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Introduction

Basic idea of MPC

Common tasks in optimal control

Steer the state to a desired equilibrium and keep it there.

Follow a reference trajectory.

⇒ Infinite horizon optimal control problem; difficult to solve.

Idea

Split up the problem into several iterative OCPs on (shorter and)
finite time horizons.
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Introduction

Past Future

t

Reference trajectory

Sample rate

Consider an OCP on [0,∞) in a discrete time setting:

y(k + 1) = f (y(k), u(k)), y(0) = y0

where y(k) ∈ Y , u(k) ∈ U,Y and U being metric spaces.
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Introduction

Past Future

t

Reference trajectory
Measured state
Past control

Sample rate

Instead of minimizing J∞(y0, u) :=
∑∞

k=0 `(yu(k ; y0), u(k)), where
` : Y × U → R≥0 is a continuous stage cost function and
yu(·; y0) is the solution trajectory for a given control sequence
(u(k))k∈N0 and an initial state y0,
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Introduction

Past Future

t

Reference trajectory
Measured state
Past control

...
Sample rate

(Prediction) Horizon

n n+1 n+2 n+N

we choose a horizon N ≥ 2 and compute a feedback law F via the
following steps. For each time tn, n = 0, 1, 2, ...:

1 Measure the current state y(n) and set y0 := y(n).
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Introduction

Past Future

t

Reference trajectory
Measured state
Past control

...
Sample rate

(Prediction) Horizon

n n+1 n+2 n+N

2 Solve the OCP on the current time horizon [tn, tn+N ]:
u∗ = arg minu∈UN JN(y0, u), where

JN(y0, u) :=
∑N−1

k=0 `(yu(k; y0), u(k)).
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Introduction

Past Future

t

Reference trajectory
Measured state
Past control
Predicted state
Predicted control

...
Sample rate

(Prediction) Horizon

n n+1 n+2 n+N

3 Apply the first value of the calculated optimal control
sequence on [tn, tn+1] and set F(n) := u∗(0).
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Introduction

Past Future

t

Reference trajectory
Measured state
Past control
Predicted state
Predicted control

...
Sample rate

(Prediction) Horizon

n n+1 n+2 n+N

4 Set n := n + 1 and go to 1.

⇒ Resulting MPC closed-loop: yF (k + 1) = f (yF (k),F(yF (k))).

Adaption of http://en.wikipedia.org/wiki/File:MPC scheme basic.svg (CC BY-SA 3.0)
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Stability of the MPC closed loop system

Question

How to guarantee stability of the MPC closed loop system

yF (k + 1) = f (yF (k),F(yF (k))) ?

Two possible answers:

Add terminal conditions
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Exponential Controllability w.r.t. `

Reminder: Cost functional JN

min
u∈UN

JN(y0, u) :=
N−1∑
k=0

`(yu(k ; y0), u(k))

where ` : Y × U → R≥0 is continuous.

Definition (Exponential Controllability w.r.t. stage costs `)

The system

y(k + 1) = f (y(k), u(k)), y(0) = y0

is called exponentially controllable w.r.t. stage costs ` iff there
exist an overshoot bound C ≥ 1 and a decay rate ρ ∈ (0, 1) such
that for each state ẙ ∈ Y there is a control uẙ ∈ U satisfying

`(yuẙ (k ; ẙ), uẙ (k)) ≤ Cρk min
u∈U

`(ẙ , u)

for all k ∈ N0.
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Exponential Controllability w.r.t. `

Theorem (Grüne, Pannek, 2011, Thm 6.18 and Section 6.6)

Let (ȳ , ū) be an equilibrium, i.e., f (ȳ , ū) = ȳ . Consider the MPC
scheme with stage costs

`(y(k), u(k)) =
1

2
‖y(k)− ȳ‖2 +

λ

2
‖u(k)− ū‖2

for some norm ‖·‖ and λ > 0. (In particular, we have `(ȳ , ū) = 0
and `(y , u) > 0 for (y , u) 6= (ȳ , ū).)

Let the exponential controllability property be satisfied for the
above stage costs. Then there exists N0 ≥ 2 such that the
equilibrium (ȳ , ū) is globally asymptotically stable for the
MPC closed loop for any optimization horizon N ≥ N0.

If, in addition, the exponential controllability property holds
with C = 1, then N0 = 2 (instantaneous control).
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Introduction

Itô SDE: dXt = b(Xt , t; u)dt + σ(Xt , t)dWt

Xt(t = 0) = X0

Fokker-Planck Equation

∂ty(x , t)−
d∑

i ,j=1

∂2
ij

(
aij(x , t)y(x , t)

)
+

d∑
i=1

∂i
(
bi (x , t; u)y(x , t)

)
= 0 in Q

y(·, 0) = y0 in Rd
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Fokker-Planck Equation

∂ty(x , t)−
d∑

i ,j=1

∂2
ij

(
aij(x , t)y(x , t)

)
+

d∑
i=1

∂i
(
bi (x , t; u)y(x , t)

)
= 0 in Q

y(·, 0) = y0 in Rd

where Q := Rd × (0,T )
y : Rd × [0,∞[→ R≥0 is the PDF (

∫
Rd y(x , t) dx = 1),

y0 : Rd → R≥0 is the initial PDF (
∫
Rd y0(x) dx = 1),

a = σσT/2 is a symmetric positive definite matrix,
bi : Rd × [0,∞[×U → R, i = 1, ..., d , and
∂iz is the partial derivative of z w.r.t. xi .
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Introduction

Itô SDE: dXt = b(Xt , t; u)dt + σ(Xt , t)dWt

Xt(t = 0) = X0

Fokker-Planck Equation

∂ty(x , t)−
d∑

i ,j=1

∂2
ij

(
aij(x , t)y(x , t)

)
+

d∑
i=1

∂i
(
bi (x , t; u)y(x , t)

)
= 0 in Q

y(·, 0) = y0 in Rd

Aim

Apply the above theorem, i.e., prove exponential controllability w.r.t.
stage costs

`(y(k), u(k)) =
1

2
‖y(k)− ȳ‖2 +

λ

2
‖u(k)− ū‖2

(or other suitable stage costs), where (ȳ , ū) is an equilibrium.
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The Ornstein–Uhlenbeck Process

Observation [Risken ’96, Annunziato, Borz̀ı ’10]

For the controlled (multi-dim.) Ornstein-Uhlenbeck process given by

aij := δijσ
2
i /2 where σi are positive constants, i , j = 1, ..., d ,

bi (x , t; u) := −νixi + ui with νi > 0, i = 1, ..., d ,

with

u ≡ ū ∈ Rd constant (i.e., a parameter) and

y0 a d-dimensional multivariate normal distribution with mean vector
µ̊ and covariance matrix Σij = δij σ̊

2
i ,

the (asymptotically stable) equilibrium solution is given by

ȳ(x ; ū) := lim
t→∞

y(x , t; ū) =

(
(2π)d

d∏
i=1

σ2
i

2νi

)−1/2

exp

− d∑
i=1

(xi − ūi
νi

)2

σ2
i
νi


⇒ Controlling νi and ui , any multivariate Gaussian distribution can be
reached.
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ȳ(x ; ū) := lim
t→∞

y(x , t; ū) =
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Minimal Stabilizing Horizon Length

Proposition (2016)

Consider the 1D OU process with a control u ∈ R and stage cost

`(y(k), u(k)) =
1

2
‖y(k)− ȳ‖2

L2(R) +
λ

2
|u(k)− ū|2 .

Then the equilibrium (ȳ , ū) is globally asymptotically stable for the MPC
closed loop for any optimization horizon N ≥ 2.

Question

Does the same hold for a linear control function u(x) := ulx + uc?

Note: In this case, we have b(x , t; u) = −x + .
Therefore, we start with the following stage cost:

`(y(k), u(k), v(k)) =
1

2
‖y(k)− ȳ‖2

L2(R) +
λ

2
|u(k)− ū|2 +

λ

2
|v(k)− v̄ |2 .
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Minimal Stabilizing Horizon Length

Example (1)

Simulation (no optimization) of the 1D OU process with a (suboptimal)
”control” (u, v) = (ū, v̄). The parameters of the dynamics are:

a11 = σ2/2 = 1,

(ū, v̄) = (0, 3).

The initial condition at t0 = 0 is given by

µ̊ = 10,

σ̊2 = 5.

The simulation is carried out until the final time T = 2.
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Minimal Stabilizing Horizon Length

Observation

The control (u, v) = (ū, v̄) is not suitable to prove exponential
controllability of the system w.r.t. ` for C = 1.

Example (2)

1 Optimal control of the 1D OU process using MPC, with parameters
given by Example 1. Additional parameters:

MPC sampling time Ts 0.2
λ in the cost functional 1e-4

Other than v > 0, which is required by the OU process, there are no
control constraints.
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Idea

Investigate the (monotone) convergence of the mean µ(n).

Assuming µ(n) 6= µeq = ū
v̄ , we would like to have monotone

convergence of the mean, i.e.,

|µ(n + 1)− µeq| < |µ(n)− µeq|.

Using the explicit solution formula [Risken ’96, Annunziato and
Borz̀ı ’10], we get

µ(n + 1) =
u(n)

v(n)
(1− e−v(n)Ts ) + µ(n)e−v(n)Ts ,

where Ts > 0 is the sampling time.
⇒ Two cases:

1 µ(n) > µeq ⇒ µ(n + 1) ≥ µeq
2 µ(n) < µeq ⇒ µ(n + 1) ≤ µeq
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Consider case 1 (case 2 analogous). Then we have monotone
convergence of the mean iff

0
!
> |µ(n + 1)− µeq| − |µ(n)− µeq|
= µ(n + 1)− µ(n)

=

(
u(n)

v(n)
− µ(n)

)(
1− e−v(n)Ts

)
︸ ︷︷ ︸

>0

⇔ u(n)

v(n)
< µ(n).

The last inequality can be guaranteed for the special case
0 = µeq = ū

ν̄ : We always have v(n) > 0. Furthermore, in this case,
µ(n) > 0 and u(n) ≤ 0 (otherwise, higher state and control costs
occur).
In addition, if µ(n) = µeq = 0, then µ(k) = µeq = 0 for all k ≥ n.
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Example (3)

Optimal control of the 1D OU process using MPC, where the initial and
target distribution have been shifted one unit to the right, i.e.

µ̊ = 11,

(ū, v̄) = (3, 3).
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Remedy

Transformation of coordinates: x̃ := x + ū
v̄

It holds:
y(x̃ , t)− ȳ(x̃) = y(x , t)− ȳ(x),

i.e., the term penalizing the state stays the same.
Control costs: Instead of b(x , t; u, v) = −v(n)x + u(n) we now have:

b(x̃ , t; u, v) = −v(n)x̃ + u(n) = −v(n)x + u(n)− ū

v̄
v(n)

⇒ New offset in the control, leading to

`2(y(k), u(k), v(k)) :=
1

2
‖y(k)− ȳ‖2

L2(R)+
λ

2
|v(k)−v̄ |2+

λ

2
|u(k)− ū

v̄
v(k)|2.
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Proposition

Consider the 1D OU process with a drift term

b(x , t; u, v) = −vx + u

and stage cost

`2(y(k), u(k), v(k)) =
1

2
‖y(k)− ȳ‖2

L2(R)+
λ

2
|v(k)−v̄ |2+

λ

2
|u(k)− ū

v̄
v(k)|2.

Then the equilibrium (ȳ , ū, v̄) is globally asymptotically stable for the
MPC closed loop for any optimization horizon N ≥ 2.

Note

`2(y(k), ū, v̄) =
1

2
‖y(k)− ȳ‖2

L2(R)
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L2(R)



p. 22

Motivation MPC ... ... for the Fokker-Planck Equation Conclusion

Minimal Stabilizing Horizon Length

Proof (conceptual)

1 Monotone convergence to the target mean
⇒ ∃ñ ∈ N0 ∀n ≥ ñ : µ(n) = µeq.

2 Once µ(n) = µeq, we prove that the system is exponentially
controllable w.r.t. stage costs `2 with C = 1 using the
suboptimal control (u, v) = (ū, v̄), cf. Lemma below.

Lemma

The function V (t) := 1
2 ‖y(t)− ȳ‖2

L2(R) fulfills V (t) ≤ e−KtV (0)
with some decay rate K > 0.
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Conclusion

MPC closed loop stability is guaranteed for the Ornstein-Uhlenbeck
process with Gaussian initial condition and a control function that
is linear in space, even for the shortest possible horizon.

Open questions:

Other stochastic processes and other distributions?

Economic MPC?

Thank you for your attention!
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