B"mect numerical solution_ of cell problems

\in\;\\omogenization of HJ equations
\Ib g\ eralized-Newton’s method

onsistent-nonlinear systems

i
> Simone/Cacace and Fabio Camilli
/6n'vé'sibé/degli Studi-Roma Tre

NUMOC 2017
19-23 June 2017, Rome




Spoiler

e Ergodic problems for Hamilton-Jacobi equations
e Small-9, large-t and theoretical formulas approximations
e The new approach: a Newton-like method for inconsistent systems
e Numerical results for:
e Eikonal Hamiltonians
e g-power Hamiltonians
e Non-convex Hamiltonians
e Second order Hamiltonians
e Weakly coupled systems
e Dislocation dynamics

e Stationary MFG in Euclidean Spaces (single and multi-population)
e Stationary MFG on Networks
e Homogenization of Mean Field Games with Small Noise




Ergodic problems for Hamilton-Jacobi equations

Consider the problem
{ vi + H(%Z,Dv?) =0 in R” x (0, +00)

ve(-,0) =w in R"

where the Hamiltonian H(x, p) : R” x R" — R is a continuous function,
1-periodic in x and coercive in p. The viscosity solution v converges, as
€ — 0, to the viscosity solution v of the effective problem

v +H(Dv) =0 in R" x (0, +0o0)
v(-,0) = v in R”

where, for each p € R, the value A =H(p) is the unique number such
that the cell problem

H(x,Du+ p) = A in T"

admits a 1-periodic viscosity solution v in the torus T".

The function H : R” — R is called the effective Hamiltonian.
The solution v is not unique in general, not even for addition of constants.



Computing H via regularization of the cell problem

Small-9 method
The viscosity solution of

6u’ + H(x, Du’ + p) =0 in T"
satisfies

—0u® —H(p) asd — 0, uniformly in R"

Large-t method

The viscosity solution of

us + H(x,Du+ p) =0 in R"” x (0, +00)
u(+,0) = up in R”

satisfies

—u(x,t)/t =H(p) ast— +oo, uniformly in R"




Computing H via theoretical formulas

inf-sup formula

H(p)= inf sup H(x,Du+p
( ) ueC>(T") xeTn ( )

Variational approximation

The infimum is approximated for k — +o0o by the solution to

div (ek H(Dutp) (3 Dy + p)) —0, xeT”

Auxiliary boundary value problem for Homogeneous Hamiltonians

Alx.p) = max {(p- a)e(x.2)) =

{ H(%,Du*(x)) =1
u®(0) =0

u(x) = u°(x) + O(e) and




A new approach: solving the cell problem directly

What is wrong with H(x, Du + p) = \?

The problem is ill-posed, one equation in two unknowns: while the ergodic
constant A is unique, the viscosity solution u is in general not unique.

Nevertheless, we can perform in the torus T” our favorite discretization
(FD, FE, FV, DG, SL) getting a system of nonlinear equations of the form

S(h,x,U,p) =A

where h is a discretization parameter (meant to go to zero), x is the vector
of grid nodes, U is a grid function and A is a real number.

The operator S is a generic scheme, which is assumed to enjoy all the
properties needed to ensure the convergence (U,A) — (u,A) as h — 0.

In particular, S should employ a numerical Hamiltonian which is able to
correctly select approximations of viscosity solutions (Lax-Friedrichs,
Engquist-Osher, Godunov).



A Newton-like method for inconsistent nonlinear systems

The main assumption:

for each fixed h there exists a unique A for which

S(h,x,U, p) = A admits a solution U (in general not unique).

Collecting the unknowns (U, A) in a single vector X of length N and
recasting the M equations (given by S) as functions of X, we get the
nonlinear map F : RV — RM defined by F(X) = S(h,x,U, p) — A.

The discrete cell problem is equivalent to

find X € RN such that F(X) = 0 € RM

Assuming that F is Fréchet differentiable with Jacobian Jg € RM*N we
would like to approximate the zeros of F by using the Newton's method

Je(XK)g = —F(x®)),  x*ktD) —xK 15 k>0,

but this system can be inconsistent for arbitrary M and N, i.e.,
underdetermined if M < N and overdetermined if M > N.



The generalized least-squares solution

We denote by Jl the Moore-Penrose pseudoinverse of the Jacobian Jg,
namely the unique N x M matrix such that

Jedlde = Jp, JIIRII =08, (RdD)T =0pdt, (Q1E)T = 9lse

It can be easily proved that
& = — LX) F(x()

is the unique vector of smallest Euclidean norm which minimizes the
Euclidean norm of the residual Jg(X())8 + F(X(%)).

e In the overdetermined case (M > N), if Jg has full column rank N

=)

e In the underdetermined case (M < N), if Jg has full row rank M
=3 (D)




Efficient implementation via QR factorization avoiding J;r:

e Overdetermined case (M > N), full column rank N: factoring JF = QR,

Q = (Q1 Q2) € RM*M orthogonal, Q1 € RM*N and Q, € RM*(M=N)

R = <|?)1> e RM*N 'Ry € RV*N ypper triangular and 0 € RIM—N)xN

yields J,T: =R;'Q{, and 6* = —R;lQlTF(X(k)) via back-substitution.

e Underdetermined case (M < N), full row rank M: factoring J = QR,

Q = (Q; Q) € RV*N orthogonal, Q; € RV*M and Q; € RV*(N-M) |

R = <R01> c RNXM, R]. c RMXM upper triangular and 0 € R(N—M)xM’

yields Jl =QiR; ", and 6* = —QlRl_TF(X(k)) via back-substitution.




The algorithm

GIVEN AN INITIAL GUESS X € RN AND A TOLERANCE € > 0
)

REPEAT
e AssEMBLE F(X) € RM anp Jg(X) € RMxN

e SOLVE Jg(X)d = —F(X) IN THE LEAST-SQUARES SENSE, USING THE
QR FACTORIZATION OF Jg(X) IF M > N OrR Jg(X)T r M < N

e UPDATE X «— X +9§

UNTIL ||d|]2 < & AND/OR ||[F(X)||2 < e

Implementation in C employing the free library SuiteSparseQR, which is
designed to efficiently compute in parallel the QR factorization and the
least-squares solution to large and sparse linear systems.

Numerical tests performed on a Lenovo Ultrabook X1 Carbon, using 1
CPU Intel Quad-Core i5-4300U 1.90Ghz with 8 Gb Ram, running under
the Linux Slackware 14.1 operating system.




Implementation tricks

e Sometimes Newton-like methods do not converge, due to oscillations
around a minimum of the residual function ||F(X)]|2.

In this case we introduce a dumping parameter in the update step:

X — X+ ué for some 0 < p < 1 (usually a fixed value of u works fine).
A more efficient (but costly) selection of the dumping parameter can be
implemented using line search methods.

e It may happen that Jg(X) is nearly singular or rank deficient, so that the

least-squares solution cannot be computed.
In the spirit of the Levenberg-Marquardt method, we can regularize
Je(X) with 71 4+ Jg(X), for some 7 > 0.

e Newton-like methods classically require that F is Fréchet differentiable.
In the spirit of nonsmooth-Newton methods, we can replace the usual
differential with any element of the sub-differential.

For instance, H(x, p) = %|p|‘7 — V(x) with g > 1 = Hy(x, p) = |p|92p,
is singular at p =0 for 1 < g < 2. We typically choose H,(x,0) = 0.




Eikonal Hamiltonians

1
5|Du +pPP=V(x)=XA inT",
where p € R”, A € R and V is a 1-periodic potential.

A formula for the effective Hamiltonian is available in dimension n = 1:

—minV if |p| < pc

if |p| > pc s.t. |p| :/0 2(V(s)+ N)ds

1
where p. = /0 V2(V(s) — min V))ds.

H has a plateau in the whole interval Py = [—pc, pc].




Eikonal Hamiltonians in 1D

V(x) =sin(27x), min V = —1 and Py = [—pc, pc), pc = 4/m ~ 1.2732

Convergence: X vs number of iterations
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Eikonal Hamiltonians in 1D

V(x) =sin(27x), min V = —1 and Py = [—pc, pc), pc = 4/m ~ 1.2732

Correctors




Eikonal Hamiltonians in 1D

V(x) =sin(27x), min V = —1 and Py = [—pc, pc), pc = 4/m ~ 1.2732

Convergence under grid refinement: error vs h
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Eikonal Hamiltonians in 1D

V(x) =sin(27x), min V = —1 and Py = [—pc, pc), pc = 4/m ~ 1.2732

Effective Hamiltonian and number of iterations for p € [-2,2]

22

18

H(p) 1.6

14

12

H(p) Iterations(p)

N | N, | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
100 | 100 0.01 13 1.18




Direct Newton vs Small-é and or Large-t

dw + Hp(x, Dul® + p) - Dw = —6u%) — H(x, Du®) + p)

iW + Hp(x, Du¥) 4 p) - Dw = —i(u(k) — u") — H(x, Du'¥ + p)

At
uk ) = (k) 4 uw foreach k>0, O0<u<l1
Small-8: us = lim u®)  Large-t: u= lim u", where u™! = lim o)
k—00 n—o00 k—o00

Coincide for u(® =0 and u(® = 4" for each n, with t°® =0 and 6§ = ﬁ
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Eikonal Hamiltonians in 2D

Vi(x1, x2) = cos(2mx1) + cos(2mxz)
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Eikonal Hamiltonians in 2D

Vi(x1, x2) = cos(2mx1) + cos(2mxz)

Effective Hamiltonian for p € [—4,4]2

Surface Level sets
N | N, | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
252 | 512 0.4 16 970.45




Eikonal Hamiltonians in 2D

Vip(x1, x2) = sin(27xq) sin(27x2)

Effective Hamiltonian for p € [—4,4]?

Surface

4 3 -2 -1 0 1 2 3 4
1

P

Level sets

N | N, | Av.CPU/p (secs)

Av.lts/p

Tot.CPU (secs)

252 | 512 0.2

7

480.75




Eikonal Hamiltonians in 2D

Ve(x1, x2) = cos(27mx1) + cos(27mx2) + cos (27 (x1 — x2))

Effective Hamiltonian for p € [—4,4]?

Surface

Level sets

N | N, | Av.CPU/p (secs)

Av.lts/p

Tot.CPU (secs)

252 | 512 0.24

10

630.77




g-power Hamiltonians

where p € R", A € R, V is a 1-periodic potential and g > 1.

The singularity at the origin of the derivative of |- |9 for 1 < g < 2 is
handled by choosing, in a nonsmooth-Newton fashion, an element of the
sub-differential. Here, we simply choose 0 if Du+ p = 0 at some point.



g-power Hamiltonians in 1D

V(x) = sin(2mx)

Effective Hamiltonians for p € [—4, 4] and correctors for p =0

u(x)
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g-power Hamiltonians in 1D

V(x) = sin(2mx)

Extension of the plateau P5: pc vs g
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g-power Hamiltonians in 2D

Effective Hamiltonian level sets for p € [—4, 4]?

(b) g=3and V,

Test | N | N, | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
(a) | 25° | 51° 0.6 28 1633.12
(b) | 25° | 512 0.2 9 522.37
(c) | 25° | 512 0.4 18 1042.18




Non-convex Hamiltonians

1
5(1Du+ p2-12-V(x)=X inT",
where p € R”, A € R and V is a 1-periodic potential.

A formula for the effective Hamiltonian is still available in dimension n = 1:

—minV if |p| < pc

A if |p| > pc s.t. |p| :/0 \/1~|- V2(V(s)+ N)ds

H(p) =

where p. = /01 \/1 + v/2(V(s) — min V))ds.

H has a plateau in the whole interval Py = [—pc, pc].




Non-convex Hamiltonians in 1D

V(x) = sin(2mx)

Effective Hamiltonian for p € [-2,2]

a5 T T T o 45

(a) Engquist-Osher (b) Lax-Friedrichs

Test | N | N, | Av.lts/p | Tot.CPU (secs)
(a) | 100 | 100 38 3.15
(b) | 100 | 100 | 126 8.97




Second order Hamiltonians

H(x,p, D?*u+s) =\ in T",

where p € R”, A € R and s € §" (symmetric n X n matrices).

Assuming H continuous and uniformly elliptic, there exists a unique

A = H(p,s) and a unique (up to a constant) u such that the cell problem
admits a viscosity solution.

A simple case in dimension one:

1
—a|D2u+s|(D2u—|—s)+§\p|2— V(x)= A in T",

where p,s € R, « > 0 and V is a 1-periodic potential.

Again, the singularity of the derivative of | - | is handled in a
nonsmooth-Newton fashion.



Second order Hamiltonians in 1D

V(x) = sin(2mx)

Effective Hamiltonian surface for (p, s) € [—4,4]?

2
152 -
1015

(c) a=1/10
Test | N | Nps | Av.CPU/(p,s) (secs) | Av.lts/(p,s) | Tot.CPU (secs)
a) | 100 | 51° 0.009 7 25.29
(a)
(b) | 100 | 512 0.009 8 25.26
(c) | 100 | 512 0.011 10 30.78




Second order Hamiltonians in 1D

V(x) = sin(2mx)

Effective Hamiltonian level sets for (p,s) € [—4,4]?
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(a) a = (b) a=1/2 (c) a=1/10
Test | N | Nps | Av.CPU/(p,s) (secs) | Av.lts/(p,s) | Tot.CPU (secs)
(a) | 100 | 51° 0.009 7 25.29
(b) | 100 | 512 0.009 8 25.26
(c) | 100 | 51° 0.011 10 30.78




Second order Hamiltonians in 1D

V(x) = sin(2mx)

Correctors for (p,s) = (0,0)
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Test | N | Nps | Av.CPU/(p,s) (secs) | Av.lts/(p,s) | Tot.CPU (secs)
(a) | 100 | 51° 0.009 7 25.29
(b) | 100 | 512 0.009 8 25.26
(c) | 100 | 51° 0.011 10 30.78




Weakly coupled systems

Hi(x, Duj + p) + C(x)u = A in T",

where p e R", A€ R, u = (uy,...,uym) and C(x) = {C;j(x)};; € RM*M,

Assuming the Hamiltonians H; continuous and coercive, and the coupling
matrix C continuous, irreducible and such that

M
Gi(x) <O0forj#i, > Ci(x)=0, i=1,...,M,
j=1

there exists a unique A such that the system admits a viscosity solution.

A simple case of two weakly coupled Eikonal Hamiltonians in T" (n = 1,2)

%]Dul aF P|2 = Vl(X) T c1(x)(u1 = u2) =\

%’DUZ 4 p|2 — Vo(x) + ca(x) (w2 — u1) = A

with V4, V5 1-periodic and ¢, ¢ nonnegative 1-periodic.



Weakly coupled systems in 1D

Vi(x) = sin(27x) V5 (x) = cos(2mx)

c1(x) = 1 — cos(4mx) &(x) = 1+ sin(47x)

Ps = {H(p) = 0.8417} = [0.925,0.788] C [~1.29,1.36] =: T

Effective Hamiltonian and number of iterations for p € [—2, 2]

40
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H(p)

14
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1l

08 -

H(p) Iterations(p)
N Np | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 100 | 100 0.03 17 3.19




Weakly coupled systems in 1D

Vi(x) = sin(27x) V5 (x) = cos(2mx)

c1(x) = 1 — cos(4mx) &(x) = 1+ sin(47x)

Ps = {H(p) = 0.8417} = [0.925,0.788] C [~1.29,1.36] =: T

Correctors for p = —2

0.4 T T

N Np | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 100 | 100 0.03 17 3.19




Weakly coupled systems in 1D

Vi(x) = sin(27x) V5 (x) = cos(2mx)

c1(x) = 1 — cos(4mx) &(x) = 1+ sin(47x)

Ps = {H(p) = 0.8417} = [0.925,0.788] C [~1.29,1.36] =: T

Correctors for p = —1

0.4 T T

uy(z)

up()

[ 0.2 0.4 xr 0.6 0.8 1

N Np | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 100 | 100 0.03 17 3.19




Weakly coupled systems in 1D

Vi(x) = sin(27x) V5 (x) = cos(2mx)

c1(x) = 1 — cos(4mx) &(x) = 1+ sin(47x)

Ps = {H(p) = 0.8417} = [0.925,0.788] C [~1.29,1.36] =: T

Correctors for p =0

[ 0.2 0.4 xr 0.6 0.8 1

N Np | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 100 | 100 0.03 17 3.19




Weakly coupled systems in 1D

Vi(x) = sin(27x) V5 (x) = cos(2mx)

c1(x) = 1 — cos(4mx) &(x) = 1+ sin(47x)

Ps = {H(p) = 0.8417} = [0.925,0.788] C [~1.29,1.36] =: T

Correctors for p =1

ua(x)

[ 0.2 0.4 xr 0.6 0.8 1

N Np | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 100 | 100 0.03 17 3.19




Weakly coupled systems in 1D

Vi(x) = sin(27x) V5 (x) = cos(2mx)

c1(x) = 1 — cos(4mx) &(x) = 1+ sin(47x)

Ps = {H(p) = 0.8417} = [0.925,0.788] C [~1.29,1.36] =: T

Correctors for p = 2

N Np | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 100 | 100 0.03 17 3.19




Weakly coupled systems in 2D

Vo (x1,x2) = cos(2mx7) cos(27xz)

Vi(x1, x2) = sin(2mx7) sin(27x2)
e (x1,x2) = 1 4 sin(4mxy) sin(4mx2)

c1(x1,x2) = 1 — cos(4mxq) cos(4mxz)

Effective Hamiltonian for p € [—4, 4]

4 3 2 -1 0 1 2 3 4
P1

Surface Level sets
N Ny | Av.CPU/p (secs) | Av.lts/p | Tot.CPU (secs)
2 x 25° | 51° 1.39 12 3640.38




Weakly coupled systems in 2D

Vi(x1, x2) = sin(2mxq) sin(2mx2)  Va(x1, x2) = cos(2mxy) cos(2mx2)
c1(x1,x2) =1 — cos(4mxy) cos(4mxz)  ca(x1,x2) = 1+ sin(4mxq) sin(4mx)

Correctors for p = (0, 0)
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Dislocation dynamics

Dislocations: line defects in the lattice structure of crystals, responsible
for the plastic properties of the materials.

Cell problem for a nonlocal Hamilton-Jacobi equation in dimension one:
find A € R such that

cplu]|Du+ p| = A in T?
admits a bounded and 1-periodic viscosity solution u, where
o cplu] = (c(x) + L+ Mp[u])

e p € R is the density of dislocations, represented by the integer level sets
of u(x) + px (particle points, looking at a cross section of a slip plane).

e c is a 1-periodic potential acting as an obstacle to the motion.
e | € R is a constant external stress.

e Mp[u] is a nonlocal operator describing interactions between dislocations.



Dislocation dynamics

The nonlocal interaction operator is given by

Molul(x) = [ T(){E (ulx-+2) = u(x) +p2) — pz) .
where 7 : R — RT is a nonnegative kernel satisfying

J(=2)=J(z) VzeR, J(z)~ ;12 for |2] > 1

and E : R — R is the (odd) integer part
Eay={ ¥ ifa=keZ,
YT\ k+1/2 ifk<a<k+1l, keZ.

Numerical approximation is simplified considering rational densities
p=P/Q, for PeZ and Q € N.

The integer part E is mollified around the jumps.

Engquist-Osher discretization of Du according to the sign of cp[u].



Dislocation dynamics in 1D

No interactions: J =0, c(x) = 2sin(27x)

Effective Hamiltonian for (p, L) € [—4,4]?

10 2
H(pa L) s 1
15 0
1 s Lo
0 -10
2 -15 il

e
Surface Level sets

Q| N | N,y | Av.CPU/(p, L) (secs) | Av.lts/(p, L) | Tot.CPU (secs)
10 | 100 | 81° 0.017 5 115.71




Dislocation dynamics in 1D

Regularization: J smooth, E(a) = « (no jumps), c(x) = 2sin(27x)

Effective Hamiltonian for (p, L) € [—4,4]?

24 p
Surface Level sets

Q| N | Ny | Av.CPU/(p, L) (secs) | Av.lts/(p, L) | Tot.CPU (secs)
10 | 100 | 812 0.032 7 215.74




Dislocation dynamics in 1D

Complete: J(z) = C/z%, c(x) = 2sin(27x)

Effective Hamiltonian for (p, L) € [—4,4]?

4

Nz

e p

Surface Level sets

Q| N | Ny | Av.CPU/(p, L) (secs) | Av.lts/(p, L) | Tot.CPU (secs)
10 | 100 | 812 0.115 16 759.31




Dislocation dynamics in 1D

Complete: J(z) = C/z°, c(x) = 2sin(27x)

Effective Hamiltonian for (p, L) € [0,4] x [0.6, 2]

2

1.8

1.6

14

1.2

1

0.8 —
o \ \ \ \ \ \ \
0 0.5 1 1.5 2 25 3 345 4
Level sets
Q | N Np. 1 Av.CPU/(p, L) (secs) | Tot.CPU (secs)
100 | 100 | 401 x 28 1.02 10612




Stationary Mean Field Games

—vAu+ H(x,Du) + X = V[m]
vAm + div(m Hp(x, Du)) =0
Jpn u(x)dx =0, [, m(x)dx =1, m > 0.

Assuming v > 0, H smooth and convex, there exists a unique classical
solution (u, m, ).

A simple case for an Eikonal Hamiltonian in dimension two, with a cost
function f and a local potential V:

—vAu+ |Dul? + f(x) + A = V(m) x € T?
vAm+2div(m Du) =0 x € T?
Jp2 u(x)dx =0, [ m(x)dx =1, m > 0.

Overdetermined problem: 2N + 2 equations in 2/ 4+ 1 unknowns.

We do not impose the constraint m > 0: the normalization condition on m
seems enough to force numerically its nonnegativity.




Stationary Mean Field Games in 2D

v=1, V(m)=m? Ff(x)=sin(2rx1)+ cos(4mxi)+ sin(2mxz)

A vs number of iterations and level sets of (u, m)
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Stationary Mean Field Games in 2D

v =001, V(m)=m?, f(x)=sin(2rx1)+ cos(4mx1)+ sin(2mxo)

A vs number of iterations and level sets of (u, m)
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Stationary Mean Field Games in 2D
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Stationary multi-population Mean Field Games

A system of P Eikonal Hamiltonians in Q =[0,1]" for n =1,2
with a linear local potential V and Neumann boundary conditions:

—vAu;j + |Dui? + \j = Vi(m)
vAm; + 2div(m; Duj) = 0 in Q,

8,,u,- = 07 8nm,- =0
Joui(x)dx =0, [omi(x)dx=1, m;>0 i=1,..,P,

where u = (u1,...,up), m= (my,....,mp), A= (\1,..., Ap) and
V(m) = (V1,..., Vp)(m) = ©m with a weight matrix © = (6;); j=1,....p-
P

Existence and uniqueness of the trivial solution u; =0, m; =1, A\; = ZQU
(for i =1, ..., P) can be proved assuming © positive semi-definite. ~Jj=1
We drop it and look for nontrivial solutions, choosing 0;; = 1 — J;.
Overdetermined problem: P(2N + 2) equations in P(2N + 1) unknowns.

Again, we do not impose the constraint m > 0: the normalization
condition on m seems enough to force numerically its nonnegativity.



Stationary multi-population Mean Field Games in 1D

Two-population MFG solutions (u, m, A)

m

A (0.039,0.039) (0.143,0.140) (0.295,0.295) (0.496,0.485)
ITs 19 48 28 31

cPU 0.14 0.33 0.19 0.21




Stationary multi-population Mean Field Games in 1D

Two-population MFG solutions (u, m, A)
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Stationary multi-population Mean Field Games in 2D

Ppplt MFG solutio
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Stationary Mean Field Games on Networks

Network: a connected set ' = (V, &) with

o Vertices V := {v; }iey

o Edges £ := {}je

e Incident edges to vertex Inc; == {j € J : v; € ¢}
[ —1;0%u + Hi(x,0u) + A = V[m]

v;0?m + d(mdpH;(x,0u)) = 0

Z vioju(vi) =0

J€Inc;

> Wgym(vi) + 9pH;(vi, dju)m;(vi)] = 0

jE/nC,'

/r u(x)dx

Kirchhoff transition condition and total flux conservation.

Assuming v; > 0, H; smooth and convex, V suitably monotone, there
exists a unique classical solution (u, m, ).




Stationary Mean Field Games on Networks

A network with 2 vertices and 3 edges mapped in an equivalent network
with boundary vertices identified.

Each edge has unit length and connects (0,0) to (cos(27j/3), sin(27j/3))
with j = 0,1,2.

L
v V1
€2 asle
€1
€0
—_— 0 0 il
Vo
€0 05 - €9
0 AL Cv2
L L L L

Hi(x, p) = L1p2 + F(x), f(x):sj<1+cos(27r(x+%))), s €{0,1}

V[im] = m?,




Stationary Mean Field Games on Networks

v =20.1, so=15=1 s=1, A~ —1.066667
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Stationary Mean Field Games on Networks

v=0.1, so=15=1, 5 =0, A~ —0.741639
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m m (blue) and u (red)



Stationary Mean Field Games on Networks

v=0.1, so=1 5 =0 s =0, A~ —0.116733
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m m (blue) and u (red)



Stationary Mean Field Games on Networks

, S1 = 1, Sy = 1, A~ —1.116603
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m m (blue) and u (red)



Stationary Mean Field Games on Networks

, S1 = 1, Sy = 0, A~ —0.725463
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m m (blue) and u (red)



Stationary Mean Field Games on Networks

v=10"% so=1, 5 =0, s =0, A ~ —0.002345
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Stationary Mean Field Games on Networks
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Homogenization of Mean Field Games with Small Noise

—uf — eAuf + 3a(%)|Duf|? = x €R"x (0, T)
m; —eAm® —div(a(Z)m aDu) x€R"x (0, T)
ut(+,0) = up in R"

m®(-,0) = mg in R”

Jro uF(x,)dx =0, [p, m*(x,-)dx =1, m* >0 tel0,T]

a:R" — (0,400) is 1-periodic Lipschitz and V : R" x [0, 4+00) — R is
1-periodic Lipschitz with V/(y, -) nondecreasing for each y

eg. V(y,m)=v(y)+m?or V(y,m) = v(y) +logm

The viscosity solution (u®, m®) converges, as € — 0, to the viscosity
solution (u, m) of the Effective Mean Field Game (?)

—uy +H(Du,m) =0
— div(mb(Du, m) = 0
u(-,0) = uo
(,0) = mo
Jgn u(x,-)dx =0, [pom(x,-)dx =1, m>0 tel0,T]




Homogenization of Mean Field Games with Small Noise
For every p € R” and a > 0 there exists a unique value H for which there
exists a solution on T" to the
Ergodic Mean Field Game: Effective Hamiltonian

—Au+ 3a(y)|Vu+p2 = V(y,am) = H(P,a) xe€T"

—Am — div(a(y )mVu) 0 xeT"

Jn u(x)dx =0, [r, m(x)dx =1, m >0

Effective Drift
b(P, o) ::/ a(y)m(Vu + P)dy

Mean Field Game structure is lost due to a

Strange term coming from nowhere!

DpH(p, ) = b(p,a) — a/ Vm(y, am)m mdy
Tn




Homogenization of Mean Field Games with Small Noise

For i =1, ..., n the triplet (E/,-, mj, Dpl.lq(p,a)) is the solution of the

Auxiliary Ergodic Linear Problem in p

—Am; — div(a(p + Vu)my) = div(am(Vi; + e))

Similarly (D, m, Do H(p, a)) is the solution of the

{Aﬂ; +aVi; - (Vu+p)+ a(Vu+p) - e — Vin(y,am)am; = Dy, H(p, @)

Auxiliary Ergodic Linear Problem in «

—AT+ a(y)Vi- (Vu+ p) — Vim(y,am)am — Vp(y,am)m = DH(p, «)
—Am —div(a(y)(p + Vu)m) — div(a(y)mVi) = 0
u=0

an m = fT"

DoH(p,a) = — / [Vinly, am)(m + aim)? + aa(y)m|Va[2] dy




Homogenization of Mean Field Games with Small Noise

The 1D case a=1 and V(x, m) =1+ sin(27x) + m
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Homogenization of Mean Field Games with Small Noise

The 1D case a=1 and V(x, m) =1+ sin(27x) + m
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Homogenization of Mean Field Games with Small Noise

The 1D case a=1 and V(x, m) =1+ sin(27x) + m
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