
A multiscale method for reducing the complexity of
(controlled) large multi-agent systems

Emiliano Cristiani
(in collaboration with Benedetto Piccoli and Andrea Tosin)

Istituto per le Applicazioni del Calcolo
Consiglio Nazionale delle Ricerche

Numerical methods for optimal control problems:
algorithms, analysis and applications

Workshop INdAM, Rome

June 19-23, 2017

E. Cristiani (IAC–CNR) Modeling and control of self-organizing systems June 19-23, 2017 1 / 42



1 A new multiscale approach for modeling large interacting systems

2 Pedestrian dynamics
A model
Numerical results

3 Opinion dynamics
A model with opinion polls
Numerical results

4 Control of multiscale dynamics

E. Cristiani (IAC–CNR) Modeling and control of self-organizing systems June 19-23, 2017 2 / 42



A new multiscale approach for modeling large interacting systems

Plan

1 A new multiscale approach for modeling large interacting systems

2 Pedestrian dynamics
A model
Numerical results

3 Opinion dynamics
A model with opinion polls
Numerical results

4 Control of multiscale dynamics

E. Cristiani (IAC–CNR) Modeling and control of self-organizing systems June 19-23, 2017 3 / 42



A new multiscale approach for modeling large interacting systems

General formulation of the problem

We consider a system composed of a large number of interacting agents
for which a microscopic and a MACROscopic description are available.

Microscopic level

dX k = vm[X ]dt + N dBk
t , k = 1, . . . ,Np,

where X = (X 1, . . . ,XNp).

Macroscopic level

∂tρ(t, x) +∇ ·
(
ρ(t, x)vM [ρ(t, ·)]

)
= D4ρ(t, x), t > 0, x ∈ Rd

Goal

Coupling the models to improve the single-scale descriptions.
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A new multiscale approach for modeling large interacting systems

Multiscale abstract approach: advection

The states of the system {X k} and ρ are kept separate, while the coupling
acts on the velocity field only.

Ẋ k = vm[X ], k = 1, . . . ,Np, vm[X (t)](X k) =
∑

X h∈S(X k )

K (X k ;X h)

∂tρ+∇ · (ρvM [ρ]) = 0, vM [ρ(t, ·)](x) =

∫
S(x)

K (x ; y)ρ(t, y)dy

New blended velocity field

vmM [X , ρ](t, x) = θvm[X (t)](x) + (1− θ)ΛvM [ρ(t, ·)](x), θ ∈ [0, 1]
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A new multiscale approach for modeling large interacting systems

Multiscale abstract approach: advection

For abstract measure lovers... There is also a

Measure-based approach

∂µt
∂t

+∇ · (µt v [µt ]) = 0

µt = θ

N∑
k=1

δX k (t) + (1− θ)Λρ(·, t)Ld , θ ∈ [0, 1]
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A new multiscale approach for modeling large interacting systems

Multiscale abstract approach: diffusion

Microscopic model: Brownian motion{
dX k

t =
√

2DdBk
t

X k
0 = 0

k = 1, . . . , Np

Macroscopic model: heat equation{
∂tu − D∂2

xu = 0, t > 0, x ∈ R

u(0, x) = δ0, x ∈ R,

The correspondence

P(X k
t ∈ A) =

∫
A
u(t, x) dx , ∀A ⊆ R, ∀k.
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A new multiscale approach for modeling large interacting systems

Multiscale abstract approach: diffusion

vm
The microscopic velocity field vm should be defined as the (formal)
derivative of the standard Brownian motion which is a (not rigorously
defined) process with zero mean and infinite variance.

vM
The heat equation can be formally written as

∂tu + ∂x(uvM) = 0

with

vM(t, x) := −D ∂xu(t, x)

u(t, x)
=

x

2t
.
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A new multiscale approach for modeling large interacting systems

Multiscale abstract approach: diffusion

The Ito processes satisfying the SDE can be approximated by using the
strongly-consistent Euler scheme

X k
n+1 = X k

n +
√

2D∆Bk
n , ∆Bk

n ∼ N (0,∆t), ∀n, k .

The right scale interpolation in this case is

Regularized Brownian motion

X k
n+1 =

 X k
n +
√

2D∆Bk
n , with probability θ,

X k
n + X k

n
2tn

∆t, with probability (1− θ).

The corresponding probability density function of the particles’ positions
{X k

n }k tends to the function x → u(tn, x) as Np →∞ for any θ ∈ [0, 1].
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A new multiscale approach for modeling large interacting systems

Partial coupling: θ = 1 (pure micro)
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A new multiscale approach for modeling large interacting systems

Partial coupling: θ = 0.2
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A new multiscale approach for modeling large interacting systems

Partial coupling: θ = 0 (pure macro)
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Pedestrian dynamics
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Pedestrian dynamics A model

A nonlocal model

Velocity field

v(t, x) := v [µt ](x) = vdes(x) + vint[µt ](x),

Desired velocity

vdes : R2 → R2 the velocity that pedestrians would set to reach their
destination (considering obstacles) if they were alone in the domain.

Interaction velocity

vint[µt ](x) =

∫
S(x)
F(|y − x |) y − x

|y − x |
dµt(y),

F(s) = −Fr
s
χ[0,Rr ](s) (repulsion effect)
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Pedestrian dynamics Numerical results

Crossing flows: microscopic model
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Pedestrian dynamics Numerical results

Crossing flows: macroscopic model
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Pedestrian dynamics Numerical results

Crossing flows: multiscale model
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Pedestrian dynamics Numerical results

Orthogonal crossing flows
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Pedestrian dynamics Numerical results

Bottleneck
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Pedestrian dynamics Numerical results

Tourist guide: multiscale model with control
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Opinion dynamics
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Opinion dynamics A model with opinion polls

A model with opinion polls

An opinion is described by a continuous variable w(t) ∈ [−1, 1] varying in
time due to the interactions with others people.
If we consider political opinions, the sign of the opinion sgn(w) expresses
the voting intent (1 stands for “yes” or “left”, -1 stands for “no” or
“right”), while the norm |w | gives the degree of conviction.

Microscopic model

dwk = (1− |wk |δ)

( interactions︷ ︸︸ ︷
Cint

1

Np

Np∑
h=1

(
wh − wk

)
dt +

self-thinking︷ ︸︸ ︷√
2CnoisedB

k
t

)
for k = 1, ..,Np, t ∈ [0,T ], where

(1− |wk |δ) is the propensity to change opinion;

Bk
t are independent Brownian motions.
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Opinion dynamics A model with opinion polls

Introducing the break of symmetry by opinion polls

P+ :=
card{k : wk(Tpoll) >W 0}

Np
, P− :=

card{k : wk(Tpoll) < −W 0}
Np

where W 0 ∈ [0, 1) is a “null threshold” such that if |wk | ≤W 0 then the
kth individual is regarded as indecisive.

Result of the poll

P := P+ − P− ∈ [−1, 1],
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Opinion dynamics A model with opinion polls

The microscopic model with poll

dwk = (1− |wk |δ)

( interactions︷ ︸︸ ︷
Cint

1

Np

Np∑
h=1

(
wh − wk

)
dt +

self-thinking︷ ︸︸ ︷√
2CnoisedB

k
t +

Cpollb
(
t,P,wk

)
dt

)
︸ ︷︷ ︸

poll effect

.

where
b(t,P,wk) := |P| (sgnP − wk)χ[0,∆](t − Tpoll).
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Opinion dynamics A model with opinion polls

The vote

V+ :=
card{k : sgnwk(Tvote) = +1}

Np

V− :=
card{k : sgnwk(Tvote) = −1}

Np

Result of the vote

V := V+ − V− ∈ [−1, 1].
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Opinion dynamics A model with opinion polls

The macroscopic model

Define the probability density function ρ = ρ(t,w) in such a way that
ρ(t,w)dw is the probability that at time t a generic individual has an
opinion in [w ,w + dw ]. We get that ρ is the solution to

The Fokker-Planck equation

∂tρ+ ∂w (Kadv[ρ]ρ) = ∂2
w (C 2

noise(1− |w |δ)2ρ),

where

Kadv[ρ(t, ·)](w) = (1−|w |δ)

(
Cint

∫ 1

−1
(w ′−w)ρ(t,w ′)dw ′+Cpollb

(
t,P,w

)︸ ︷︷ ︸
from micro model

)
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Opinion dynamics Numerical results

Single-scale model, small Np

Effect of interactions only (reference and double strength)
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Opinion dynamics Numerical results

Single-scale model, small Np

Effect of noise only (reference and double strength)
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Opinion dynamics Numerical results

Single-scale model, small Np

Effect of interaction and noise only
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Opinion dynamics Numerical results

Single-scale model, small Np

Complete model (reference and 10x poll strength)
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Opinion dynamics Numerical results

The multiscale model

The multiscale model (from the microscopic side) is

dwk = θ

[
(1− |wk |δ)

(
Cint

1

Nk

N∑
h=1

(
wh − wk

)
Γhk + Cpollb

(
t,P,wk

))
dt

]

+ (1− θ)Kadv[ρ(t, ·)](wk)dt +

{
Cnoise(1− |wk |δ)

√
2dBk

t , with prob. θ,

Kdiff[ρ(t, ·)](wk)dt, with prob. (1− θ)

with

Kdiff[ρ](w) = −C 2
noise

(
2(w − sgn(w)) + (1− |w |δ)2∂wρ

ρ

)
.
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Opinion dynamics Numerical results

Multi-scale model, one poll

Histograms of the results of the final vote V after 10000 runs
(uniformly-distributed random choice of initial opinions in the space [−1, 1])
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a. Full-size model Np = 2000 (θ = 1).
b. Pure reduced model N∗p = 400 (θ = 1).
c. Optimally-hybridized reduced model N∗p = 400 (θ = 0.1).

Wasserstein distance: from 0.06 to 0.008.
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Opinion dynamics Numerical results

Multi-scale model, two polls

Histograms of the results of the final vote V after 10000 runs
(uniformly-distributed choice of initial opinions in the space [−1, 1])
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a. Full-size model Np = 10000 (θ = 1).
b. Pure reduced model N∗p = 1000 (θ = 1).
c. Optimally-hybridized reduced model N∗p = 1000 (θ = 0.2).

Wasserstein distance: from 0.19 to 0.007.
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Opinion dynamics Numerical results

Multiscale model, optimal blending parameter
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Control of multiscale dynamics
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Control of multiscale dynamics

Control of multiscale dynamics

Control and optimization of multiscale dynamics is hard due to the
computational effort, but could be advantageous in some situations.

Ideas

Control micro dynamics and get the effect on MACRO dynamics

Control MACRO dynamics and get the effect on micro dynamics

Control both micro dynamics and MACRO dynamics

Control both a reduced micro dynamics and MACRO dynamics

Bilevel control?

...

The optimization process depends on the coupling itself!
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Control of multiscale dynamics

A very preliminary numerical investigation

Microscopic model (Lagrangian control)

Ẋ k = Cint

Np∑
h=1

(X h − X k) + uk , k = 1, . . . ,Np

Jm[X ] =
∑
k

∫ T

0

(
|X k − xT |+ C |uk(t)|

)
dt

Macroscopic model (Eulerian control)

∂tρ+ ∂x(ρv [ρ]) = 0, v [ρ](x , t) =

∫
R
Cint(y − x)ρ(y , t)dy + u(x , t)

JM [ρ] =

∫
R

∫ T

0

(
|x − xT |ρ(x , t) + C |u(x , t)|

)
dxdt
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Control of multiscale dynamics

Uncontrolled dynamics

Initial condition: uniform distribution of the agents in [−1, 1]
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Same results are obtained for any θ ∈ [0, 1]
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Control of multiscale dynamics

Micro-driven optimal multiscale dynamics
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Control of multiscale dynamics

Macro-driven optimal multiscale dynamics
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Control of multiscale dynamics

Hybrid optimal multiscale dynamics
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Control of multiscale dynamics
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