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Ergodic problems for Hamilton-Jacobi equations

Consider the problem{
v ε
t + H( x

ε ,Dv ε) = 0 in Rn × (0,+∞)
v ε(·, 0) = v0 in Rn

where the Hamiltonian H(x , p) : Rn × Rn → R is a continuous function,
1-periodic in x and coercive in p. The viscosity solution v ε converges, as
ε→ 0, to the viscosity solution v of the effective problem{

vt +H(Dv) = 0 in Rn × (0,+∞)
v(·, 0) = v0 in Rn

where, for each p ∈ Rn, the value λ =H(p) is the unique number such
that the cell problem

H(x ,Du + p) = λ in Tn

admits a 1-periodic viscosity solution u in the torus Tn.

The functionH : Rn → R is called the effective Hamiltonian.
The solution u is not unique in general, not even for addition of constants.



ComputingH via regularization of the cell problem

Small-δ method

The viscosity solution of

δuδ + H(x ,Duδ + p) = 0 in Tn

satisfies

−δuδ →H(p) as δ → 0 , uniformly in Rn

Large-t method

The viscosity solution of{
ut + H(x ,Du + p) = 0 in Rn × (0,+∞)
u(·, 0) = u0 in Rn

satisfies

−u(x , t)/t →H(p) as t → +∞ , uniformly in Rn



ComputingH via theoretical formulas

inf-sup formula

H(p) = inf
u∈C∞(Tn)

sup
x∈Tn

H(x ,Du + p)

Variational approximation

The infimum is approximated for k → +∞ by the solution to

div
(
ek H(x ,Du+p)Hp(x ,Du + p)

)
= 0, x ∈ Tn

Auxiliary boundary value problem for Homogeneous Hamiltonians

H(x , p) = max
‖a‖=1

{(p · a)c(x , a)} =⇒ H(p) = max
‖a‖=1

{(p · a)c̄(a)}

{
H( x

ε ,Duε(x)) = 1
uε(0) = 0

ε→0−→
{

H(Du(x)) = 1
u(0) = 0

u(x) = uε(x) +O(ε) and
1

c̄(x/|x |)
=

uε(x)

|x |
+O(ε)



A new approach: solving the cell problem directly

What is wrong with H(x ,Du + p) = λ?

The problem is ill-posed, one equation in two unknowns: while the ergodic
constant λ is unique, the viscosity solution u is in general not unique.

Nevertheless, we can perform in the torus Tn our favorite discretization
(FD, FE, FV, DG, SL) getting a system of nonlinear equations of the form

S(h, x,U, p) = Λ

where h is a discretization parameter (meant to go to zero), x is the vector
of grid nodes, U is a grid function and Λ is a real number.

The operator S is a generic scheme, which is assumed to enjoy all the
properties needed to ensure the convergence (U,Λ)→ (u, λ) as h→ 0.

In particular, S should employ a numerical Hamiltonian which is able to
correctly select approximations of viscosity solutions (Lax-Friedrichs,
Engquist-Osher, Godunov).



A Newton-like method for inconsistent nonlinear systems

The main assumption:

for each fixed h there exists a unique Λ for which
S(h, x,U, p) = Λ admits a solution U (in general not unique).

Collecting the unknowns (U,Λ) in a single vector X of length N and
recasting the M equations (given by S) as functions of X, we get the
nonlinear map F : RN → RM defined by F(X) = S(h, x,U, p)− Λ.

The discrete cell problem is equivalent to

find X ∈ RN such that F(X) = 0 ∈ RM

Assuming that F is Fréchet differentiable with Jacobian JF ∈ RM×N , we
would like to approximate the zeros of F by using the Newton’s method

JF(X(k))δ = −F(X(k)) , X(k+1) = X(k) + δ , k ≥ 0 ,

but this system can be inconsistent for arbitrary M and N, i.e.,
underdetermined if M < N and overdetermined if M > N.



The generalized least-squares solution

We denote by J†
F the Moore-Penrose pseudoinverse of the Jacobian JF,

namely the unique N ×M matrix such that

JFJ
†
FJF = JF , J†

FJFJ
†
F = J†

F , (JFJ
†
F)T = JFJ

†
F , (J†

FJF)T = J†
FJF

It can be easily proved that

δ? := −J†
F(X(k))F(X(k))

is the unique vector of smallest Euclidean norm which minimizes the
Euclidean norm of the residual JF(X(k))δ + F(X(k)).

• In the overdetermined case (M > N), if JF has full column rank N

J†
F = (JT

F JF)−1JT
F

• In the underdetermined case (M < N), if JF has full row rank M

J†
F = JT

F (JFJ
T
F )−1



Efficient implementation via QR factorization avoiding J†
F

• Overdetermined case (M > N), full column rank N: factoring JF = QR,

Q = (Q1 Q2) ∈ RM×M orthogonal, Q1 ∈ RM×N and Q2 ∈ RM×(M−N) ,

R =

(
R1

0

)
∈ RM×N , R1 ∈ RN×N upper triangular and 0 ∈ R(M−N)×N ,

yields J†
F = R−1

1 QT
1 , and δ? = −R−1

1 QT
1 F(X(k)) via back-substitution.

• Underdetermined case (M < N), full row rank M: factoring JT
F = QR,

Q = (Q1 Q2) ∈ RN×N orthogonal, Q1 ∈ RN×M and Q2 ∈ RN×(N−M) ,

R =

(
R1

0

)
∈ RN×M , R1 ∈ RM×M upper triangular and 0 ∈ R(N−M)×M ,

yields J†
F = Q1R

−T
1 , and δ? = −Q1R

−T
1 F(X(k)) via back-substitution.



The algorithm

Given an initial guess X ∈ RN and a tolerance ε > 0,

repeat

• Assemble F(X) ∈ RM and JF(X) ∈ RM×N

• Solve JF(X)δ = −F(X) in the least-squares sense, using the
QR factorization of JF(X) if M > N or JF(X)T if M < N

• Update X ← X + δ

until ‖δ‖2 < ε and/or ‖F(X)‖2 < ε

Implementation in C employing the free library SuiteSparseQR, which is
designed to efficiently compute in parallel the QR factorization and the
least-squares solution to large and sparse linear systems.

Numerical tests performed on a Lenovo Ultrabook X1 Carbon, using 1
CPU Intel Quad-Core i5-4300U 1.90Ghz with 8 Gb Ram, running under
the Linux Slackware 14.1 operating system.



Implementation tricks

• Sometimes Newton-like methods do not converge, due to oscillations
around a minimum of the residual function ‖F(X)‖2.
In this case we introduce a dumping parameter in the update step:
X ← X + µδ for some 0 < µ < 1 (usually a fixed value of µ works fine).
A more efficient (but costly) selection of the dumping parameter can be
implemented using line search methods.

• It may happen that JF(X) is nearly singular or rank deficient, so that the
least-squares solution cannot be computed.
In the spirit of the Levenberg-Marquardt method, we can regularize
JF(X) with τ I + JF(X), for some τ > 0.

• Newton-like methods classically require that F is Fréchet differentiable.
In the spirit of nonsmooth-Newton methods, we can replace the usual
differential with any element of the sub-differential.
For instance, H(x , p) = 1

q |p|
q − V (x) with q ≥ 1 =⇒ Hp(x , p) = |p|q−2p,

is singular at p = 0 for 1 ≤ q < 2. We typically choose Hp(x , 0) = 0.



Eikonal Hamiltonians

1

2
|Du + p|2 − V (x) = λ in Tn ,

where p ∈ Rn, λ ∈ R and V is a 1-periodic potential.

A formula for the effective Hamiltonian is available in dimension n = 1:

H(p) =


−min V if |p| ≤ pc

λ if |p| > pc s.t. |p| =
∫ 1

0

√
2(V (s) + λ)ds

where pc =

∫ 1

0

√
2(V (s)−min V ))ds.

H has a plateau in the whole interval PH = [−pc , pc ].



Eikonal Hamiltonians in 1D

V (x) = sin(2πx), min V = −1 and PH = [−pc , pc ], pc = 4/π ∼ 1.2732

Convergence: λ vs number of iterations

p = 2 6∈ PH p = 0.5 ∈ PH



Eikonal Hamiltonians in 1D

V (x) = sin(2πx), min V = −1 and PH = [−pc , pc ], pc = 4/π ∼ 1.2732

Correctors

p = 2 6∈ PH p = 0.5 ∈ PH



Eikonal Hamiltonians in 1D

V (x) = sin(2πx), min V = −1 and PH = [−pc , pc ], pc = 4/π ∼ 1.2732

Convergence under grid refinement: error vs h

p = 2 6∈ PH p = 0.5 ∈ PH



Eikonal Hamiltonians in 1D

V (x) = sin(2πx), min V = −1 and PH = [−pc , pc ], pc = 4/π ∼ 1.2732

Effective Hamiltonian and number of iterations for p ∈ [−2, 2]

H(p) Iterations(p)

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

100 100 0.01 13 1.18



Direct Newton vs Small-δ and or Large-t

δw + Hp(x ,Du(k) + p) · Dw = −δu(k) − H(x ,Du(k) + p)
1

∆t
w + Hp(x ,Du(k) + p) · Dw = − 1

∆t
(u(k) − un)− H(x ,Du(k) + p)

u(k+1) = u(k) + µw for each k ≥ 0 , 0 < µ ≤ 1

Small-δ: uδ = lim
k→∞

u(k) Large-t: u = lim
n→∞

un, where un+1 = lim
k→∞

u(k)

Coincide for u(0) ≡ 0 and u(0) = un for each n, with u0 ≡ 0 and δ = 1
∆t

0.975
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0.99

0.995

1
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Eikonal Hamiltonians in 2D

Va(x1, x2) = cos(2πx1) + cos(2πx2)

Convergence under grid refinement and correctors

p = (0, 0) p = (2, 0) p = (2, 2)



Eikonal Hamiltonians in 2D

Va(x1, x2) = cos(2πx1) + cos(2πx2)

Effective Hamiltonian for p ∈ [−4, 4]2

Surface Level sets

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

252 512 0.4 16 970.45



Eikonal Hamiltonians in 2D

Vb(x1, x2) = sin(2πx1) sin(2πx2)

Effective Hamiltonian for p ∈ [−4, 4]2

Surface Level sets

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

252 512 0.2 7 480.75



Eikonal Hamiltonians in 2D

Vc(x1, x2) = cos(2πx1) + cos(2πx2) + cos (2π(x1 − x2))

Effective Hamiltonian for p ∈ [−4, 4]2

Surface Level sets

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

252 512 0.24 10 630.77



q-power Hamiltonians

1

q
|Du + p|q − V (x) = λ in Tn ,

where p ∈ Rn, λ ∈ R, V is a 1-periodic potential and q ≥ 1.

The singularity at the origin of the derivative of | · |q for 1 ≤ q < 2 is
handled by choosing, in a nonsmooth-Newton fashion, an element of the
sub-differential. Here, we simply choose 0 if Du + p = 0 at some point.



q-power Hamiltonians in 1D

V (x) = sin(2πx)

Effective Hamiltonians for p ∈ [−4, 4] and correctors for p = 0
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q-power Hamiltonians in 1D

V (x) = sin(2πx)

Extension of the plateau PH : pc vs q

max at q∗ = 2.865 with pc(q
∗) = 1.298



q-power Hamiltonians in 2D

Effective Hamiltonian level sets for p ∈ [−4, 4]2

(a) q = 1 and Va (b) q = 3 and Vb (c) q = 5 and Vc

Test N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

(a) 252 512 0.6 28 1633.12

(b) 252 512 0.2 9 522.37

(c) 252 512 0.4 18 1042.18



Non-convex Hamiltonians

1

2
(|Du + p|2 − 1)2 − V (x) = λ in Tn ,

where p ∈ Rn, λ ∈ R and V is a 1-periodic potential.

A formula for the effective Hamiltonian is still available in dimension n = 1:

H(p) =


−min V if |p| ≤ pc

λ if |p| > pc s.t. |p| =
∫ 1

0

√
1 +

√
2(V (s) + λ)ds

where pc =

∫ 1

0

√
1 +

√
2(V (s)−min V ))ds.

H has a plateau in the whole interval PH = [−pc , pc ].



Non-convex Hamiltonians in 1D

V (x) = sin(2πx)

Effective Hamiltonian for p ∈ [−2, 2]

(a) Engquist-Osher (b) Lax-Friedrichs

Test N Np Av.Its/p Tot.CPU (secs)

(a) 100 100 38 3.15

(b) 100 100 126 8.97



Second order Hamiltonians

H(x , p,D2u + s) = λ in Tn ,

where p ∈ Rn, λ ∈ R and s ∈ Sn (symmetric n × n matrices).

Assuming H continuous and uniformly elliptic, there exists a unique
λ = H̄(p, s) and a unique (up to a constant) u such that the cell problem
admits a viscosity solution.

A simple case in dimension one:

−α|D2u + s|(D2u + s) +
1

2
|p|2 − V (x) = λ in Tn ,

where p, s ∈ R, α > 0 and V is a 1-periodic potential.

Again, the singularity of the derivative of | · | is handled in a
nonsmooth-Newton fashion.



Second order Hamiltonians in 1D

V (x) = sin(2πx)

Effective Hamiltonian surface for (p, s) ∈ [−4, 4]2

(a) α = 1 (b) α = 1/2 (c) α = 1/10

Test N Np,s Av.CPU/(p, s) (secs) Av.Its/(p, s) Tot.CPU (secs)

(a) 100 512 0.009 7 25.29

(b) 100 512 0.009 8 25.26

(c) 100 512 0.011 10 30.78



Second order Hamiltonians in 1D

V (x) = sin(2πx)

Effective Hamiltonian level sets for (p, s) ∈ [−4, 4]2

(a) α = 1 (b) α = 1/2 (c) α = 1/10

Test N Np,s Av.CPU/(p, s) (secs) Av.Its/(p, s) Tot.CPU (secs)

(a) 100 512 0.009 7 25.29

(b) 100 512 0.009 8 25.26

(c) 100 512 0.011 10 30.78



Second order Hamiltonians in 1D

V (x) = sin(2πx)

Correctors for (p, s) = (0, 0)

(a) α = 1 (b) α = 1/2 (c) α = 1/10

Test N Np,s Av.CPU/(p, s) (secs) Av.Its/(p, s) Tot.CPU (secs)

(a) 100 512 0.009 7 25.29

(b) 100 512 0.009 8 25.26

(c) 100 512 0.011 10 30.78



Weakly coupled systems

Hi (x ,Dui + p) + C (x)u = λ in Tn , i = 1 . . . , M ,

where p ∈ Rn, λ ∈ R, u = (u1, . . . , uM) and C (x) = {Cij(x)}i ,j ∈ RM×M .

Assuming the Hamiltonians Hi continuous and coercive, and the coupling
matrix C continuous, irreducible and such that

Cij(x) ≤ 0 for j 6= i ,

M∑
j=1

Cij(x) = 0, i = 1, . . . ,M ,

there exists a unique λ such that the system admits a viscosity solution.

A simple case of two weakly coupled Eikonal Hamiltonians in Tn (n = 1, 2)
1
2 |Du1 + p|2 − V1(x) + c1(x)(u1 − u2) = λ

1
2 |Du2 + p|2 − V2(x) + c2(x)(u2 − u1) = λ

with V1, V2 1-periodic and c1, c2 nonnegative 1-periodic.



Weakly coupled systems in 1D

V1(x) = sin(2πx) V2(x) = cos(2πx)
c1(x) = 1− cos(4πx) c2(x) = 1 + sin(4πx)

PH = {H(p) = 0.8417} = [−0.925, 0.788] ⊂ [−1.29, 1.36] =: I
Effective Hamiltonian and number of iterations for p ∈ [−2, 2]

H(p) Iterations(p)

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 100 100 0.03 17 3.19



Weakly coupled systems in 1D

V1(x) = sin(2πx) V2(x) = cos(2πx)
c1(x) = 1− cos(4πx) c2(x) = 1 + sin(4πx)

PH = {H(p) = 0.8417} = [−0.925, 0.788] ⊂ [−1.29, 1.36] =: I
Correctors for p = −2

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 100 100 0.03 17 3.19



Weakly coupled systems in 1D

V1(x) = sin(2πx) V2(x) = cos(2πx)
c1(x) = 1− cos(4πx) c2(x) = 1 + sin(4πx)

PH = {H(p) = 0.8417} = [−0.925, 0.788] ⊂ [−1.29, 1.36] =: I
Correctors for p = −1

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 100 100 0.03 17 3.19



Weakly coupled systems in 1D

V1(x) = sin(2πx) V2(x) = cos(2πx)
c1(x) = 1− cos(4πx) c2(x) = 1 + sin(4πx)

PH = {H(p) = 0.8417} = [−0.925, 0.788] ⊂ [−1.29, 1.36] =: I
Correctors for p = 0

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 100 100 0.03 17 3.19



Weakly coupled systems in 1D

V1(x) = sin(2πx) V2(x) = cos(2πx)
c1(x) = 1− cos(4πx) c2(x) = 1 + sin(4πx)

PH = {H(p) = 0.8417} = [−0.925, 0.788] ⊂ [−1.29, 1.36] =: I
Correctors for p = 1

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 100 100 0.03 17 3.19



Weakly coupled systems in 1D

V1(x) = sin(2πx) V2(x) = cos(2πx)
c1(x) = 1− cos(4πx) c2(x) = 1 + sin(4πx)

PH = {H(p) = 0.8417} = [−0.925, 0.788] ⊂ [−1.29, 1.36] =: I
Correctors for p = 2

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 100 100 0.03 17 3.19



Weakly coupled systems in 2D

V1(x1, x2) = sin(2πx1) sin(2πx2) V2(x1, x2) = cos(2πx1) cos(2πx2)

c1(x1, x2) = 1− cos(4πx1) cos(4πx2) c2(x1, x2) = 1 + sin(4πx1) sin(4πx2)

Effective Hamiltonian for p ∈ [−4, 4]2

Surface Level sets

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 252 512 1.39 12 3640.38



Weakly coupled systems in 2D

V1(x1, x2) = sin(2πx1) sin(2πx2) V2(x1, x2) = cos(2πx1) cos(2πx2)

c1(x1, x2) = 1− cos(4πx1) cos(4πx2) c2(x1, x2) = 1 + sin(4πx1) sin(4πx2)

Correctors for p = (0, 0)

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 252 512 1.39 12 3640.38



Weakly coupled systems in 2D

V1(x1, x2) = sin(2πx1) sin(2πx2) V2(x1, x2) = cos(2πx1) cos(2πx2)

c1(x1, x2) = 1− cos(4πx1) cos(4πx2) c2(x1, x2) = 1 + sin(4πx1) sin(4πx2)

Correctors for p = (2, 2)

N Np Av.CPU/p (secs) Av.Its/p Tot.CPU (secs)

2× 252 512 1.39 12 3640.38



Dislocation dynamics

Dislocations: line defects in the lattice structure of crystals, responsible
for the plastic properties of the materials.

Cell problem for a nonlocal Hamilton-Jacobi equation in dimension one:
find λ ∈ R such that

cp[u]|Du + p| = λ in T1

admits a bounded and 1-periodic viscosity solution u, where

• cp[u] = (c(x) + L + Mp[u])

• p ∈ R is the density of dislocations, represented by the integer level sets
of u(x) + px (particle points, looking at a cross section of a slip plane).

• c is a 1-periodic potential acting as an obstacle to the motion.

• L ∈ R is a constant external stress.

• Mp[u] is a nonlocal operator describing interactions between dislocations.



Dislocation dynamics

The nonlocal interaction operator is given by

Mp[u](x) =

∫
R
J (z) {E (u(x + z)− u(x) + pz)− pz} dz ,

where J : R→ R+ is a nonnegative kernel satisfying

J (−z) = J (z) ∀z ∈ R , J (z) ∼ 1

z2
for |z | � 1

and E : R→ R is the (odd) integer part

E (α) =

{
k if α = k ∈ Z ,
k + 1/2 if k < α < k + 1 , k ∈ Z .

Numerical approximation is simplified considering rational densities
p = P/Q, for P ∈ Z and Q ∈ N.

The integer part E is mollified around the jumps.

Engquist-Osher discretization of Du according to the sign of cp[u].



Dislocation dynamics in 1D

No interactions: J ≡ 0 , c(x) = 2 sin(2πx)

Effective Hamiltonian for (p, L) ∈ [−4, 4]2

Surface Level sets

Q N Np,L Av.CPU/(p, L) (secs) Av.Its/(p, L) Tot.CPU (secs)

10 100 812 0.017 5 115.71



Dislocation dynamics in 1D

Regularization: J smooth, E (α) = α (no jumps) , c(x) = 2 sin(2πx)

Effective Hamiltonian for (p, L) ∈ [−4, 4]2

Surface Level sets

Q N Np,L Av.CPU/(p, L) (secs) Av.Its/(p, L) Tot.CPU (secs)

10 100 812 0.032 7 215.74



Dislocation dynamics in 1D

Complete: J (z) = C/z2 , c(x) = 2 sin(2πx)

Effective Hamiltonian for (p, L) ∈ [−4, 4]2

Surface Level sets

Q N Np,L Av.CPU/(p, L) (secs) Av.Its/(p, L) Tot.CPU (secs)

10 100 812 0.115 16 759.31



Dislocation dynamics in 1D

Complete: J (z) = C/z2 , c(x) = 2 sin(2πx)

Effective Hamiltonian for (p, L) ∈ [0, 4]× [0.6, 2]

Level sets

Q N Np,L Av.CPU/(p, L) (secs) Tot.CPU (secs)

100 100 401× 28 1.02 10612



Stationary Mean Field Games


−ν∆u + H(x ,Du) + λ = V [m] x ∈ Tn

ν∆m + div(m Hp(x ,Du)) = 0 x ∈ Tn∫
Tn u(x)dx = 0,

∫
Tn m(x)dx = 1, m ≥ 0 .

Assuming ν > 0, H smooth and convex, there exists a unique classical
solution (u,m, λ).

A simple case for an Eikonal Hamiltonian in dimension two, with a cost
function f and a local potential V :

−ν∆u + |Du|2 + f (x) + λ = V (m) x ∈ T2

ν∆m + 2 div(m Du) = 0 x ∈ T2∫
T2 u(x)dx = 0,

∫
T2 m(x)dx = 1, m ≥ 0 .

Overdetermined problem: 2N + 2 equations in 2N + 1 unknowns.

We do not impose the constraint m ≥ 0: the normalization condition on m
seems enough to force numerically its nonnegativity.



Stationary Mean Field Games in 2D

ν = 1 , V (m) = m2 , f (x) = sin(2πx1) + cos(4πx1) + sin(2πx2)

λ vs number of iterations and level sets of (u,m)

λ u m

N λ Its Tot.CPU (secs)

502 0.9784 5 8.06



Stationary Mean Field Games in 2D

ν = 0.01 , V (m) = m2 , f (x) = sin(2πx1) + cos(4πx1) + sin(2πx2)

λ vs number of iterations and level sets of (u,m)

λ u m

N λ Its Tot.CPU (secs)

502 1.1878 21 10.72



Stationary Mean Field Games in 2D

ν = 0.1 , V (m) = − log(m) , f (x) = sin(2πx1)+ cos(4πx1)+ sin(2πx2)

λ vs number of iterations and level sets of (u,m)

λ u m

N λ Its Tot.CPU (secs)

502 -2.4358 77 42.33



Stationary multi-population Mean Field Games

A system of P Eikonal Hamiltonians in Ω = [0, 1]n for n = 1, 2
with a linear local potential V and Neumann boundary conditions:
−ν∆ui + |Dui |2 + λi = Vi (m) in Ω , i = 1, ...,P

ν∆mi + 2div(mi Dui ) = 0 in Ω , i = 1, ...,P

∂nui = 0 , ∂nmi = 0 on ∂Ω , i = 1, ...,P∫
Ω ui (x)dx = 0 ,

∫
Ω mi (x)dx = 1 , mi ≥ 0 i = 1, ...,P ,

where u = (u1, ..., uP), m = (m1, ...,mP), λ = (λ1, ..., λP) and
V (m) = (V1, ...,VP)(m) = Θm with a weight matrix Θ = (θij)i ,j=1,...,P .

Existence and uniqueness of the trivial solution ui ≡ 0, mi ≡ 1, λi =
P∑

j=1

θij

(for i = 1, ...,P) can be proved assuming Θ positive semi-definite.
We drop it and look for nontrivial solutions, choosing θij = 1− δij .

Overdetermined problem: P(2N + 2) equations in P(2N + 1) unknowns.

Again, we do not impose the constraint m ≥ 0: the normalization
condition on m seems enough to force numerically its nonnegativity.



Stationary multi-population Mean Field Games in 1D

P = 2 , ν = 0.05 , V (m1,m2) = (m2,m1)

Two-population MFG solutions (u,m, λ)

m

u

λ (0.039, 0.039) (0.143, 0.140) (0.295, 0.295) (0.496, 0.485)

ITs 19 48 28 31

CPU 0.14 0.33 0.19 0.21



Stationary multi-population Mean Field Games in 1D

P = 2 , ν = 10−4 , V (m1,m2) = (m2,m1)

Two-population MFG solutions (u,m, λ)

m

u
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Stationary multi-population Mean Field Games in 2D

P-population MFG solutions m for ν = 10−4 and P = 2, 3, 4
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Stationary Mean Field Games on Networks

Network: a connected set Γ = (V, E) with
• Vertices V := {vi}i∈I

• Edges E := {ej}j∈J

• Incident edges to vertex Inci := {j ∈ J : vi ∈ ej}

−νj∂
2u + Hj(x , ∂u) + λ = V [m] x ∈ ej (HJ)

νj∂
2m + ∂(m ∂pHj(x , ∂u)) = 0 x ∈ ej (FP)∑

j∈Inci

νj∂ju(vi ) = 0 vi ∈ V (K )

∑
j∈Inci

[νj∂jm(vi ) + ∂pHj(vi , ∂ju)mj(vi )] = 0 vi ∈ V∫
Γ
u(x)dx = 0,

∫
Γ
m(x)dx = 1, m ≥ 0

Kirchhoff transition condition and total flux conservation.

Assuming νj > 0, Hj smooth and convex, V suitably monotone, there
exists a unique classical solution (u,m, λ).



Stationary Mean Field Games on Networks

A network with 2 vertices and 3 edges mapped in an equivalent network
with boundary vertices identified.

Each edge has unit length and connects (0, 0) to (cos(2πj/3), sin(2πj/3))
with j = 0, 1, 2.

Hj(x , p) = 1
2 |p|

2 + f (x), f (x) = sj

(
1 + cos(2π

(
x + 1

2

)
)
)
, sj ∈ {0, 1}

V [m] = m2, νj ≡ ν



Stationary Mean Field Games on Networks

ν = 0.1, s0 = 1, s1 = 1, s2 = 1, λ ∼ −1.066667
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Stationary Mean Field Games on Networks

ν = 0.1, s0 = 1, s1 = 1, s2 = 0, λ ∼ −0.741639
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Stationary Mean Field Games on Networks

ν = 0.1, s0 = 1, s1 = 0, s2 = 0, λ ∼ −0.116733
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Stationary Mean Field Games on Networks

ν = 10−4, s0 = 1, s1 = 1, s2 = 1, λ ∼ −1.116603
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Stationary Mean Field Games on Networks

ν = 10−4, s0 = 1, s1 = 1, s2 = 0, λ ∼ −0.725463
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Stationary Mean Field Games on Networks

ν = 10−4, s0 = 1, s1 = 0, s2 = 0, λ ∼ −0.002345
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Stationary Mean Field Games on Networks
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Homogenization of Mean Field Games with Small Noise


−uε

t − ε∆uε + 1
2a( x

ε )|Duε|2 = V ( x
ε ,mε) x ∈ Rn × (0,T )

mε
t − ε∆mε − div(a( x

ε )mεDuε) = 0 x ∈ Rn × (0,T )
uε(·, 0) = u0 in Rn

mε(·, 0) = m0 in Rn∫
Rn uε(x , ·)dx = 0,

∫
Rn mε(x , ·)dx = 1, mε ≥ 0 t ∈ [0,T ]

a : Rn → (0,+∞) is 1-periodic Lipschitz and V : Rn × [0,+∞)→ R is
1-periodic Lipschitz with V (y , ·) nondecreasing for each y
e.g. V (y ,m) = v(y) + mq or V (y ,m) = v(y) + log m
The viscosity solution (uε,mε) converges, as ε→ 0, to the viscosity
solution (u,m) of the Effective Mean Field Game (?)

−ut +H(Du,m) = 0 x ∈ Rn × (0,T )
mt − div(mb̄(Du,m) = 0 x ∈ Rn × (0,T )
u(·, 0) = u0 in Rn

m(·, 0) = m0 in Rn∫
Rn u(x , ·)dx = 0,

∫
Rn m(x , ·)dx = 1, m ≥ 0 t ∈ [0,T ]



Homogenization of Mean Field Games with Small Noise

For every p ∈ Rn and α ≥ 0 there exists a unique value H̄ for which there
exists a solution on Tn to the

Ergodic Mean Field Game: Effective Hamiltonian
−∆u + 1

2a(y)|∇u + p|2 − V (y , αm) = H̄(P, α) x ∈ Tn

−∆m − div(a(y)m∇u) = 0 x ∈ Tn∫
Tn u(x)dx = 0,

∫
Tn m(x)dx = 1, m ≥ 0

Effective Drift

b̄(P, α) :=

∫
Tn

a(y)m(∇u + P)dy

Mean Field Game structure is lost due to a

Strange term coming from nowhere!

DpH(p, α) = b̄(p, α)− α

∫
Tn

Vm(y , αm)m̃ mdy



Homogenization of Mean Field Games with Small Noise

For i = 1, ..., n the triplet
(
ũi , m̃i ,DpiH(p, α)

)
is the solution of the

Auxiliary Ergodic Linear Problem in p
−∆ũi + a∇ũi · (∇u + p) + a(∇u + p) · ei − Vm(y , αm)αm̃i = DpiH(p, α)
−∆m̃i − div

(
a(p +∇u)m̃i

)
= div(am(∇ũi + ei ))∫

Tn m̃i =
∫

Tn ũi = 0

Similarly
(
ū, m̄,DαH(p, α)

)
is the solution of the

Auxiliary Ergodic Linear Problem in α
−∆ū + a(y)∇ū · (∇u + p)− Vm(y , αm)αm̄ − Vm(y , αm)m = DαH(p, α)
−∆m̄ − div

(
a(y)(p +∇u)m̄

)
− div(a(y)m∇ū) = 0∫

Tn m̄ =
∫

Tn ū = 0

DαH(p, α) = −
∫

Tn

[
Vm(y , αm)(m + αm̄)2 + αa(y)m|∇ū|2

]
dy



Homogenization of Mean Field Games with Small Noise

The 1D case a ≡ 1 and V (x , m) = 1 + sin(2πx) + m
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Homogenization of Mean Field Games with Small Noise

The 1D case a ≡ 1 and V (x , m) = 1 + sin(2πx) + m
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Homogenization of Mean Field Games with Small Noise

The 1D case a ≡ 1 and V (x , m) = 1 + sin(2πx) + m
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