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SIMPLE ILLUSTRATIVE EXAMPLES
DERIVATIVE OF PDE CONSTRAINED UTILITY FUNCTION

Let Ω ⊂ R
N , N ≥ 1, bounded open and a ∈ L2(Ω) be the control variable to which is

associated the state u = u(a) ∈ H1
0 (Ω) solution of the variational state equation

∫

Ω

∇u(a) · ∇ψ − aψ dx = 0, ∀ψ ∈ H1
0 (Ω), (1.1)

where x · y denotes the inner product of x and y in R
N .

Given a target function g ∈ L2(Ω), associate with u(a) the objective function

f (a)
def
=

∫

Ω

1

2
|u(a)− g|2 dx . (1.2)

By introducing the Lagrangian, we get an unconstrained minimax formulation

G(a, ϕ, ψ)
def
=

∫

Ω

1

2
|ϕ− g|2 dx +

∫

Ω

∇ϕ · ∇ψ − aψ dx

f (a) = inf
ϕ∈H1(Ω)

sup
ψ∈H1(Ω)

G(a, ϕ, ψ).
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SIMPLE ILLUSTRATIVE EXAMPLES
PDE CONTROL

If we are only interested in a descent method, we can obtain the semidifferential of

f (a) by a similar minimax formulation. Given the direction b ∈ L2(Ω), to compute

df (a; b) = lim
tց0

f (a + tb)− f (a)

t
,

where the state ut ∈ H1
0 (Ω) at t > 0 is solution of

∫

Ω

∇u
t · ∇ψ − (a + tb)ψ dx = 0, ∀ψ ∈ H

1
0 (Ω). (1.3)

The associated Lagrangian is

L(t, ϕ, ψ)
def
=

∫

Ω

1

2
|ϕ− g|2 dx +

∫

Ω

∇ϕ · ∇ψ − (a + tb)ψ dx .

It is readily seen that

g(t)
def
= inf

ϕ∈H1
0
(Ω)

sup
ψ∈H1

0
(Ω)

L(t, ϕ, ψ) = f (a + tb)

dg(0)
def
= lim

tց0

g(t)− g(0)

t
= df (a;b).
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SIMPLE ILLUSTRATIVE EXAMPLES
SHAPE DERIVATIVE VIA VELOCITY METHOD

Consider the state (1.1) and objective function (1.2). Now perturb the domain Ω by a

family of diffeomorphisms Tt generated by a smooth velocity field V (t):

dx

dt
(t ;X ) = V (t , x(t ;X )), x(0;X ) = X , Tt(X )

def
= x(t ;X ), t ≥ 0, Ωt

def
= Tt(Ω).

The state equation and objective function at t > 0 become
∫

Ωt

∇ut · ∇ψ − aψ dx = 0, ∀ψ ∈ H
1
0 (Ωt ), f (t)

def
=

∫

Ωt

|ut − g|2 dx . (1.4)

Introducing the composition ut = ut ◦ Tt to work in the fixed space H1
0 (Ω):

∫

Ω

[

A(t)∇u
t · ∇ψ − aψ

]

j(t)dx = 0, ∀ψ ∈ H
1
0 (Ω), (1.5)

A(t) = DTt
−1 (DTt

−1)∗, j(t) = det DTt , DTt is the Jacobian matrix, (1.6)

⇒ f (t) =

∫

Ωt

|ut − g|2 dx =

∫

Ω

|ut − g ◦ Tt |2 j(t)dx , (1.7)

Lagrangian : L(t, ϕ, ψ)
def
=

∫

Ω

[
1

2
|ϕ− g ◦ Tt |2+A(t)∇ϕ · ∇ψ − aψ

]

j(t)dx .

⇒ g(t) = inf
ϕ∈H1

0
(Ω)

sup
ψ∈H1

0
(Ω)

L(t , ϕ, ψ), dg(0) = lim
tց0

(g(t)− g(0))/t = df (Ω;V (0)).
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COURANT METRICS
GENERIC CONSTRUCTION OF MICHELETTI

Associate with a real vector space (usually a Banach space) Θ of mappings

θ : RN → R
N (Micheletti used the space Θ = Ck

0 (R
N,RN), k ≥ 1), the following space of

transformations (endomorphisms) of RN:

F(Θ)
def
=
{

F : RN → R
N

bijective : F − I ∈ Θ, and F
−1 − I ∈ Θ

}

, (1.8)

where x 7→ I(x)
def
= x : RN → R

N is the identity mapping.

Given a fixed set Ω0 ⊂ R
N (Micheletti used used a bounded open set of class Ck ),

consider the set of images

X (Ω0)
def
= {F (Ω0) : ∀F ∈ F(Θ)} (1.9)

of Ω0 by the elements of F(Θ) and the subgroup

G(Ω0)
def
= {F ∈ F(Θ) : F (Ω0) = Ω0} .

So there is a bijection between the set of images of Ω0 and the quotient space

X (Ω0)←→ F(Θ)/G(Ω0).
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COURANT METRICS
CHOICE OF THE METRIC

The objective is to construct a metric on F(Θ)/G(Ω0) that will serve as a distance

between two mages F1(Ω0) and F2(Ω0).
Associate with F ∈ F(Θ) the following candidate for a metric

d0(I,F )
def
= ‖F − I‖Θ + ‖F−1 − I‖Θ, d0(F ,G)

def
= d0(I,G ◦ F

−1). (1.10)

Unfortunately, d0 is only a semi-metric that will not satisfy the triangle inequality.

Consider the following second candidate (called Courant metric by Micheletti)

d(I,F )
def
= inf

F=F1◦···◦Fn

Fi∈F(Θ)

n∑

i=1

‖Fi − I‖Θ + ‖F−1
i − I‖Θ, (1.11)

where the infimum is taken over all finite factorizations of F in F(Θ) of the form

F = F1 ◦ · · · ◦ Fn, Fi ∈ F(Θ).

In particular d(I,F ) = d(I,F−1). Extend this function to all F and G in F(Θ)

d(F ,G)
def
= d(I,G ◦ F

−1). (1.12)

By definition, d is right-invariant since for all F , G and H in F(Θ)

d(F ,G) = d(F ◦ H,G ◦ H).
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COURANT METRICS
EXAMPLES OF Θ AND CONTINUITY WITH RESPECT TO THE COURANT METRIC

(F(Θ), d) is complete for Θ equal to the Banach spaces

C
k
0 (R

N,RN), C
k (RN,RN) ⊂ Bk (RN,RN) and C

k,1(RN,RN), k ≥ 0,

and, through special constructions, for the Fréchet spaces

C
∞
0 (RN,RN) ⊂ B(RN,RN) = ∩k≥0Bk (RN,RN).

For any Banach or Fréchet space Θ ⊂ C0,1(RN,RN), F(Θ) is an open subset of I +Θ
- the tangent space is Θ at each point F ∈ F(Θ)
- and the associated smooth structure is trivial.

The analogue would be the general linear group GL(n) of invertible linear maps from

R
N to R

N which is an open subset of L(RN,RN). So, the tangent space is L(RN,RN).
Choose Θ = Ck

0 (R
N,RN), k ≥ 1, F(Θ), and the set X (Ω0) of the images of an open

crack free set Ω0 ⊂ R
N . Consider a function J : X (Ω0)→ R.

THEOREM

Let Ω = F (Ω0) ∈ X (Ω0) for some F ∈ F(Ω0). Then J is continuous at Ω for the

Courant metric if and only if

lim
tց0

J(Tt (Ω)) = J(Ω),
dTt

dt
= V (t) ◦ Tt , T0 = F ,

for all families of velocity fields V ∈ C0([0, τ ];Ck
0 (R

N,RN)).
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COURANT METRICS
HADAMARD SEMIDIFFERENTIABILITY

DEFINITION

Let Θ = Ck
0 (R

N,RN). The function J : X (Ω0) = {F (Ω0) : F ∈ F(Θ)} → R is Hadamard

semidifferentiable at F (Ω0), F ∈ F(Θ), if

(i) for all V ∈ C0([0, τ ];D(RN,RN))

dJ(F (Ω0);V )
def
= lim

tց0

J(Tt (V )(F (Ω0))− J(F (Ω0)

t
exists,

dTt

dt
= V (t) ◦ Tt , T0 = F ,

(ii) and there exists a function dJ(F (Ω0)) : D(RN,RN)→ R such that for all

V ∈ C0([0, τ ];D(RN,RN))

dJ(F (Ω0);V ) = dJ(F (Ω0))(V (0)).

DEFINITION

J : X (Ω0)→ R is Hadamard differentiable at F (Ω0), F ∈ F(Θ), if

- it is Hadamard semidifferentiable at F (Ω0)
- and the function dJ(F (Ω0)) : D(RN,RN)→ R is linear and continuous.
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AVERAGED ADJOINT METHOD
PRELIMINARIES

In this paper, a Lagrangian is a function of the form

(t , x , y) 7→ G(t , x , y) : [0, τ ]× X × Y → R, τ > 0,

where Y is a vector space, X is a subset of a vector space, and y 7→ G(t , x , y) is

affine. Associate with the parameter t ≥ 0 the parametrized minimax function

t 7→ g(t)
def
= inf

x∈X
sup
y∈Y

G(t , x , y) : [0, τ ]→ R . (2.1)

When the limits exist we shall use the following compact notation:

dg(0)
def
= lim

tց0

g(t)− g(0)

t







dg(0)
def
= lim inf

tց0
(g(t)− g(0))/t

dg(0)
def
= lim sup

tց0

(g(t)− g(0)) /t

dtG(0, x , y)
def
= lim

tց0

G(t , x , y)−G(0, x , y)

t

ϕ ∈ X , dxG(t , x , y ;ϕ)
def
= lim

θց0

G(t , x + θϕ, y)−G(t , x , y)

θ

ψ ∈ Y , dyG(t , x , y ;ψ)
def
= lim

θց0

G(t , x , y + θψ)−G(t , x , y)

θ
.

The notation t ց 0 and θ ց 0 means that t and θ go to 0 by strictly positive values

t > 0 and θ > 0.M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 17 / 64



AVERAGED ADJOINT METHOD
PRELIMINARIES

Since G(t , x , y) is affine in y , for all (t , x) ∈ [0, τ ]× X ,

∀y , ψ ∈ Y , dy G(t , x , y ;ψ) = G(t , x , ψ)−G(t , x , 0) = dyG(t , x , 0;ψ).

The state equation at t ≥ 0 :

to find x
t ∈ X such that for all ψ ∈ Y , dy G(t , x t , 0;ψ) = 0.

The set of solutions (states) x t at t ≥ 0 is denoted

E(t)
def
=
{

x t ∈ X : ∀ϕ ∈ Y , dyG(t , x t , 0;ϕ) = 0
}

The standard adjoint state equation at t ≥ 0:

to find p
t ∈ Y such that ∀ϕ ∈ X , dxG(t , x t , pt ;ϕ) = 0 , Y (t , x t )

def
= set of solutions.

Under appropriate conditions and uniqueness of the pair (x t , pt),

dg(0) = dtG(0, x0, p0),

where (x0, p0) is the solution of the coupled state-adjoint state equations at t = 0.
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AVERAGED ADJOINT METHOD
PRELIMINARIES

states: E(t)
def
=
{

x
t ∈ X : ∀ϕ ∈ Y , dy G(t , x t , 0;ϕ) = 0

}

minimizers: X (t)
def
=

{

x t ∈ X : g(t) = inf
x∈X

sup
y∈Y

G(t , x , y) = sup
y∈Y

G(t , x t , y)

}

.

LEMMA (CONSTRAINED INFIMUM AND MINIMAX)

(i) infx∈X supy∈Y G(t , x , y) = infx∈E(t) G(t , x , 0).

(ii) The minimax g(t) = +∞ if and only if E(t) = ∅. In that case X (t) = X.

(iii) If E(t) 6= ∅, then

X (t) = {x t ∈ E(t) : G(t , x t , 0) = inf
x∈E(t)

G(t , x , 0)} ⊂ E(t) (2.2)

and g(t) < +∞.
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AVERAGED ADJOINT METHOD
PRELIMINARIES

Hypothesis (H0). Let X be a vector space.

(i) For all t ∈ [0, τ ], x0 ∈ X (0), x t ∈ X (t), and y ∈ Y , the function

s 7→ G(t , x0 + s(x t − x
0), y) : [0, 1]→ R (2.3)

is absolutely continuous. This implies that, for almost all s, the derivative exists

and is equal to dxG(t , x0 + s(x t − x0), y ; x t − x0) and that it is the integral of its

derivative. In particular,

G(t , x t , y) = G(t , x0, y) +

∫ 1

0

dx G(t , x0 + s(x t − x
0), y ; x t − x

0) ds. (2.4)

(ii) For all t ∈ [0, τ ], x0 ∈ X (0), x t ∈ X (t), y ∈ Y , ϕ ∈ X , and almost all s ∈ (0,1),
dx G(t , x0 + s(x t − x0), y ;ϕ) exists

and the function s 7→ dxG(t , x0 + s(x t − x0), y ;ϕ) belongs to L1(0,1).
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AVERAGED ADJOINT METHOD
PRELIMINARIES

Standard adjoint at t ≥ 0: to find p
t ∈ Y such that ∀ϕ ∈ X , dxG(t , x t , pt ;ϕ) = 0.

DEFINITION (K. STURM)

Given x0 ∈ X (0) and x t ∈ X (t), the averaged adjoint state equation:

to find y
t ∈ Y such that ∀ϕ ∈ X ,

∫ 1

0

dxG(t , x0 + s(x t − x
0), y t ;ϕ) ds = 0. (2.5)

The set of solutions will be denoted Y (t , x0, x t ).
At t = 0, Y (0, x0, x0) reduces to the set of standard adjoint states

Y (0, x0)
def
=
{

p
0 ∈ Y : ∀ϕ ∈ X , dx G(0, x0, p0;ϕ) = 0

}

. (2.6)

An important consequence of the introduction of the averaged adjoint state is the

following identity: for all x0 ∈ X (0), x t ∈ X (t), and y t ∈ Y (t , x0, x t),

g(t) = G(t , x t , 0) = G(t , x t , y t) = G(t , x0, y t). (2.7)
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AVERAGED ADJOINT METHOD
PRELIMINARIES

An important consequence of the introduction of the averaged adjoint state is the

following identity: for all x0 ∈ X (0), x t ∈ X (t), and y t ∈ Y (t , x0, x t),

g(t) = G(t , x t , 0) = G(t , x t , y t ) = G(t , x0, y t) (2.8)

g(0) = G(0, x0, 0) = G(0, x0, y0). (2.9)

As a result

g(t)− g(0) = G(t , x0, y t)−G(0, x0, y0)

dg(0) = lim
tց0

g(t)− g(0)

t
= lim

tց0

G(t , x0, y t )−G(0, x0, y0)

t
.
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AVERAGED ADJOINT METHOD
STURM’S THEOREM

THEOREM (THESIS [STURM (2014)], SIAM [STURM (2015), THM. 3.1])

Consider the Lagrangian functional

(t , x , y) 7→ G(t , x , y) : [0, τ ]× X × Y → R, τ > 0,

where X and Y are vector spaces and the function y 7→ G(t , x , y) is affine. Let (H0)

and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ ], g(t) is finite, X (t) = {x t} and Y (t , x0, x t ) = {y t} are singletons;

(H2) dtG(t , x0, y) exists for all t ∈ [0, τ ] and all y ∈ Y;

(H3) the following limit exists

lim
sց0, tց0

dtG(s, x0, y t) = dtG(0, x0, y0). (2.10)

Then, dg(0) exists and

dg(0) = dtG(0, x0, y0).

Condition (H3) is similar and typical of what can be found in the literature. See, for

instance, [Correa-Seeger (1985)]).
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AVERAGED ADJOINT METHOD
STURM’S THEOREM REVISITED AND EXTENDED

PROOF.

From Hypothesis (H2), dtG(t , x0, y) exists for all t ∈ [0, τ ] and y ∈ Y . Hence, there

exists θt ∈ (0,1) such that

G(t , x0, y t )−G(0, x0, y0) = G(0, x0, y t) + t dtG(θt t , x
0, y t)−G(0, x0, y0)

= dy G(0, x0, 0; y t − y
0)

︸ ︷︷ ︸

=0

+ t dtG(θt t , x
0, y t) = t dtG(θt t , x

0, y t)

⇒ G(t , x0, y t)−G(0, x0, y0)

t
= dtG(θt t , x

0, y t )

since dy G(0, x0, 0; y t − y0) = 0. From hypothesis (H3)

lim
sց0, tց0

dtG(s, x0, y t) = dtG(0, x0, y0). (2.11)

⇒ dg(0) = lim
tց0

G(t , x0, y t)−G(0, x0, y0)

t
= dtG(0, x0, y0). (2.12)
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AVERAGED ADJOINT METHOD
STURM’S THEOREM REVISITED AND EXTENDED

This is an extention of [Sturm (2014)] [Sturm (2015), Thm. 3.1] with only a local

differentiability condition at t = 0. To our best knowledge, the extra term R(0, x0, y0) is

new. An example of a topological derivative will be given later.

THEOREM (SINGLETON CASE, [DELFOUR-STURM (2017), DELFOUR-STURM (2016)])

Consider the Lagrangian functional

(t , x , y) 7→ G(t , x , y) : [0, τ ]× X × Y → R, τ > 0,

where X and Y are vector spaces and the function y 7→ G(t , x , y) is affine. Let (H0)

and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ ], g(t) is finite, X (t) = {x t} and Y (t , x0, x t ) = {y t} are singletons;

(H2) dtG(0, x0, y0) exists;

(H3) the following limit exists

R(0, x0, y0)
def
= lim

tց0
dy G

(

t , x0, 0;
y t − y0

t

)

. (2.13)

Then, dg(0) exists and

dg(0) = dtG(0, x0, y0) + R(0, x0, y0).
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AVERAGED ADJOINT METHOD
STURM’S THEOREM REVISITED AND EXTENDED: PROOF

PROOF.

Recalling that g(t) = G(t , x t , y t) = G(t , x0, y t),

g(t)− g(0) = G(t , x0, y t )−G(0, x0, y0)

= G(t , x0, y0) + dyG(t , x0, 0; y t − y
0)−G(0, x0, y0)

⇒ g(t)− g(0)

t
= dy G

(

t , x0, 0;
y t − y0

t

)

+
G(t , x0, y0)−G(0, x0, y0)

t

⇒ dg(0) = lim
tց0

dy G

(

t , x0, 0;
y t − y0

t

)

+ dtG(0, x0, y0)

from hypotheses (H2) and (H3).

Condition (H3) is optimal since under hypotheses (H1)

dg(0) exists ⇐⇒ lim
tց0

dyG

(

t , x0, 0;
y t − y0

t

)

exists
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AVERAGED ADJOINT METHOD
STURM’S THEOREM REVISITED AND EXTENDED

Hypotheses (H2) and (H3) are weaker and more general than (H2) and (H3).

(H2) It is only assumed that dtG(0, x0, y0) exists.

Hypothesis (H2) assumes that dtG(t , x0, y) exists for all t ∈ [0, τ ] and y ∈ Y .

(H3) Hypothesis (H3) assumes that

lim
sց0, tց0

dtG(s, x0, y t) = dtG(0, x0, y0) . (2.14)

wich implies

R(0, x0, y0) = lim
tց0

dyG

(

t , x0, 0;
y t − y0)

t

)

= 0. (2.15)

Hence, condition (H3) with R(0, x0, y0) = 0 is weaker and potentially more general

(when the limit is not zero) than (H3).

All this is possible since G(t , x , y) is a Lagrangian. For zero-sum games, condition

(H3) and a similar condition for the max min would not be as interesting.
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STANDARD ADJOINT
A NEW CONDITION WITH THE STANDARD ADJOINT

Recalling that g(t) = G(t , x t , y) and g(0) = G(0, x0, y) for any y ∈ Y , then for the

standard adjoint state p0 at t = 0

g(t)− g(0) = G(t , x t , p0)−G(t , x0, p0) +
(

G(t , x0, p0)−G(0, x0, p0)
)

.

Dividing by t > 0

g(t)− g(0)

t
=

G(t , x t , p0)−G(t , x0, p0)

t
+

G(t , x0, p0)−G(0, x0, p0)

t

=

∫ 1

0

dxG

(

t , (1− θ)x0 + θx t , p0;
x t − x0

t

)

dθ +
G(t , x0, p0)−G(0, x0, p0)

t
.

Therefore, in view of hypothesis (H2), the limit dg(0) exists if and only if the limit of the

first term exists

⇒ dg(0) = lim
tց0

∫ 1

0

dxG

(

t , (1− θ)x0 + θx t , p0;
x t − x0

t

)

dθ + dtG(0, x0, p0)

and the existence of the limit of the first term can replace hypothesis (H3). As a result,

we have two ways of expression hypothesis (H3) since

lim
tց0

∫ 1

0

dxG

(

t , (1− θ)x0 + θx t , p0;
x t − x0

t

)

dθ = lim
tց0

dy G

(

t , x0, 0;
y t − y0

t

)

.

M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 29 / 64



AVERAGED ADJOINT
AN OTHER FORM OF HYPOTHESIS (H3)

Since dX G and dx dyG both exist, Hypothesis (H3) can be rewritten as follows

dy G

(

t , x0, 0;
y t − y0

t

)

= dyG

(

t , x0, 0;
y t − y0

t

)

− dy G

(

t , x t , 0;
y t − y0

t

)

=

∫ 1

0

dxdy G

(

t , θx0 + (1− θ)x t , 0;
y t − y0

tα
;

x0 − x t

t1−α

)

dθ,

for some α ∈ [0, 1]. For instance with α = 1/2, it would be sufficient to find bounds on

the differential quotients

y t − y0

t1/2
and

x t − x0

t1/2

which is less demanding than finding a bound on (x t − x0)/t or (y t − y0)/t .
When the integral can be taken inside

dy G

(

t , x0, 0;
y t − y0

t

)

= dx dyG

(

t ,
x0 + x t

2
, 0;

y t − y0

tα
;

x0 − x t

t1−α

)

lim
tց0

dy G

(

t , x0, 0;
y t − y0

t

)

= lim
tց0

dxdy G

(

t ,
x0 + x t

2
, 0;

y t − y0

tα
;

x0 − x t

t1−α

)

.
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SIMPLE ILLUSTRATIVE EXAMPLES
PDE CONTROL

If we are only interested in a descent method, we can obtain the semidifferential of

f (a) by a similar minimax formulation.

Given the direction b ∈ L2(Ω), we want to compute

df (a;b) = limtց0(f (a + tb)− f (a))/t.
The state ut ∈ H1

0 (Ω) at t > 0 is solution of

∫

Ω

∇u
t · ∇ψ − (a + tb)ψ dx = 0, ∀ψ ∈ H

1
0 (Ω), (2.16)

and the associated Lagrangian is

L(t, ϕ, ψ)
def
=

∫

Ω

1

2
|ϕ− g|2 dx +

∫

Ω

∇ϕ · ∇ψ − (a + tb)ψ dx .

It is readily seen that

g(t)
def
= f (a + tb) = inf

ϕ∈H1
0
(Ω)

sup
ψ∈H1

0
(Ω)

L(t, ϕ, ψ)

dg(0)
def
= lim

tց0

g(t)− g(0)

t
= df (a; b).
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AVERAGED ADJOINT METHOD
EXAMPLE IN CONTROL THEORY

Recall

L(t , ϕ, ψ)
def
=

∫

Ω

1

2
|ϕ− g|2 +∇ϕ · ∇ψ − (a + tb)ψ dx .

It is readily seen that

dyL(t , ϕ, ψ;ψ′) =

∫

Ω

∇ϕ · ∇ψ′ − (a + tb)ψ′
dx

dxL(t , ϕ, ψ;ϕ′) =

∫

Ω

(ϕ− g)ϕ′ +∇ϕ′ · ∇ψ dx , dtL(t , ϕ, ψ) = −
∫

Ω

bψ dx .

Observe that the derivative of the state u̇ ∈ H1
0 (Ω) exists:

∫

Ω

∇
(

ut − u0

t

)

· ∇ψ − bψ dx = 0, ∀ψ ∈ H
1
0 (Ω), (2.17)

implies that (ut − u0)/t = u̇ ∈ H1
0 (Ω) solution of

∫

Ω

∇u̇ · ∇ψ − bψ dx = 0, ψ ∈ H
1
0 (Ω). (2.18)

The averaged adjoint y t ∈ H1
0 (Ω) is solution of

∫

Ω

(
ut + u0

2

)

ϕ+∇y
t · ∇ϕ dx = 0, ∀ϕ ∈ H

1
0 (Ω).
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AVERAGED ADJOINT METHOD
EXAMPLE IN CONTROL THEORY

∫

Ω

(
ut + u0

2

)

ϕ+∇y t · ∇ϕ dx = 0, ∀ϕ ∈ H1
0 (Ω).

adjoint at t = 0 :

∫

Ω

u
0 ϕ+∇y

0 · ∇ϕ dx = 0, ∀ϕ ∈ H
1
0 (Ω),

⇒
∫

Ω

1

2

(
ut − u0

t

)

ϕ+∇
(

y t − y0

t

)

· ∇ϕ dx = 0, ∀ϕ ∈ H
1
0 (Ω). (2.19)

It remains to check that the limit in (2.13) exists: dyG(t , x0, 0; (y t − y0)/t)→ 0
∫

Ω

∇u
0 · ∇

(
y t − y0

t

)

− (a + tb)

(
y t − y0

t

)

dx = −t

∫

Ω

b

(
y t − y0

t

)

dx

= −t

∫

Ω

∇
(

ut − u0

t

)

· ∇
(

y t − y0

t

)

dx =
t

2

∫

Ω

∣
∣
∣
∣

ut − u0

t

∣
∣
∣
∣

2

dx =
t

2

∫

Ω

|u̇|2 dx → 0

as t → 0 using (2.18) and (2.19). Therefore, by Theorem 9,

df (a;b) = −
∫

Ω

b y
0

dx , y
0 ∈ H

1
0 (Ω), (2.20)

∫

Ω

(u − g)ϕ+∇y
0 · ∇ϕ dx = 0, ∀ϕ ∈ H

1
0 (Ω). (2.21)

M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 34 / 64



OUTLINE

1 SIMPLE ILLUSTRATIVE EXAMPLES IN PDE CONTROL AND SHAPE

Derivative of PDE Constrained Utility Function with respect to Control

Shape Derivative

Construction of Micheletti: complete metric group and its tangent space

2 AVERAGED ADJOINT FOR STATE CONSTRAINED OBJECTIVE FUNCTIONS

Some Background

Abstract Framework

A New Condition in the Singleton Case with an Extra Term

Back to the Simple Illustrative Example from PDE Control

3 EXAMPLE OF A TOPOLOGICAL DERIVATIVE: NON-ZERO EXTRA TERM

Topological Derivative

A One Dimensional Example

4 MUTIVALUED CASE

Two Theorems Without and With the Extra Term

First Theorem: Mild Generalization

Second Theorem: General Case

Second Theorem: A Non-convex Example where X (0) is not a singleton

5 REFERENCES

M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 35 / 64



EXAMPLE OF A TOPOLOGICAL DERIVATIVE: NON-ZERO EXTRA TERM
TOPOLOGICAL DERIVATIVE

The topological derivative rigorously introduced by [Sokołowski-Zȯchowski (1999)]

induces topological changes.

For instance, let f be an objective function defined on a family of open subsets of RN .

Given a point a in the open set Ω, let Br (a) be a closed ball of radius r and center a

such that Br (a) ⊂ Ω.

Consider the perturbed domain Ωr
def
= Ω\Br (a): Ω minus the hole Br (a). In this

simple case the topological derivative is defined as

df (0)
def
= lim

rց0

f (Ωr )− f (Ω)

|Br (a)|
, (3.1)

where |Br (a)| is the volume of Br (a) in R
N .

When f is of the form f (Ω) =
∫

Ω
ϕ dx , the application of the Lebesgue differentiation

theorem gives df (0) = −ϕ(a). Of course, many other types of topological

perturbations can be considered (see the recent IFIP paper of [Delfour (2017)]).

aBr (a)

M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 36 / 64



OUTLINE

1 SIMPLE ILLUSTRATIVE EXAMPLES IN PDE CONTROL AND SHAPE

Derivative of PDE Constrained Utility Function with respect to Control

Shape Derivative

Construction of Micheletti: complete metric group and its tangent space

2 AVERAGED ADJOINT FOR STATE CONSTRAINED OBJECTIVE FUNCTIONS

Some Background

Abstract Framework

A New Condition in the Singleton Case with an Extra Term

Back to the Simple Illustrative Example from PDE Control

3 EXAMPLE OF A TOPOLOGICAL DERIVATIVE: NON-ZERO EXTRA TERM

Topological Derivative

A One Dimensional Example

4 MUTIVALUED CASE

Two Theorems Without and With the Extra Term

First Theorem: Mild Generalization

Second Theorem: General Case

Second Theorem: A Non-convex Example where X (0) is not a singleton

5 REFERENCES

M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 37 / 64



EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
PROBLEM FORMULATION

Given ε, 0 < ε < 1, a > 0, and the domain Ω = (−a,a), consider the problem:

to find u ∈ W 1,2−ε(−a, a) such that

∀ϕ ∈ W
1, 2−ε

1−ε (−a, a)

∫ a

−a

du

dx

dϕ

dx
+ u ϕ dx =

∫ a

−a

d

dx

√

|x | dϕ
dx

+
√

|x |ϕ dx . (3.2)

Here, X = W 1,2−ε(−a, a) and Y = W
1, 2−ε

1−ε (−a, a) are reflexive Banach spaces since

2− ε > 1 and 2−ε
1−ε

> 1. The elements of X will be denoted u and x ∈ (−a, a) will be

the space variable.There exists a unique1 solution u(x) =
√
|x |, −a ≤ x ≤ a, and the

injections W 1,2−ε(−a, a)→ C0[−a, a] and W
1, 2−ε

1−ε (−a, a)→ C0[−a, a] are continuous

and the following objective function is well-defined:

f (Ω)
def
= |u(a)|2 + |u(−a)|2 − 2 |u(0)|2.

1Given measurable functions k1, k2 : [−a, a] → R such that α ≤ ki (x) ≤ β for some constants α > 0 and

β > 0, and real numbers 1 < p < ∞, p−1 + q−1 = 1, associate with the continuous bilinear mapping

ϕ,ψ 7→ b(ϕ,ψ)
def
=

∫
a

−a

k1(x)
dϕ

dx

dψ

dx
+ k2(x)ϕψ dx : W

1,p(−a, a) × W
1,q(−a, a) → R,

the continuous linear operator A : W 1,p(−a, a) → W 1,q(−a, a)′ which is a topological isomorphism for all
p ∈ (1,∞) ([Auscher-Tchamitchian (1998)]). Here, p = 2 − ε and q = (2 − ε)/(1 − ε).
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
PERTURBED PROBLEMS

Br (0) ⊂ R be the closed ball of radius r in 0. Volume: t = |Br (0)| = 2r . Perturbed

domain is Ωr = Ω\B r (0) = (−a,−r) ∪ (r , a) has 2 connected components and it is not

possible to construct a bijection between Ω and Ωr .

Perturbed problems parametrized by r , 0 < r < a/2: to find ur ∈W 1,2−ε(Ωr ) s. t.

∀ϕ ∈ W
1, 2−ε

1−ε (Ωr ),

∫

Ωr

dut

dx

dϕ

dx
+ ut ϕ dx =

∫

Ωr

d
√
|x |

dx

dϕ

dx
+
√

|x |ϕdx

with the objective function

j(r)
def
= |ur (a)|2 − |ur (r)|2 + |ur (−a)2 − |ur (−r)|2.

The function ur (x) =
√
|x | is the unique solution and

j(r) = 2a− 2r ⇒ dj(0)
def
= lim

rց0

1

2r
(j(r)− j(0)) = −1.

By construction, Ωr = Tr (Ω\{0}), where

Bijection x 7→ Tr (x)
def
=







x − r
(

1 +
x

a

)

, x ∈ (−a,0)

x + r
(

1− x

a

)

, x ∈ (0,a)







: Ω\{0} → Ωr = Ω\Br (0)

and notice that Tr (0
−) = −r , Tr (0

+) = r , Tr (a
−) = a, and Tr (−a+) = −a.
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
PERTURBED PROBLEMS

for a = 1

the function u has a cusp at the point 0

−1 −1 −1+1 +1 +10 0 0

−1 −1 −1+1 +1 +10 0 0−r +r

Ω = (−1,1) Ωr Ω\{0}
Tr

u(x) =
√
|x | ur (x) ur = ur ◦ Tr

Ω = (−1,1) Ωr Ω\{0}
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
SYMMETRY OF THE PROBLEM

Prior to proceeding, it is advantageous to simplify the computations by observing that

the function ur (x) =
√
|Tr (x)| is symmetrical with respect to x = 0, that is,

ur (−x) = ur (x) and

j(r) = 2
[

u
r (a)2 − u

r (0+)2
]

. (3.3)

As a result

dj(0) = lim
rց0

j(r)− j(0)

2r
= lim

rց0

ur (a)2 − ur (0+)2

r

By changing the variable r to t , it is sufficient to apply Theorem 9 to the following

problem on (0,a): to find ut ∈ W 1,2−ε(0, a) such that for all ϕ ∈ W
1, 2−ε

1−ε (0, a)

∫ a

0

a

a− t

dut

dx

dϕ

dx
+

a− t

a
u

tϕ dx =

∫ a

0

1

2
√

Tt(x)

dϕ

dx
+

a− t

a

√

Tt(x)ϕ dx (3.4)

with the objective function

j
+(t)

def
= u

t (a)2 − u
t(0+)2, dj

+(0) = lim
tց0

(j+(t)− j
+(0))/t .
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
NON-CONVEX LAGRANGIAN AND STANDARD ADJOINT EQUATION

From Theorem 9, the Lagrangian associated with the perturbed problems is

G(t , ϕ, ψ)
def
= |ϕ(a)|2 − |ϕ(0)|2

+

∫ a

0

(
a

a− t

)
dϕ

dx

dψ

dx
+

(
a− t

a

)

ϕψ dx

−
∫ a

0

1

2
√

Tt(x)

dψ

dx
+

(
a− t

a

)
√

Tt(x)ψ dx .

(3.5)

It is non-convex in the ϕ variable in view of the presence of the term −|ϕ(0)|2. The

standard adjoint pt is solution of the adjoint equation

∀ϕ ∈ W
1,2−ε(0, a),







2ut(a)ϕ(a)− 2ut(0)ϕ(0)

+

∫ a

0

(
a

a− t

)
dϕ

dx

dpt

dx
+

(
a− t

a

)

ϕ p
t
dx = 0.

(3.6)

In particular this is true for all ϕ ∈ H1(0, a) = W 1,2(0,a) ⊂ W 1,2−ε(0,a). Since the

differential operator is uniformly coercive for 0 ≤ t ≤ a/2, there exist a unique

pt ∈ H1(0, a).
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
NON-CONVEX LAGRANGIAN AND STANDARD ADJOINT EQUATION

But, in view of the fact that for 0 ≤ t ≤ a/2, ut is finite for all x , we get more

regularity: pt ∈ H2(0, a) ∩ C∞(0, a) is solution of

− a

a− t

d2pt

dx2
+

a− t

a
p

t = 0 in (0, a)

a

a− t

dpt

dx
(a) = −2 ut (a),

a

a− t

dpt

dx
(0) = −2 ut(0).

The explicit solution for ut (0) =
√

t and ut(a) =
√

a is

p
t(x) =

a

a− t

2

ea−t − e−(a−t)

[√
t
(

e
a−t

a
(a−x) + e

− a−t
a

(a−x)
)

−
√

a
(

e
a−t

a
x + e

− a−t
a

x
)]

.

At t = 0,

p
0(x) = −2

√
a

ex + e−x

ea − e−a
.
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
COMPUTATION OF THE DERIVATIVE dt G(t, ϕ, ψ)

The right-hand side t-derivative is

dtG(t , ϕ, ψ) =

∫ a

0

a

(a− t)2

dϕ

dx

dψ

dx
− 1

a
ϕψ dx +

1

a

∫ a

0

√

Tt ψ dx

− 1

2

∫ a

0

[
−1

2(Tt)3/2

dψ

dx
+

(
a− t

a

)
1√
Tt

ψ

]

dx

+
1

2a

∫ a

0

[
−x

2(Tt)3/2

dψ

dx
+

(
a− t

a

)
x√
Tt

ψ

]

dx .

At t = 0, substitute u0(x) =
√

x and p0 and Integrate by parts

dtG(0, u0, p0) =

∫ a

0

1

a

d
√

x

dx

dp0

dx
− 1

a

√
x p

0
dx +

1

a

∫ a

0

√
x p

0
dx

− 1

2

∫ a

0

[
−1

2x3/2

dp0

dx
+

1√
x

p
0

]

dx +
1

2a

∫ a

0

[
−1

2
√

x

dp0

dx
+
√

xp
0

]

dx

=
1

2a

∫ a

0

d
√

x

dx

dp0

dx
+
√

xp
0

dx − 1

2

∫ a

0

[
d

dx

1√
x

dp0

dx
+

1√
x

p
0

]

dx= 0.
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
AVERAGED ADJOINT STATE EQUATION

Go back to the Lagrangian (3.5) of the perturbed problem and compute

dxG(t , ϕ̄, ψ;ϕ) =2 ϕ̄(a)ϕ(a)− 2 ϕ̄(0)ϕ(0) +

∫ a

0

(
a

a− t

)
dϕ

dx

dψ

dx
+

(
a− t

a

)

ϕψ dx .

The averaged adjoint state equation for y t must satisfy the equation: for all

ϕ ∈ W 1,2−ε(0, a)

0 =

∫ 1

0

dx G(t ,u0 + s(ut − u0), y t ;ϕ)

= (ut(a) + u
0(a))ϕ(a)− (ut(0) + u

0(0))ϕ(0) +

∫ a

0

(
a

a− t

)
dϕ

dx

dy t

dx
+

(
a− t

a

)

ϕ y
t
dx .

Its solution y t ∈ H2(0,a) ∩ C∞(0,a) satisfies the following equations

averaged adjoint state

−
(

a

a− t

)
d2y t

dx2
+

(
a− t

a

)

y
t = 0, in (0, a)

(
a

a− t

)
dy t

dx
(0) = −(ut(0) + u

0(0)) at x = 0

(
a

a− t

)
dy t

dx
(a) = −(ut(a) + u

0(a)) at x = a.
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
AVERAGED ADJOINT STATE EQUATION

Its explicit expression with ut(0) =
√

t and ut (a) =
√

a is

y
t(x) =

a

a− t

1

ea−t − e−(a−t)

[√
t
(

e
a−t

a
(a−x) + e

− a−t
a

(a−x)
)

− 2
√

a
(

e
a−t

a
x + e

− a−t
a

x
)]

.

The condition to be checked is the existence of the limit (the extra term)

lim
tց0

dy G

(

t ,u0, 0;
y t − y0

t

)

.

So, for ψ = (y t − y0)/t ∈ H2(0,a),

dy G(t ,u0, 0;ψ)

=

∫ a

0

(
a

a− t

)
du0

dx

dψ

dx
+

(
a− t

a

)

u
0 ψ dx −

∫ a

0

1

2
√

Tt(x)

dψ

dx
+

(
a− t

a

)
√

Tt(x)ψ dx

=

∫ a

0

(
a

a− t

)
du0

dx

dψ

dx
+

(
a− t

a

)

u
0 ψ dx−

∫ a

0

a

a− t

d
√

Tt(x)

dx

dψ

dx
+

a− t

a

√

Tt(x)ψ dx

=

∫ a

0

(
a

a− t

)
d(u0 − ut)

dx

dψ

dx
+

(
a− t

a

)

(u0 − u
t )ψ dx

= (u0 − u
t)

(
a

a− t

)
d

dx

(
y t − y0

t

)∣
∣
∣
∣

a

x=0

→ −1.
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∣
∣
∣
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EXAMPLE OF A TOPOLOGICAL DERIVATIVE [DELFOUR-STURM (2016)]
MATERIAL DERIVATIVE : ESTIMATES OF ut − u0

AND (ut − u0)/t

THEOREM

(i) For 0 < ε < 1 and t ∈ [0, a/2],

‖ut‖W 1,2−ε(0,a) ≤ c(ε, a), ‖ut − u
0‖C0[0,a] ≤

√
t , u

t → u
0

in W
1,2−ε(0, a)-weak

and this rate of convergence is sharp.

(ii) For x ∈ (0, a), the material derivative is given by

u̇(x)
def
= lim

tց0

ut (x)− u0(x)

t
=

1

2

(

1
√
|x |
−
√
|x |
a

)

≥ 0,

u̇ ∈ L2−ε(0,a) for 0 < ε ≤ 1, but u̇ /∈ L2(0,a). Moreover, as t → 0,

∥
∥
∥(u

t − u
0)/t − u̇

∥
∥
∥

L2−ε(0,a)
→ 0. (3.7)

(iii) As for the derivative of u̇,

du̇

dx
(x) = − 1

4
√
|x |

{

1/x + 1/a, x ∈ (0, a)

1/x − 1/a, x ∈ (−a, 0)

du̇

dx
(0+) = −∞,

du̇
dx
/∈ L1(0, a), and, a fortiori, du̇

dx
/∈ L2−ε(0,a).M. C. Delfour and K. Sturm One Sided Minimax Differentiability NUMOC - June 23, 2017, Roma 47 / 64



EXAMPLE OF A TOPOLOGICAL DERIVATIVE
CANNOT APPLY THE CHAIN RULE

Therefore,

du̇

dx
/∈ L

1(0, a), and, a fortiori,
du̇

dx
/∈ L

2−ε(0,a).

From part (iii) we cannot apply the chain rule to get dj(0+) since the expression is

undetermined:

2 u0(a) u̇(a)− 2 u0(0) u̇(0) = 2 u0(a) u̇(a)− 2 [0 (−∞)] !
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MUTIVALUED CASE
TWO THEOREMS WITHOUT AND WITH THE EXTRA TERM

We give two theorems for the existence and expressions of dg(0) in the multivalued

case where only a right-hand side derivative of g is expected.

- New conditions and quadratic examples were given in [Delfour-Sturm (2017)]

without the extra term.

- Complete conditions including the extra term were published in

[Delfour-Sturm (2016)] at an IFAC meeting in 2016 prior to the publication of

[Delfour-Sturm (2017)] due to longer publication delays in the Journal of Convex

Analysis.

Here, we give the latest version from [Delfour-Sturm (2016)].

The first theorem is a mild generalization of the singleton case. Yet, it can be applied

to PDE problems with non-homogeneous Dirichlet boundary conditions where

non-unique extensions are used (cf. [Delfour-Zolésio (2011)]).

A new non-convex multivalued example will be given for the second more general

theorem.
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MUTIVALUED CASE
FIRST THEOREM

THEOREM (A FIRST EXTENSION)

Given X, Y , and G, let (H0) and the following hypotheses be satisfied:

(H1) for all t in [0, τ ], X (t) 6= ∅ and g(t) is finite, and for all x t ∈ X (t) and x0 ∈ X (0),
Y (t , x0, x t ) 6= ∅;

(H2) for all x ∈ X (0) and y ∈ Y (0, x), dtG(0, x , y) exists;

(H3) there exist x̂0 ∈ X (0), ŷ0 ∈ Y (0, x̂0), and R(0, x̂0, ŷ0) such that for each sequence

tn → 0, 0 < tn ≤ τ , there exist a subsequence {tnk
} of {tn}, x tnk ∈ X (tnk

), and

y tnk ∈ Y (tnk
, x̂0, x tnk ) such that

lim
k→∞

dy G
(

tnk
, x̂0, 0; (y tnk − ŷ

0)/tnk

)

= R(0, x̂0, ŷ0).

Then, dg(0) exists and there exist x̂0 ∈ X (0) and ŷ0 ∈ Y (0, x̂0) such that

dg(0) = dtG(0, x̂0, ŷ0) + R(0, x̂0, ŷ0).

When X (0) = {x0} and Y (0, x0) = {y0} are singletons, the above hypotheses are

equivalent to the ones of Thm. 9.
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MUTIVALUED CASE
SECOND THEOREM

THEOREM (GENERAL CASE)

Given X, Y , and G, let (H0) and the following hypotheses be satisfied:

(H1) ∀t ∈ [0, τ ], X (t) 6= ∅, g(t) is finite, and ∀x t ∈ X (t) and x0 ∈ X (0), Y (t , x0, x t ) 6= ∅;

(H2) for all x ∈ X (0) and y ∈ Y (0, x), dtG(0, x , y) exists and, for each x ∈ X (0), there

exists a function y 7→ R(0, x , y) : Y (0, x)→ R satisfying (H3) and (H4) below;

(H3) for each sequence tn → 0, 0 < tn ≤ τ , ∃x0 ∈ X (0) such that for all y0 ∈ Y (0, x0),
∃a subsequence {tnk

} of {tn}, x tnk ∈ X (tnk
), and y tnk ∈ Y (tnk

, x0, x tnk ) such that

lim inf
k→∞

dyG
(

tnk
, x0, 0; (y tnk − y

0)/tnk

)

≥ R(0, x0, y0);

(H4) for each sequence tn → 0, 0 < tn ≤ τ and all x0 ∈ X (0), there exist y0 ∈ Y (0, x0),
a subsequence {tnk

} of {tn}, x tnk ∈ X (tnk
), and y tnk ∈ Y (tnk

, x0, x tnk ) such that

lim sup
k→∞

dyG
(

t , x0, 0; (y tnk − y0)/tnk

)

≤ R(0, x0, y0).

Then, dg(0) exists and there exists x̂0 ∈ X (0) and ŷ0 ∈ Y (0, x̂0) such that

dg(0) = dtG(0, x̂0, ŷ0) + R(0, x̂0, ŷ0)

= sup
y∈Y (0,x̂0)

dtG(0, x̂0, y) + R(0, x̂0, y) = inf
x∈X(0)

sup
y∈Y (0,x)

dtG(0, x , y) + R(0, x , y).
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON AND R(0, x0, y0) = 0

Consider the objective function and the constraint set

f (x)
def
= Qx · x , U

def
= {x ∈ R

n : Ax · x = 1‖, inf f (U) (4.1)

Where Q is an arbitrary symmetrical n × n matrix and A > 0 is a symmetrical n × n

positive definite matrix. U 6= ∅ is compact and the function f is not necessarily convex.

The minimization problem is equivalent to the generalized eigenvalue problem

λ(Q,A)
def
= inf

x 6=0

Qx · x
Ax · x (4.2)

where the minimizer x̂ is solution of the problem

[Q − λ(Q,A)A] x̂ = 0, Ax̂ · x̂ = 1. (4.3)

The semidifferential of λ(Q,A) with respect to Q in a direction Q′ and A in the

direction A′ can be found in [Delfour 2011, pp. 166–168] for symmetrical matrices:

dλ(Q,A;Q′,A′) = inf
x∈X(0)

Q
′
x · x (Ax · x)− (Qx · x)A

′
x · x

= inf
x∈X(0)

Q
′
x · x − λ(Q,A)A

′
x · x ,

(4.4)

minimizers X (0)
def
=
{

x ∈ R
n : [Q − λ(Q,A)A]x = 0 and Ax · x = 1

}
(4.5)

states E(0)
def
=
{

x ∈ R
n : Ax · x = 1

}
. (4.6)
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

For t ≥ 0, x ∈ R
n, and y ∈ R, introduce the Lagrangian

G(t , x .y)
def
= (Q + tQ′)x · x + y [(A + tA′)x · x − 1] (4.7)

g(t)
def
= inf

x∈Rn
sup
y∈R

G(t , x , y), dg(0)
def
=

g(t)− g(0)

t
. (4.8)

where A′ and Q′ are symmetrical matrices. Set Q(t) = Q + tQ′ and A(t) = A + tA′. It

is easy to check that

dtG(t , x , y) = Q
′
x · x + y A

′
x · x (4.9)

dx G(t , x , y ; x ′) = 2 [Q(t) + y A(t)] x · x ′ (4.10)

dy G(t , x , y ; y ′) = y
′ [A(t)x · x − 1]. (4.11)

Since A is positive definite, there exists α > 0 such that for all x ∈ R
n, Ax · x ≥ α‖x‖2.

Hence, there exists τ > 0 such that for all 0 ≤ t ≤ τ
∀t , 0 ≤ t ≤ τ, ∀x ∈ R

n, A(t)x · x ≥ α

2
‖x‖2

and for such t , the set of constraints E(t)
def
= {x : A(t)x · x = 1} 6= ∅ is compact. So

there exist minimizers x t ∈ R
n and X (t) is not empty for 0 ≤ t ≤ τ

λt def
= inf

A(t)x·x=1
Q(t)x · x = Q(t)x t · x t

(4.12)
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

To summarize,

dtG(t , x , y) = Q
′
x · x + y A

′
x · x (4.13)

[

Q(t) + y
t
A(t)

] x t + x0

2
= 0 (average adjoint equation) (4.14)

∀y ′, dy G(t , x t , 0; y ′) = y
′ [A(t)x t · x t − 1] = 0 (state equation) (4.15)

dy G

(

t , x0, 0;
y t − y0

t

)

=
y t − y0

t
[A(t)x0 · x0 − 1]. (4.16)

From the Lagrange Multiplier rule, the standard adjoint is solution of

[

Q(t) + p
t
A(t)

]

x
t = 0 ⇒ p

t = −Q(t)x t · x t = −λt . (4.17)

Tthe set of minimizers is given by the expression

X (t) =
{

x ∈ R
n : [Q(t) + p

t
A(t)x = 0 and A(t)x · x = 1

}

. (4.18)

For all x t ∈ X (t), x t 6= 0 and −x t ∈ X (t). So X (t) is not a singleton. However,

∀x t ∈ X (t), Y (t , x t ) = {−λt}

and Y (t , x t ) is a singleton independent of the choice of the minimizer x t ∈ X (t).
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

Given x0 ∈ X (0) and x t ∈ X (t), the averaged adjoint is solution of the equation:

∀x ′, 0 =

∫ 1

0

dxG(t , x0 + s(x t − x
0), y t ; x ′)ds

= 2

∫ 1

0

[

Q(t) + y
t
A(t)

]

(x0 + s(x t − x
0)) · x ′

ds

= 2
[

Q(t) + y
t
A(t)

] x t + x0

2
· x ′

⇒
[

Q(t) + y
t
A(t)

] x t + x0

2
= 0. (4.19)

⇒ Y (t , x0, x t ) =







{

−Q(t) x t+x0

2
· x t+x0

2

A(t) x t+x0

2
· x t+x0

2

}

, if x
t + x

0 6= 0

R, if x
t + x

0 = 0

(4.20)

Therefore, Y (t , x0, x t ) 6= ∅.
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

A preliminary lemma.

(i) For all t , 0 ≤ t ≤ τ ,

∀x t ∈ X (t), Y (t , x t , x t ) = {−λt} (4.21)

where λt is the minimum of the objective function Q(t)x · x with respect to

E(t) = {x ∈ R
n : A(t)x · x = 1} as seen in (4.12).

(ii) For each sequence {tn : 0 < tn ≤ τ}, there exist x̄ ∈ X (0), x tn ∈ X (tn), and

y tn ∈ Y (tn, x̄ , x
tn ) such that

x tn → x̄ , λtn → λ0, and y tn → y0 = −λ0, (4.22)

and the set of averaged adjoint states Y (tn, x̄ , x
tn ) = {y tn} is a singleton.

(iii) As t ց 0, the quotient

λt − λ0

t
(4.23)

is bounded.

(iv) For the sequences of part (ii), the quotients

λtn − λ0

tn
and

y tn − y0

tn
(4.24)

are bounded.
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

THEOREM

Given symmetrical n × n matrices A, A′, Q, and Q′ such that A is positive definite,

there exists at least one x0 such that Ax0 · x0 = 1 and

λ(Q,A) = inf
Ax·x=1

Qx · x = Qx
0 · x0. (4.25)

Moreover

dλ(Q,A;Q′,A′)
def
= lim

tց0

λ(Q + tQ′,A + tA′)− λ(Q,A)
t

= inf
x0∈X(0)

[
Q

′ − λ(Q,A)A
′
]

x
0 · x0,

(4.26)

X (0)
def
=
{

x ∈ R
n : Ax · x = 1 and [Q − λ(Q,A)A]x = 0

}
. (4.27)

If X (0) is not simple the dimension of the space X (0) is greater or equal to 2 and we

only have a semi-différential.
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

Proof.

(i) Hypothesis (H1). We have seen that for all 0 ≤ t ≤ τ , X (t) 6= ∅ and that, for all

x t ∈ X (t), Y (t , x t ) = {−λt}. For the averaged adjoint y t

⇒ Y (t , x0, x t ) =







{

−Q(t) x t+x0

2
· x t+x0

2

A(t) x t+x0

2
· x t+x0

2

}

, if x
t + x

0 6= 0

R, if x
t + x

0 = 0

(ii) Hypothesis (H2). We have seen that dtG(t , x , y) = Q′x · x + y A′x · x . So for all

x0 ∈ X (0) and the singleton Y (0, x0) = {−λ0}
dtG(t , x0, y0) = Q

′
x

0 · x0 − λ0
A

′
x

0 · x0.

(iii) Hypothesis (H3). For each sequence tn → 0, 0 < tn ≤ τ , choose the sequence

{x tn} and its limit x̄ ∈ X (0) from the Lemma (ii) and use the fact that the corresponding

sequence y tn−y0

tn
is bounded by some constant c from the Lemma (iv):

∣
∣
∣
∣
dy G

(

tn, x̄ , 0;
y tn − y0

tn

)∣
∣
∣
∣
=

∣
∣
∣
∣

y tn − y0

t
[A(tn)x̄ · x̄ − 1]

∣
∣
∣
∣

≤
∣
∣
∣
∣

y tn − y0

tn

∣
∣
∣
∣
|A(tn)x̄ · x̄ − 1| ≤ c |A(tn)x̄ · x̄ − 1| → c |A(0)x̄ · x̄ − 1| = 0
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MUTIVALUED CASE
A NON-CONVEX EXAMPLE WHERE X (0) IS NOT A SINGLETON

(iv) Hypothesis (H4). For all x0 ∈ X (0) Y (0, x0) = {−λ0} is a singleton independent

of x0 ∈ X (0). As in (iii), for each sequence tn → 0, 0 < tn ≤ τ , choose the sequence

{x tn} and its limit x̄ ∈ X (0) from the Lemma (ii) and use the fact that the corresponding

sequence y tn−y0

tn
is bounded by some constant c from the Lemma (iv):

∣
∣
∣
∣
dy G

(

tn, x
0, 0;

y tn − y0

tn

)∣
∣
∣
∣
=

∣
∣
∣
∣

y tn − y0

t

[

A(tn)x
0 · x0 − 1

]
∣
∣
∣
∣

≤
∣
∣
∣
∣

y tn − y0

tn

∣
∣
∣
∣

∣
∣
∣A(tn)x

0 · x0 − 1
∣
∣
∣

≤ c
∣
∣
∣A(tn)x

0 · x0 − 1
∣
∣
∣→ c

∣
∣
∣A(0)x

0 · x0 − 1
∣
∣
∣ = 0.

(v) The conclusion follows from Theorem 12 where the sup disappears since

Y (0, x0) = {−λ0} = {−λ(Q,A)} is a singleton independent of x0 ∈ X (0).
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THANK YOU

- Thank you for your attention -
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