left\{e_{j}\right\}_{j \in J}$
- Incident edges to vertex $\operatorname{In} c_{i}:=\left\{j \in J: v_{i} \in e_{j}\right\}$

$$
\left\{\begin{array}{cll}
-\nu_{j} \partial^{2} u+H_{j}(x, \partial u)+\lambda=V[m] & x \in e_{j} & (H J) \\
\nu_{j} \partial^{2} m+\partial\left(m \partial_{p} H_{j}(x, \partial u)\right)=0 & x \in e_{j} \\
\sum_{j \in \operatorname{In} c_{i}} \nu_{j} \partial_{j} u\left(v_{i}\right)=0 & v_{i} \in \mathcal{V} & (F P) \\
\sum_{j \in \operatorname{In} c_{i}}\left[\nu_{j} \partial_{j} m\left(v_{i}\right)+\partial_{p} H_{j}\left(v_{i}, \partial_{j} u\right) m_{j}\left(v_{i}\right)\right]=0 & v_{i} \in \mathcal{V} \\
\int_{\Gamma} u(x) d x=0, \quad \int_{\Gamma} m(x) d x=1, \quad m \geq 0 &
\end{array}\right.
$$

Kirchhoff transition condition and total flux conservation.
Assuming $\nu_{j}>0, H_{j}$ smooth and convex, V suitably monotone, there exists a unique classical solution (u, m, λ).

Stationary Mean Field Games on Networks

A network with 2 vertices and 3 edges mapped in an equivalent network with boundary vertices identified.

Each edge has unit length and connects $(0,0)$ to $(\cos (2 \pi j / 3), \sin (2 \pi j / 3))$ with $j=0,1,2$.

$$
\begin{gathered}
H_{j}(x, p)=\frac{1}{2}|p|^{2}+f(x), \quad f(x)=s_{j}\left(1+\cos \left(2 \pi\left(x+\frac{1}{2}\right)\right)\right), s_{j} \in\{0,1\} \\
V[m]=m^{2}, \quad \nu_{j} \equiv \nu
\end{gathered}
$$

Stationary Mean Field Games on Networks

$$
\nu=0.1, \quad s_{0}=1, s_{1}=1, s_{2}=1, \quad \lambda \sim-1.066667
$$

Stationary Mean Field Games on Networks

$$
\nu=0.1, \quad s_{0}=1, s_{1}=1, s_{2}=0, \quad \lambda \sim-0.741639
$$

Stationary Mean Field Games on Networks

$$
\nu=0.1, \quad s_{0}=1, s_{1}=0, s_{2}=0, \quad \lambda \sim-0.116733
$$

Stationary Mean Field Games on Networks

$$
\nu=10^{-4}, \quad s_{0}=1, s_{1}=1, s_{2}=1, \quad \lambda \sim-1.116603
$$

Stationary Mean Field Games on Networks

$$
\nu=10^{-4}, \quad s_{0}=1, s_{1}=1, s_{2}=0, \quad \lambda \sim-0.725463
$$

Stationary Mean Field Games on Networks

$$
\nu=10^{-4}, \quad s_{0}=1, s_{1}=0, s_{2}=0, \quad \lambda \sim-0.002345
$$

Stationary Mean Field Games on Networks

Homogenization of Mean Field Games with Small Noise

$$
\begin{cases}-u_{t}^{\varepsilon}-\varepsilon \Delta u^{\varepsilon}+\frac{1}{2} a\left(\frac{x}{\varepsilon}\right)\left|D u^{\varepsilon}\right|^{2}=V\left(\frac{x}{\varepsilon}, m^{\varepsilon}\right) & x \in \mathbb{R}^{n} \times(0, T) \\ m_{t}^{\varepsilon}-\varepsilon \Delta m^{\varepsilon}-\operatorname{div}\left(a\left(\frac{x}{\varepsilon}\right) m^{\varepsilon} D u^{\varepsilon}\right)=0 & x \in \mathbb{R}^{n} \times(0, T) \\ u^{\varepsilon}(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{n} \\ m^{\varepsilon}(\cdot, 0)=m_{0} & \text { in } \mathbb{R}^{n} \\ \int_{\mathbb{R}^{n}} u^{\varepsilon}(x, \cdot) d x=0, \int_{\mathbb{R}^{n}} m^{\varepsilon}(x, \cdot) d x=1, m^{\varepsilon} \geq 0 & t \in[0, T]\end{cases}
$$

$a: \mathbb{R}^{n} \rightarrow(0,+\infty)$ is 1 -periodic Lipschitz and $V: \mathbb{R}^{n} \times[0,+\infty) \rightarrow \mathbb{R}$ is 1-periodic Lipschitz with $V(y, \cdot)$ nondecreasing for each y
e.g. $V(y, m)=v(y)+m^{q}$ or $V(y, m)=v(y)+\log m$

The viscosity solution ($u^{\varepsilon}, m^{\varepsilon}$) converges, as $\varepsilon \rightarrow 0$, to the viscosity solution (u, m) of the Effective Mean Field Game (?)

$$
\begin{cases}-u_{t}+\bar{H}(D u, m)=0 & x \in \mathbb{R}^{n} \times \\ m_{t}-\operatorname{div}(m \bar{b}(D u, m)=0 & x \in \mathbb{R}^{n} \times \\ u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{n} \\ m(\cdot, 0)=m_{0} & \text { in } \mathbb{R}^{n} \\ \int_{\mathbb{R}^{n}} u(x, \cdot) d x=0, \int_{\mathbb{R}^{n}} m(x, \cdot) d x=1, m \geq 0 & t \in[0, T]\end{cases}
$$

Homogenization of Mean Field Games with Small Noise

For every $p \in \mathbb{R}^{n}$ and $\alpha \geq 0$ there exists a unique value \bar{H} for which there exists a solution on \mathbb{T}^{n} to the

Ergodic Mean Field Game: Effective Hamiltonian

$$
\begin{cases}-\Delta u+\frac{1}{2} a(y)|\nabla u+p|^{2}-V(y, \alpha m)=\bar{H}(P, \alpha) & x \in \mathbb{T}^{n} \\ -\Delta m-\operatorname{div}(a(y) m \nabla u)=0 & x \in \mathbb{T}^{n} \\ \int_{\mathbb{T}^{n}} u(x) d x=0, \int_{\mathbb{T}^{n}} m(x) d x=1, m \geq 0 & \end{cases}
$$

Effective Drift

$$
\bar{b}(P, \alpha):=\int_{\mathbb{T}^{n}} a(y) m(\nabla u+P) d y
$$

Mean Field Game structure is lost due to a
Strange term coming from nowhere!

$$
D_{p} \bar{H}(p, \alpha)=\bar{b}(p, \alpha)-\alpha \int_{\mathbb{T}^{n}} V_{m}(y, \alpha m) \tilde{m} m d y
$$

Homogenization of Mean Field Games with Small Noise

For $i=1, \ldots, n$ the triplet $\left(\tilde{u}_{i}, \tilde{m}_{i}, D_{p_{i}} \bar{H}(p, \alpha)\right)$ is the solution of the
Auxiliary Ergodic Linear Problem in p

$$
\left\{\begin{array}{l}
-\Delta \tilde{u}_{i}+a \nabla \tilde{u}_{i} \cdot(\nabla u+p)+a(\nabla u+p) \cdot e_{i}-V_{m}(y, \alpha m) \alpha \tilde{m}_{i}=D_{p_{i}} \bar{H}(p, \alpha) \\
-\Delta \tilde{m}_{i}-\operatorname{div}\left(a(p+\nabla u) \tilde{m}_{i}\right)=\operatorname{div}\left(a m\left(\nabla \tilde{u}_{i}+e_{i}\right)\right) \\
\int_{\mathbb{T}^{n}} \tilde{m}_{i}=\int_{\mathbb{T}^{n}} \tilde{u}_{i}=0
\end{array}\right.
$$

Similarly $\left(\bar{u}, \bar{m}, D_{\alpha} \bar{H}(p, \alpha)\right)$ is the solution of the
Auxiliary Ergodic Linear Problem in α

$$
\left\{\begin{array}{l}
-\Delta \bar{u}+a(y) \nabla \bar{u} \cdot(\nabla u+p)-V_{m}(y, \alpha m) \alpha \bar{m}-V_{m}(y, \alpha m) m=D_{\alpha} \bar{H}(p, \alpha) \\
-\Delta \bar{m}-\operatorname{div}(a(y)(p+\nabla u) \bar{m})-\operatorname{div}(a(y) m \nabla \bar{u})=0 \\
\int_{\mathbb{T}^{n}} \bar{m}=\int_{\mathbb{T}^{n}} \bar{u}=0
\end{array}\right.
$$

$$
D_{\alpha} \bar{H}(p, \alpha)=-\int_{\mathbb{T}^{n}}\left[V_{m}(y, \alpha m)(m+\alpha \bar{m})^{2}+\alpha a(y) m|\nabla \bar{u}|^{2}\right] d y
$$

Homogenization of Mean Field Games with Small Noise

$$
\text { The 1D case } a \equiv 1 \text { and } V(x, m)=1+\sin (2 \pi x)+m
$$

Homogenization of Mean Field Games with Small Noise

$$
\text { The 1D case } a \equiv 1 \text { and } V(x, m)=1+\sin (2 \pi x)+m
$$

Homogenization of Mean Field Games with Small Noise

$$
\text { The } 1 \mathrm{D} \text { case } a \equiv 1 \text { and } V(x, m)=1+\sin (2 \pi x)+m
$$

TH-ANKM \square

