
The principal eigenvalue for non-variational operators

Italo Capuzzo Dolcetta
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Introduction

I the notion of principal eigenvalue for linear second order partial
differential operators in general (i.e. non-variational form) and the
min-max representation formula [according to Donsker-Varadhan,
Berestycki-Nirenberg-Varadhan]

I the general fully nonlinear degenerate elliptic case

I the positivity of a generalized principal eigenvalue is equivalent to the
validity of the weak Maximum Principle

I approximation of the principal eigenvalue in the non-variational case

I will report in particular on :

H. Berestycki, A. Porretta, L. Rossi, ICD, Maximum Principle and generalized
principal eigenvalue for degenerate elliptic operators, JMPA 2014

I. Birindelli, F. Camilli, ICD, On the approximation of the principal eigenvalue
for a class of nonlinear elliptic operators, Comm. in Math. Sciences 2016
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One motivating example: principal eigenvalue and ergodic control

Consider the viscous Hamilton-Jacobi equation, i.e. the Bellman equation
satisfied by the value function of an infinite horizon stochastic discounted
optimal control problem with running cost V

−1

2
4uα +

1

2
|∇uα|2 − V (x) + αuα = 0

where α > 0 is the discount parameter and the eigenvalue problem for the
linear Schrödinger type equation

−1

2
4Φ + V (x)Φ = λΦ
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One motivating example: principal eigenvalue and ergodic control

If (λ1,Φ > 0) is the principal eigenvalue-eigenfunction pair it is easy to check
that the function w = − log Φ +

∫
Φ2 log Φ dx satisfies

−1

2
4w +

1

2
|∇w |2 − V (x) + λ1 = 0 ,

∫
w Φ2 = 0

This is the Bellman equation of ergodic control.

It can be proved, under some conditions on V , that as α→ 0

αuα → λ1 , uα −
∫

uα Φ2 dx → w

This approach to ergodic optimal control introduced by Lasry (1974),
developed later by P.L. Lions (1985), Bensoussan-Frehse (1987),
Bensoussan-Nagai (1991) and many other authors in various different and more
general settings, e.g when

−1

2
4w +

1

2
|∇w |2 − V (x)

is replaced by
F (D2(w)) + H(x ,Dw)
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One motivating example: principal eigenvalue and ergodic control

Above discussion shows the relevance of the principal eigenvalue of second
order operators in the Dynamic Programming approach to stochastic ergodic
control.

Interesting issues:

I what if ∆ is replaced by the infinitesimal generator of a more general
diffusion process, i.e.

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u,

with either A(x) ≥ cI with c > 0 or A(x) ≥ 0 ?

I what if L[u] is replaced by a degenerate elliptic fully nonlinear operator
F [u] of Bellman or Isaacs type?

I as recalled above, in some cases, the representation formula
λ1 = limα→0+ αuα holds

Different representations formulas for λ1, perhaps more suitable to a
computational approach?
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The principal eigenvalue

The Berestycki,Nirenberg and Varadhan notion [Comm. Pure Appl. Math. 47
(1994)]:
associate to the uniformly elliptic operator in non-divergence form

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u, A(x) ≥ αI

in a bounded domain Ω the number λ1 defined by

λ1 := sup{λ ∈ IR : ∃φ > 0 in Ω such that L[φ] + λφ ≤ 0 in Ω}

In the definition of λ1, φ ∈W 2,p
loc (Ω).

Remark.
Note that:

I A(x) uniformly positive definite, not necessarily symmetric

I presence of a 1st -order drift term b

I A(x) have just bounded and measurable entries
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The principal eigenvalue

Note that even for symmetric A the operator L is not in general self-adjoint
due to the presence of the drift term b.

BNV proved that the number λ1 in the previous slide shares some of the
properties of the classical principal eigenvalue for the Dirichlet problem,
namely

I there exists a principal eigenfunction w1 > 0 in Ω such that
L[w1] + λ1w1 = 0 in Ω, w1 = 0 on ∂Ω

I w1 is simple

I Reλ ≥ λ1 for any other eigenvalue λ of L

The existence of an associated positive, simple eigenfunction follows from
compactness estimates guaranteed by the Krein-Rutman theorem thanks to
uniform ellipticity of L and boundedness of Ω
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The principal eigenvalue

The Berestycki-Nirenberg-Varadhan definition above can be expressed by the
equivalent pointwise min-max formula

λ1 = − inf
φ(x)>0

sup
x∈Ω

Lφ(x)

φ(x)

where φ ∈W 2,p
loc (Ω).

The same formula, under more restrictive conditions, was considered before by
M.D. Donsker and S.R.S. Varadhan in their seminal paper ”On the principal
eigenvalue of second-order elliptic differential operators”, Comm. Pure Appl .
Math. 29, 1976.

In that same paper different equivalent representation formulas for λ1 were also
proposed in terms of the average long run behavior of the positive semigroup
generated by L. More precisely,

λ1 = − lim
t→+∞

1

t
log sup

x∈Ω

∫
Ω

p(t, x , y)dy

where p(t, x , y) is the positive density function associated to the semigroup
generated by −L
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Two classical references

A much older reference on the formula for the case of Laplacian:
Barta, J., Sur la vibration fondamentale d’ une membrane, C. R. Acad. Sci.
Paris 204, 1937, cited in Protter-Weinberger 1965.

Recall also the Collatz-Wielandt (Mathematische Zeitschrift 48 (1942))
min-max representation formula for the Perron-Frobenius eigenvalue of
irreducible stochastic matrices:

ρ(A) = max
x∈C

min
1≤i≤n , xi 6=0

(Ax)i
xi

where C is the cone
{
x ≥ 0 , x 6= 0

}
.

This number and the corresponding eigenvector play important role in turnpike
theory for macroeconomic exogenous growth model in economics, see
Neumann, J. V. (1946). ”A Model of General Economic Equilibrium”. Review
of Economic Studies. 13
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The principal eigenvalue and the weak maximum principle

The weak Maximum Principle for

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u

in Ω ⊆ IRn is the following sign propagation property :

wMP

any u such that

L[u] ≥ 0 in Ω
u ≤ 0 on ∂Ω

satisfies
u ≤ 0 on Ω

Several sufficient conditions of different nature known to imply the validity of
wMP in a bounded domain Ω, e.g.

I c(x) ≤ 0
I exists φ > 0 in Ω such that L[φ] ≤ 0
I Ω is narrow (i.e. contained in a suitably small strip)

Examples show that none of these conditions is however necessary for the
validity of the Maximum Principle.
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The principal eigenvalue and the weak maximum principle

An important characterization result due to Berestycki,Nirenberg and Varadhan:

wMP holds for uniformly elliptic operators

L[u] = Tr(A(x)D2u) + b(x) · Du + c(x)u, A(x) ≥ αI

in a bounded domain Ω if and only if the number λ1 defined by

λ1 := sup{λ ∈ IR : ∃φ > 0 in Ω such that L[φ] + λφ ≤ 0 in Ω}

is strictly positive. In the definition of λ1, φ ∈W 2,p
loc (Ω).

Notably, this very nice result, which extends previous ones in the classical
setting, was proved to hold under mild conditions on the coefficients and on
∂Ω, see Comm. Pure Appl. Math. 47 (1994).
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Degenerate fully nonlinear elliptic operators

Is this characterization valid for general partial differential inequalities of the
form

F (x , u,Du,D2u) ≥ 0

involving a nonlinear mapping F ?

This question answered in Berestycki-CD-Porretta-Rossi (2014)

Let Ω be a domain in IRn and Sn be the space of n × n symmetric matrices
endowed with the usual partial order:

Y ≥ 0 means Yp · p ≥ 0 for all p ∈ IRn ( i.e. Y is non negative semidefinite)

A mapping F : Ω× IR× IRn × Sn → IR is degenerate elliptic if F is non
decreasing in the matrix entry, i.e.

F (x , r , p,X + Y ) ≥ F (x , r , p,X ) ∀(x , r , p,X ,Y ) , Y ≥ 0
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Degenerate fully nonlinear elliptic operators

A basic example to keep in mind is of course that of linear operators in non
divergence form

F (x , u,Du,D2u) = Tr(A(x)D2u) + b(x) · Du + c(x)u , x ∈ Ω

where A(x) is nonnegative definite, even in the case A ≡ 0 corresponding to
the transport operator

b(x) · Du + c(x)u

or in the very extreme one F (u(x)) (no derivatives !).
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The weak Maximum Principle wMP

The weak Maximum Principle for F in Ω ⊆ IRn is the following sign
propagation property :

wMP

any u ∈ C(Ω) such that

F (x , u,Du,D2u) ≥ 0 in Ω
u ≤ 0 on ∂Ω

[in the viscosity sense] satisfies also

u ≤ 0 in Ω

Of course in our degenerate elliptic framework the set of functions u satisfying
the above conditions may be empty if the boundary inequality is not
compatible with the subsolution condition in the interior of the domain.

Just think at
u′ ≥ 0 in (a, b) , u(a) > u(b)
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A ”principal eigenvalue” for the degenerate case?

Question:
does the Berestycki-Nirenberg-Varadhan characterization holds true as it is, or
may be with suitable modifications, in the case of degenerate elliptic operators

Tr(A(x)D2u) + b(x) · Du + c(x)u

with A(x) non-negative definite and, more generally, for fully nonlinear
degenerate elliptic operators?

That is, is there a number associated to F and Ω whose positivity enforces the
validity of wMP and conversely?

The starting point of the joint research with Berestycki, Porretta and Rossi was
the observation that the B-N-V definition of λ1 does not work at this purpose
in the case of degenerate ellipticity as shown by very simple examples.
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A ”principal eigenvalue” for the degenerate case?

An extremely simple one-dimensional example:

the function u(x) = x(1− x) satisfies L[u] = − x
2
u′ + u > 0 in (0, 1),

u(0) = u(1) = 0 and u(x) > 0 for all x ∈ (0, 1).
So, wMP does not hold in this case.

On the other hand, looking at functions φ(x) = xk it is easy to check that
λ1 > 0, indeed λ1 = +∞.
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A new notion of ”generalized” principal eigenvalue

Definition.
Given a domain Ω in IRN and an open set O such that Ω ⊂ O and an operator
F positively homogeneous of degree α > 0 in O, we define

µ1(F ,Ω) := sup{λ ∈ IR : ∃Ω′ ⊃ Ω, ∃φ ∈ C(Ω′), φ > 0,F [φ] + λφα ≤ 0 in Ω′}
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A new notion of ”generalized” principal eigenvalue

One cannot expect, in the general case, that µ1(F ,Ω) is a genuine principal
eigenvalue.

A simple example is given by F [u] = x2u′ in Ω = (−1, 1).
It can be checked that µ1(F ,Ω) = 0. [Since the indicator function of the
singleton 0 violates wMP , then µ1(F ,Ω) ≤ 0 by our characterization result.
On the other hand, µ1(F ,Ω) ≥ 0, as it is seen by taking φ ≡ 1 in the definition
but the unique solution of the eigenvalue equation

F [u] + µ1(F ,Ω)uα = 0

wit u = 0 on ∂Ω is U ≡ 0.

• Under uniform ellipticity for F , µ1(F ,Ω) is indeed a genuine principal
eigenvalue with positive eigenfunction, as proved by Birindelli-Demengel
(2006).
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µ1(F ,Ω) > 0 if and only if wMP holds

Our result concerning the characterization of the validity of wMP in the
simplified setting where

F (x , u,Du,D2u) = F (D2u)− f (x)

is as follows:

Theorem
Let Ω be a bounded domain in IRn and O an open set such that Ω ⊂ O ⊂ IRn.
Assume that F is continuous, degenerate elliptic, positively homogeneous of
degree α > 0. Assume also that f ∈ C(Ω).
Then,

F satisfies wMP in Ω ⊂⊂ O if and only if µ1(F ,Ω) > 0

H. Berestycki, A. Porretta, L. Rossi, ICD, Maximum Principle and generalized
principal eigenvalue for degenerate elliptic operators, JMPA 2014

A few remarks:

I for more general F depending on x ∈ Ω some extra continuity conditions
are required.

I as far as we know the above result is new even for smooth subsolutions
of degenerate elliptic linear operators
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A few examples

I zero order operators F (u) ≥ 0, x ∈ Ω , u ≤ 0, x ∈ ∂Ω
If F decreasing and F (0) = 0 then, trivially, µ1 > 0 and u ≤ F−1(0) = 0,
[think, for example, to c(x)u ≥ 0 with c(x) < 0]

I transport operators b(x) · ∇u ≥ 0, x ∈ Ω , u ≤ 0, x ∈ ∂Ω
Not difficult to check that if b vanishes somewher in Ω then µ1 = 0
On the other hand, if there exists a Lyapunov function L such that
∇L 6= 0 and b · ∇L > 0 then µ1 > 0

I proper operators If maxx∈Ω F (x , r , 0, 0) < 0 for all r > 0 (think about
∆u + c(x)u with c(x) < 0), then it is well-known that wMP holds for F .
On the other hand, as an easy consequence of the definition of viscosity
subsolution, one checks that µ1(F ,Ω) > 0.

I subelliptic operators If the ellipticity of F is not degenerate in some
direction ν, that is

F (x , r , p,X + ν ⊗ ν)− F (x , r , p,X ) ≥ β > 0

and if the positive constants are supersolutions of F = 0 in O, i.e.,
F (x , 1, 0, 0) ≥ 0 in O, then µ1(F ,Ω) > 0.
This is seen by taking φ(x) = 1− εeσν·x , with σ large and ε small.

Above conditions satisfied for instance by the 2-dimensional Grushin
operator: ∂xx + |x |k∂yy with k an even positive integer.
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A few examples

I Harvey-Lawson Hessian operators

Hk(D2u) := ηn−k+1(D2u) + . . .+ ηn(D2u),

k an integer between 1 and n, η1(D2u) ≤ η2(D2u) ≤ . . . ≤ ηN(D2u) the
ordered eigenvalues of the matrix D2u.

These are 1-homogeneous degenerate Hessian operators introduced by
F. R. Harvey and H. B. Lawson (2013) to characterize the validity of the
Maximum Principle for operators on Riemannian manifolds depending only
on the eigenvalues of the Hessian matrix.

A test with quadratic polynomials shows that µ1(Hk) > 0.
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A few examples

I Pucci operators
The Pucci maximal operator Pγ,Γ where 0 < γ < Γ is the 1-homogeneous
uniformly elliptic Hessian operator

Pγ,Γ(D2u) = Γ Σi∈I+ηi (D
2u) + γ Σi∈I−ηi (D

2u)

Here I+, I− correspond, respectively, to positive and negative eigenvalues
of D2u.
It is known that wMP holds for the Pucci maximal operator: this can be
proved as a consequence of the (deep and difficult to prove ) ABP
estimate in Caffarelli-Cabré book.

On the other hand, one can also check directly that µ1(Pγ,Γ) > 0

I Bellman-Isaacs operators

inf
γ∈G

sup
β∈B

[
−tr (Aβ,γ(x)D2u) + bβ,γ(x) · Du + cβ,γ(x)u

]
(1)
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Approximation of the principal eigenvalue

Consider the elliptic self-adjoint operator

Lu(x) = ∂i (aij(x)∂ju(x)) , (2)

where aij = aji are smooth functions in Ω, a smooth bounded open subset of
IRn, satisfying aijξiξj ≥ α|ξ|2 for some α > 0.

It is well-known that the minimum value λ1 in the Rayleigh-Ritz variational
formula

λ1 = inf
φ∈H1

0 (Ω),φ6≡0

−
∫

Ω
φ(x) Lφ(x) dx

‖φ‖2
L2(Ω)

= inf
φ∈H1

0 (Ω),φ 6≡0

∫
Ω
aij(x)∂jφ(x)∂iφ(x) dx

‖φ‖2
L2(Ω)

is attained at some function w1 and that{
Lw1(x) + λ1w1(x) = 0 x ∈ Ω,
w1(x) = 0 x ∈ ∂Ω.

It can be proved moreover that λ1 is the principal eigenvalue of L in Ω and w1

is the corresponding principal eigenfunction.
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Approximation of the principal eigenvalue

For linear operators in divergence form there is a vast literature on
computational methods for the principal eigenvalue., see for example

I. Babuska, J.E. Osborn, Finite element Galerkin approximation of the
eigenvalues and eigenvectors of self-adjoint problems, Math. Comp. 52,
275-297, 1989.
D. Boffi, Finite element approximation of eigenvalue problems, Acta Numer.
19, 1-120, 2010.

General non-divergence type elliptic operators, namely

Lu(x) = aij(x)∂iju(x) + bi (x)∂iu(x) + c(x)u (3)

are not self-adjoint and the spectral theory is then much more involved: in
particular, the Rayleigh-Ritz variational formula is not available anymore.
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Approximation of the principal eigenvalue

Together with I. Birindelli and F. Camilli Comm. in Math. Sciences 2016 we
developed a finite difference scheme for the computation of the principal
eigenvalue and the principal eigenfunction of fully nonlinear uniformly elliptic
operators based on the min-max formula discussed above:

λ1 = − inf
φ(x)>0

sup
x∈Ω

F [φ(x)]

φ(x)

That formula can be seen as a pointwise alternative to the Rayleigh-Ritz L2

formula.
Our approach applies in particular to linear operators in non-divergence
form. Few references found even in the linear case, see e.g.

V. Heuveline, C. Bertsch, On multigrid methods for the eigenvalue computation
of nonselfadjoint elliptic operators,East-West J. Numer. Math. 8 (2000), no. 4
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A class of difference operators

Let hZn be the orthogonal lattice in IRn where h > 0 is a discretization
parameter and Ch the space of the mesh functions defined on Ωh = Ω ⊂ Zn

h.
Consider a discrete operator Fh defined by

Fh[u](x) := Fh(x , u(x), [u]x)

where

I h > 0 is the discretization parameter (h is meant to tend to 0),

I x ∈ Ωh is a grid point

I u ∈ Ch
I [·]x represents the stencil of the scheme, i.e. the points in Ωh\{x} where

the value of u are computed for writing the scheme at the point x (we
assume that [w ]x is independent of w(y) for |x − y | > Mh for some fixed
M ∈ IN).
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A class of difference operators

Following Kuo-Trudinger (Siam J.Num.Analysis 1992) we introduce some basic
structure assumptions which are to be satisfied by the difference operator Fh:

(i) The operator Fh is of positive type, i.e. for all x ∈ Ωh, z , τ ∈ IR,
u, η ∈ Ch satisfying 0 ≤ η(y) ≤ τ for each y ∈ Ωh, then

Fh(x , z , [u + η]x) ≥ Fh(x , z , [u]x) ≥ Fh(x , z + τ, [u + η]x)

(ii) The operator Fh is positively homogeneous, i.e. for all x ∈ Ωh, z ∈ IR,
u ∈ Ch and t ≥ 0, then

Fh(x , tz , [tu]x) = tFh(x , z , [u]x)

(iii) The family of operator {Fh, 0 < h ≤ h0}, where h0 is a positive constant,
is consistent with operator F on the domain Ω ⊂ IRn, i.e. for each
u ∈ C 2(Ω)

sup
Ωh

∣∣∣F (x , u(x),Du(x),D2u(x))− Fh(x , u(x), [u]x)
∣∣∣→ 0 as h→ 0,

uniformly on compact subsets of Ω.

NUMOC, Roma June 2017 The principal eigenvalue for non-variational operators



A class of difference operators

The discretized equations for this kind of approximate operators satisfy some
crucial pointwise estimates which are the discrete analogues of those valid for
fully nonlinear, uniformly elliptic equations.

If F is uniformly elliptic, it is always possible to find a scheme of the previous
type which is of positive type and consistent with F .

We don’t know how to deal with this issue in the case of degenerate ellipticity.
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As in the continuous case, we define a principal eigenvalue for Fh by means of
the formula

λh
1 := sup{λ ∈ IR : ∃φ > 0 in Ωh, Fh[φ] + λφ ≤ 0 }

Facts:

I There is a positive solution φh
1 of{

F [φ] + λh
1φ = 0 in Ωh,

φ = 0 on ΩC
h ,

I For any λ < λ1 the Maximum Principle holds for Fh + λ, i.e.

If u is such that Fh[u] + λu ≥ 0 in Ωh and u ≤ 0 on ΩC
h , then u ≤ 0 in Ωh

I λh
1 is given by the finite dimensional optimization problem

λh
1 = − inf

φ∈Ch, φ>0
sup
x∈Ωh

Fh[φ](x)

φ(x)
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Convergence of λh1 −→ λ1 as h→ 0

Theorem
Let (λh

1, φ
h
1) be the sequence of the discrete eigenvalues and of the

corresponding eigenfunctions associated to Fh.
Then,

λh
1 → λ1, φh

1 → φ1

uniformly in Ω as h→ 0, where λ1 and φ1 are respectively the principal
eigenvalue and the corresponding eigenfunction associated to F .

The proof of the convergence result cannot rely on standard stability results
in viscosity solution theory (Barles-Souganidis’ method) since the limit problem{

F [φ] + λ1φ = 0 in Ω,

φ = 0 on ∂Ω,

does not satisfy a Strong Comparison Principle, implying uniqueness of
viscosity solutions for problem above.

Indeed, the principal eigenfunction φ1 > 0 and φ ≡ 0 (we are assuming
F [0] = 0) are two distinct solutions of the problem.
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Convergence of λh1 −→ λ1 as h→ 0

Different techniques are needed, the main ingredients of the proof are:

I the semi-relaxed limits in viscosity solution sense;

I a Maximum Principle for the limit problem (rather than the Comparison
Principle);

I the following local Hölder estimate proved by Kuo-Trudinger:
If uh is a solution of Fh[u] = f , then for any x , y ∈ Ωh

|uh(x)− uh(y)| ≤ C
|x − y |δ

R

max
Bh
R

uh +
R

α0

∑
x∈Ωh

hn|f (x)|n


1
n

 ,

where R = min dist(x , ∂Ωh), Bh
R = B(0,R) ∩ Ωh, δ, α0 and C are positive

constants independent of h.
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The algorithm for convex operators:
the Hamilton-Jacobi-Bellman case

In the case of convex operators F such as those arising in the optimal control
theory of degenerate diffusion processes, that is F is the supremum of a family
of linear operators :

F (x , u,Du,D2u) = sup
i∈I

Tr(Ai (x)D2u) + bi (x) · Du + c i (x)u

our numerical approach leads to a finite dimensional convex optimization
problem.

Simulation can be easily performed with the Optimization Toolbox of MATLAB
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Some examples

Example 1. To validate the algorithm we begin by studying the eigenvalue
problem: {

w ′′ + λ1w = 0 x ∈ (0, 1),
w(x) = 0 x = 0, 1

In this case the eigenvalue and the corresponding eigenfunction are given by

λ1 = π2, w1(x) = sin(πx)

Note that since the eigenfunctions are defined up to multiplicative constant, we
normalize the value by taking ‖w1‖∞ = ‖w1,h‖∞ = 1

Given a discretization step h and the corresponding grid points xi = ih,
i = 0, . . . ,Nh + 1, the optimization problem is

λ1,h = − min
U∈IRNh

[
max

i=1,...,Nh

Ui+1 + Ui−1 − 2Ui

h2Ui

]
(with U0 = UNh+1 = 0).
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Some examples

h Err(λ1) Order(λ1) Err∞(w1) Err2(w1)

1.00 · 10−1 8.0908 · 10−2 3.3662 · 10−11 5.7732 · 10−11

5.00 · 10−2 2.0277 · 10−2 1.9964 1.4786 · 10−10 3.8119 · 10−10

2.50 · 10−2 5.0723 · 10−3 1.9991 6.6613 · 10−16 1.8731 · 10−15

1.25 · 10−2 1.2683 · 10−3 1.9998 1.5543 · 10−15 6.2524 · 10−15

6.25 · 10−3 3.1708 · 10−4 1.9999 1.2212 · 10−15 7.1576 · 10−15

We can observe an order of convergence close to 2 for λ1 and therefore
equivalent to one obtained by discretization of the Rayleigh quotient via finite
elements.
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Some examples

Example: A 2-dimensional non divergence type example

Consider the eigenvalue problem for the Ornstein-Uhlenbeck operator

∆φ− x · Dφ+ λφ = 0, x ∈ (0, 1)2

with homogeneous boundary conditions. The principal eigenvalue and the
corresponding eigenfunction are given by

λ1 = 4, φ1(x1, x2) = (1− x2
1 )(1− x2

2 )

The Laplacian is discretized by a five-point formula.

h Err(λ1) Order(λ1)

4.00 · 10−1 0.1524

2.00 · 10−1 0.0392 1.9592

1.00 · 10−1 0.0103 1.9250

5.00 · 10−2 0.0027 1.9580
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Some examples

Example 3: the Fucik spectrum The Fucik spectrum of ∆ is the set of pairs
(µ, αµ) ∈ IR2 for which the equation

−∆u = µu+ − αµu−

has a non-zero solution, where u+(x) = max{u(x), 0} and
u−(x) = max{−u(x), 0}.

For fixed 0 < α < 1 the Fucik principal eigenvalue of ∆ is λ1

max{∆u,
1

α
∆u}+ λ1u = 0

The operator F [u] = max{∆u, 1
α

∆u} is a nonlinear convex operator.
In the 1-d case with Ω = [0, π] and α = 1/2 one can compute the exact value
of λ1 = 1.

h Err(λ1) Order(λ1)

1.00 · 10−1 0.0809

5.00 · 10−2 0.0203 1.9964

2.50 · 10−2 0.0051 1.9991

1.25 · 10−2 0.0013 1.9998

6.25 · 10−3 0.0003 2.0000
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Projects and work in progress

I develop a similar theory in unbounded domains starting from:

H. Berestycki and L. Rossi,
Generalizations and properties of the principal eigenvalue of elliptic
operators in unbounded domains. Comm. Pure Appl. Math. 68 (2015)
and
I. Capuzzo Dolcetta, F. Leoni and A. Vitolo ( 2005),
The Alexandrov-Bakelman-Pucci weak Maximum Principle for fully
nonlinear equations in unbounded domains. Comm.PDE’s Vol. 30
and subsequent works

I try to develop an analogous approach for H-J-B equations in the case of
degenerate diffusions

I analyse the rate of convergence

I test the various computational issues on more complex models
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The principal Dirichlet eigenflower for the Laplacian
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Courtesy of S. Cacace. Based on numerical schemes in
I. Birindelli, F. Camilli, ICD 2016.
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