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Three different methods

max-plus method of McEneaney (SICON2007) for optimal
control of switched LQ systems → approximation of the value
function by suprema of quadratic forms, curse of dimensionality
attenuation

Ahmadi, Jungers, Parrilo, and Roozbehani: path complete LMI
automata method (SICON2014) to approximate the joint
spectral radius, approximation of the Barabanov ball by an
intersection of ellipsoids

static analysis of program by abstract interpretation, template
method / discretized support function Sankaranarayanan and
Sipma and Manna (VMCAI’05), nonlinear templates Adjé, SG,
Goubault ESOP’10, Seidl, Gawlitza, program invariant as a
conjunction of quadratic inequalities.

Stephane Gaubert (INRIA and CMAP) Noncommutative Dynamic Programming NUMOC 2 / 66



This talk

Relations between three classes of methods. (Common
bottleneck: large scale semidefinite optimization.)

Geometry of the space of positive semi-definite matrices

Noncommutative Bellman operators = tropicalization of the
Kraus maps in quantum information

new (almost) LMI-free methods to compute piecewise quadratic
invariants

methods of non-linear Perron-Frobenius theory
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Part I.

McEneaney’s max-plus method

curse of dimensionality attenuation
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Max-plus or tropical algebra

In an exotic country, children are taught that:

“a + b” = max(a, b) “a × b” = a + b

So

“2 + 3” =

“2× 3” =
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Lagrange problem / Lax-Oleinik semigroup

v(t, x) = sup
x(0)=x , x(·)

∫ t

0

L(x(s), ẋ(s))ds + φ(x(t))

Lax-Oleinik semigroup: (St)t>0, Stφ := v(t, ·).

Superposition principle: ∀λ ∈ R, ∀φ, ψ,

St(sup(φ, ψ)) = sup(Stφ, Stψ)
St(λ + φ) = λ + Stφ

So St is max-plus linear.
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The function v is solution of the Hamilton-Jacobi equation

∂v

∂t
= H(x ,

∂v

∂x
) v(0, ·) = φ

Max-plus linearity ⇐ Hamiltonian convex in p

H(x , p) = sup
u

(L(x , u) + p · u)

Hopf formula, when L = L(u) concave:

v(t, x) = sup
y∈Rn

tL(
x − y

t
) + φ(y) .
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Max-plus basis methods

Fleming, McEneaney 00;
Akian, Lakhoua, SG 04, Dower, Kaise, Sridharan, . . . Approximate
the value function by a “linear comb.” of “basis” functions with
coeffs. λi(t) ∈ R:

v(t, ·) '“
∑
i∈[p]

λi(t)wi”

The wi are given max-plus basis functions, to be chosen depending
on the regularity of v(t, ·)
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Best max-plus approximation

P(f ) := max{g 6 f | g “linear comb.” of wi}

wi : x 7→ −C
2
‖x‖2 + 〈yi , x〉

−C
2
‖x‖2 + 〈yi , x〉

adapted if v is C -semi-convex, i.e. v + C‖x‖2/2 convex, or v ′′ > −CI
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Example: switched optimal control problem

V (x) = sup
µ

sup
u

∫ ∞
0

1

2
x(t)′Dµ(t)x(t)− γ2

2
|u(t)|2dt,

ẋ(t) = Aµ(t)x(t) + σµ(t)u(t), x(0) = x ∈ Rd ,

µ : [0,∞)→ {1, . . . ,M} discrete valued control, u ∈ Lloc
2 ([0,∞);Rk)

Problem is nonconvex (D1, . . . ,DM < 0).

(McEneaney SICON 07)
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McEneaney’s curse of dimensionality attenuation

method

Semigroup approximation, τ small time:

Sτ ' S̃τ = sup
m∈{1,...,M}

Sm
τ

Sm
t semigroup associated to the unswitched control problem in

which µ ≡ m ∈ {1, . . . ,M}:

Sm
t [φ](x) = sup

u

∫ t

0

1

2
x(t)′Dmx(t)− γ2

2
|u(t)|2dt + φ(x(t)).

ẋ(s) = Amx(s) + σmu(s); x(0) = x ∈ Rd .

Sm
t [φ] is a quadratic function if φ is. (Riccati)
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Arborescent propagation

V ' VT = {Sτ}N [V0] ' {S̃τ}N [V0] = sup
iN ,...,i1

S iN
τ ◦ · · · ◦ S i1

τ [V0] .

V0

S1
τ [V0] SM

τ [V0]. . . . . .

S1
τ S

1
τ [V0] SM

τ S1
τ [V0] S1

τ S
M
τ [V0] SM

τ SM
τ [V0]. . . . . .

S1
τ . . . S

1
τ [V0] SM

τ . . . SM
τ [V0]. . . . . .
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Arborescent propagation
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Comput. complexity: O(MNd3) ⇒polynomial in the dimension
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Kluberg, McEneaney (SICON 2010) obtained the first error bound,
refined in:

Theorem (Zheng Qu, SICON 2014)

The computational complexity to reach an error of order ε is

O(M− log(ε)/εd3)

and this is tight (matched by numerical experiments).

Compare with O(1/εd/r ) for a grid scheme with an error of order
(∆x)r .
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The complexity of the max-plus method is dramatically
improved if the method is combined with pruning:

the value function V is approximated by a supremum of
an exponential number of quadratic forms, many of which
are redundant.

These can be dynamically eliminated
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The Pruning Problem

Given

f = sup
i∈[p]

φi , φi quadratic Rd → R

and k � p, find I ⊂ [p], |I | = k , with a best
approximation of f by

sup
i∈I

φi .
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Pruning redundant quadratic forms

x

y

φ = sup(φgreen, φred , φviolet ,

φyellow , φblack , φblue)

x

y

φ = sup(φgreen, φblack , φblue)
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Pruning algorithm

φi(x) = (xT 1)Qi

(
x
1

)
, i = 1, . . . , p.

Importance metric

sup
i 6=j

φi > φj ⇔ νj := sup
x

φj(x)− supi 6=j φi(x)

1 + |x |2
6 0

νj 6 0 =⇒ φj can be pruned.

Optimisation problem

νj = max ν

ν 6 z>(Qj − Qi)z

zT z = 1.

SDP relaxation

ν j = max ν

ν 6 tr((Qj − Qi)Z )

Z > 0, tr(Z ) = 1.
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Tree approximation + pruning

The method has been applied to solve approximately problems of

dimension d = 4, number of switches M = 3, in McEneaney 07

dimension d = 6, number of switches M = 6, in McEneaney,
Deshpande, SG 08, SG, McEneney, Qu 2011 Shor relaxation +
improved pruning / facility location for Bregman distances.

dimension d = 15, number of switches M = 6, in Sridharan,
James, McEneaney 10 (quantum optimal gate synthesis, SU(4))
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SDP is the bottleneck

Table : HJ dim 6, CPU time Matlab/cvx/sdpt3

τ=0.2, K=25 Total time Propagation SDP Pruning

sort lower 1.04h 1.85% 98.15% 0.00%

sort upper 1.34h 1.52% 98.43% 0.05%

Facility location 1.38h 1.45% 89.47% 9.08%

greedy 1.43h 1.63% 97.84% 0.53%

SG, McEneney, Qu 2011
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Part II.
Linear switched systems and LMI automata
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Switching system

x <- init();

while (rand_bool)

switch (rand_bool)

case 0:

x <- A*x;

case 1:

x <- B*x;

end

end
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Problem

Given a switched discrete dynamical system

xk+1 = Aφ(k)xk ∈ Rn , k ∈ N , Aφ(k) ∈ {A1, · · · ,Am} ,

Bound the set of reachable values

Look for a bounded invariant set S:

∀i , Ai(S) ⊆ S

We will look for piecewise quadratic invariants (union or intersection
of ellipsoids).
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Joint spectral radius / discrete HJ equation

ρ := lim
k→∞

sup
i1,i2...ik

‖Ai1 . . .Aik‖1/k

ν is an α-approximate extremal norm if

ν(Aix) 6 αν(x), ∀i

The existence of such a ν implies ρ 6 α.

Barabanov norm / sol. of max-plus eigenvalue problem

max
16i6M

ν(Aix) = ρν(x)

ρ 6 1 =⇒ Barabanov ball is invariant
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path complete LMI automata

[m] := {1, . . . ,m} switching modes, [m]N switching sequences of
length N .
[m] acts on [m]N : concatenate and forget, eg, 728 · 3 = 283 for
N = 3.

Theorem (Ahmadi, Jungers, Parrilo, and Roozbehani SICON 2014)

Suppose we can find positive definite matrices (Qw )w∈[m]N and α > 0
such that

A>i QwAi 4 α2Qw ·i , ∀w ∈ [m]N , i ∈ [m]

Then, x 7→ supw (x>Qwx)1/2 is an α-approximate extremal norm, in
particular,

ρ 6 α

αopt
N converges to ρ as N →∞.
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The path complete LMI automata method requires solving LMI of
size Ω(mN).

hardly feasible for large N .

difficulty similar to pruning in McEneaney’s method.
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Part III.

Avoiding LMIs: noncommutative Bellman operators

work with X. Allamigeon, E. Goubault, S. Putot, N. Stott
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Basic tool for quadratic invariants

S

B(S)
B

A(S)

BA(S)

B2A(S)
B

ABA(S)
A

B

A2(S)
A

A

Avoid exploration of disjunctions ! Over-approximation by a single quadric

Basic tool

Given 2 centered ellipsoids, find a tight overapproximating quadric.

Avoid recourse to LMI (semidefinite programming) – too slow since
the primitive will be called repeatedly.
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Löwner order

A symmetric matrix A is positive semidefinite (PSD) if

λmin(A) > 0 ≡ ∀x , xTAx > 0 ≡ A < 0

The order 4 is called the Löwner order for symmetric matrices:

A 4 B ⇐⇒ B − A < 0

Given a PSD matrix A, we define the ellipsoid as EA:

EA =
{

x ∈ Rn | xTA−1x 6 1
}

=
{

x ∈ Rn | xxT 4 A
}
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The ordered set of ellipsoids

Orderings on ellipsoids and
matrices are equivalent:

EA ⊆ EB ⇐⇒ A 4 B

Invertible linear transformations
yield order automorphisms on the
space of ellispoids :

L • EA = ELALT
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Krein-Rutman (1950): A cone defines a
lattice order iff it is simplicial. So, neither
quadratic sets nor ellipsoids constitutes a
lattice

Kadison (1951): Symmetric matrices
under Löwner order constitute an
anti-lattice: A,B have a least upper
bound only if A 4 B or A < B .

What is the structure of the set of least upper bounds?
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The inertia of the symmetric matrix M is the tuple (p, q, r), where

p: number of positive eigenvalues of M ,

q: number of negative eigenvalues of M ,

r : number of zero eigenvalues of M .

Definition (Indefinite orthogonal group)

O(p, q) is the group of matrices S preserving the quadratic form
x1

1 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q:

S
(

Ip
−Iq

)
ST =

(
Ip
−Iq

)
=: Jp,q

O(1, 1) is the group of hyperbolic isometries
(
ε1ch t ε2sh t
ε1sh t ε2ch t

)
,

where ε1, ε2 ∈ {−1, 1}
O(p)×O(q) is a maximal compact subgroup of O(p, q).
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Quantitative version of Kadison theorem

Theorem (Stott, arXiv:1612.05664, Proc. AMS)

Given symmetric matrices A,B and (p, q, r) the inertia of A− B, the
set of maximal lower bounds of {A,B} can be identified to

O(p, q)
/
O(p)×O(q) ∼= Rpq

Given P ∈Mn,p+q s.t. A− B = PJp,qPT , the parametrization is:

S 7→ A + PS
(

0p
Iq

)
STPT
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Illustration of the theorem

The inertia of A− B is (1, 1, 0).

O(1, 1)
/
O(1)×O(1) is the group of hyperbolic rotations:{(

ch(t) sh(t)
sh(t) ch(t)

)
| t ∈ R

}
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Minimal upper bound selection requirements

while (rand_bool)

y <- x;

x <- 0.5*x + y;

end

A = ( 0.5 1
1 0 )

while (rand_bool)

z’ <- x’;

x’ <- 0.5*x’ + 1.5*y’;

y’ <- z’ - y’;

end

B = ( 0.5 1.5
1 −1 )

The programs are similar up to a linear change of variable:(
x ′

y ′
)

= ( 1 −1
0 2 )( x

y )

⇒ Invariants should only differ by a linear change of variables.

Natural requirement for a minimal upper bound selection:

Invariance under linear change of variables.
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Minimal upper bound selection

A minimal upper bound selection t should satisfy:

EA t EB is a minimal upper bound of (EA, EB),

(L • EA) t (L • EB) = L • (EA t EB) for any linear operator L.

Several selections have been used:
A+B

2
+ 1

2
[(A− B)(A− B)]1/2, compare with

max(a, b) = (a + b)/2 + |a − b|/2

lim
n→+∞

(
An + Bn

)−1/2(
An+1 + Bn+1

)(
An + Bn

)−1/2
,
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A+B

2
+ 1

2
[(A− B)(A− B)]1/2, compare with

max(a, b) = (a + b)/2 + |a − b|/2

lim
n→+∞

(
An + Bn

)−1/2(
An+1 + Bn+1

)(
An + Bn

)−1/2
,
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Minimal upper bound selection

The minimum volume covering ellipsoid has been vastly studied:

Optimal design and statistics (Titterington 1973-80),

Computational geometry (Khachiyan & Todd 1993)

Pattern recognition (Glineur 1998),

Computer graphics (Bouville 1985, Eberly ’01),

Convex Optimization (Nesterov, Boyd & Vanderberghe ’04),

and applied to abstract interpretation (Roux ’11).

Usually computed using SDP:[
A t B

]−1
= arg max

X < 0

X 4 A−1

X 4 B−1

log det X
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Theorem (Allamigeon et al., EMSOFT 2015 + ACM Emb. Software)

The mimimum volume ellipsoid is the unique selection of a minimal
upper bound which commutes with the action of the linear group. It
is given by

A t B =
1

2
A1/2

[
I + A−1/2BA−1/2 + |I − A−1/2BA−1/2|

]
A1/2

with |X | = (XXT )1/2.
It can be computed using O(n3) arithmetic operations, involving

2 Cholesky decompositions,

1 inversion (triangular),

5 matrix multiplications.

The computation is much more tractable than SDP.

Stephane Gaubert (INRIA and CMAP) Noncommutative Dynamic Programming NUMOC 37 / 66



Structure of analyzed programs

We shall use the invariant join to compute invariants of some
switched programs written in a toy language:

while (rand_bool)

switch (rand_int)

case 0:

I0(x);

...

case p:

Ip(x);

end

end

Ik is a statement of the form:

a variable declaration or
deletion

a linear variable assignment
xi <- L(x);

a nested sub-program of the
form on the left

This is a very small language, but already very difficult to analyze.
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Reduction to a non-linear fix-point problem

A simple example

init(x);

while (rand_bool)

switch (rand_bool)

case 0:

x <- A0(x);

case 1:

x <- A1(x);

end

end

A0 and A1 are invertible
linear operators.

Our stability problem is

(A0 • ES) ∪ (A1 • ES) ⊆ ES .

This is relaxed into

(A0SAT
0 ) t (A1SAT

1 ) 4 S .

We refine this into:

T (S) = (A0SAT
0 )t(A1SAT

1 ) = λS , λ < 1 .

This is our post-fix-point/eigenvector
problem.
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What we saw
T (S) = (A0SAT

0 ) t (A1SAT
1 )

is the simplest instance of “noncommutative” Bellman operator.
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Classical Bellman operators

T : Rn → Rn,
Ti(x) = max

a∈A

(
r ai +

∑
j

Pa
ijx)

Pij > 0,
∑

j Pij = 1.

Passing to noncommutative: replace Rn by S+
n , space of PSD

matrices.
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Zoo of “noncommutative” dynamic programming

operators

0-player, stochastic, quantum channels = completely positive
operators = Kraus maps,

T (X ) =
∑
i

AiXA†i ,
∑
i

A†i AI = I

1-player deterministic

T (X ) = (A0XAT
0 ) t (A1XAT

1 )

1-player stochastic, generalized Riccati flows (Qu, SG, JDE
2014)

Ṗ+A′P+PA+C ′PC+Q = (PB+C ′PD+L′)(R+D ′PD)−1(B ′P+D ′PC+L)
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Tropical Kraus map

Definition

T (X ) :=
∨

16i6m

A>i XAi

where
∨

denotes the set of least upper bounds in Löwner order
(multivalued map).

Proposition (SG, Stott arXiv:1706.04471)

Suppose that α2X ∈ T (X ) with α > 0 and X positive definite. Then,

ρ(A1, . . . ,Am) 6 α

Moreover, if α 6 1, the ellipsoid {y | y>Xy 6 1} is invariant.
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Tropical Kraus map associated to a path complete

automaton

p := mN number of switching sequences.
T : (S+

n )p → (S+
n )p

Tz(X ) :=
∨

w∈[m]N ,i∈[m]
w ·i=z

A>i XwAi

Theorem (SG, Stott arXiv:1706.04471)

Suppose that α2X ∈ T (X ) with α > 0 and X positive definite. Then,

ρ(A1, . . . ,Am) 6 α

Reduces to the earlier p = 1 case by a block diagonal construction.
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Perron-Frobenius theorem for Tropical Kraus maps

Let t denote the minimal volume selection,

Tz(X ) 3 Tz(X )sel := tw∈[m]N ,i∈[m]
w ·i=z

A>i XwAi

Theorem (SG, Stott ibid.)

Suppose 〈A1, . . . ,Am〉 is irreducible. Then, there exists α > 0 and X
positive definite such that α2X = T sel(X ) ∈ T (X ).
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Sketch of proof

Apply Brouwer fixed point theorem to X 7→ T (X )/ trace(X ) which
preserves the noncommutative simplex (trace one PSD matrices).
QED

Caveat. Incorrect proof. t is continuous on the open cone int S+
n but

not on the closed cone S+
n . We must construct an invariant set in the

interior of the cone by exploiting the irreducibility condition.
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Same idea works for McEneaney’s switched LQ problem, consider the
following noncommutative Bellman operator

Tz(X ) :=
∨

w∈[m]N ,i∈[m]
w ·i=z

RiccFlowτ
i (Xw )

Lemma

X ∈ T (X ) ⇒
V (y) := sup

w∈[m]N
y>Xwy

satisfies S tV 6 V , t > 0.

S tV ' V if the selection of X is well chosen.
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How to solve the nonlinear eigenproblem?

T sel
z (X ) := tw∈[m]N ,i∈[m]

w ·i=z

A>i XwAi = α2Xz , ∀z ∈ [m]N

or the fixed point problem

T sel
z (X ) := tw∈[m]N ,i∈[m]

w ·i=z

RiccFlowτ
i (Xw ) = Xz ∀z ∈ [m]N

→ evaluating every coordinate T sel
z (X ) is tractable, SDP or Cholesky

in small dimension (n� mN)

Idea: iterative fixed point methods (large scale, SDP-free)
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Take home message :

invariant Finsler metrics on the cone of positive definite
matrices

the standard Riccati flow is a contraction in these metrics

Ṗ = A′P + PA + D − PΣP , D, Σ > 0 .
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Thompson’s part metric

C closed convex pointed cone in a Banach space C ,
x 6 y iff y − x ∈ C

dT (x , y) = inf{logα | α−1x 6 y 6 αx}

C = Rn
+, dT (x , y) = ‖ log x − log y‖∞.

C = S+
n , dT (A,B) = ‖ spec log A−1/2BA−1/2‖∞ =

‖ log spec A−1B‖∞.
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Invariant metrics on the cone of positive matrices

d(UAU ′,UBU ′) = d(A,B) ,U ∈ GL(n)

Thompson’s part metric:

dT (A,B) = ‖ log spec A−1B‖∞, A,B � 0

dT (A,B) = inf
γ

∫ 1

0

‖γ̇(t)γ(t)−1‖∞ dt.

Riemannian metric:

d2(A,B) = inf
γ

∫ 1

0

‖γ̇(t)γ(t)−1‖2dt = ‖ log spec A−1B‖2

Invariant Finsler metric, ν convex positively homogeneous

dν(A,B) = inf
γ

∫ 1

0

ν(γ̇(t)γ(t)−1)dt = ν(log spec A−1B)
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The map X 7→ X s is a geodesic in any of the invariant Finsler metrics
(including Thompson dT and Riemann d2).

All these metrics have nonpositive curvature in the sense of
Busemann (Corach, Bhatia,. . . ).

d
(
X s ,Y s) 6 s d(X ,Y )
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Theorem (Bougerol 93)

The standard Riccati operator (flow) is a strict contraction mapping
in the invariant Riemannian metric.

Theorem (Liverani, Wojtkowski 94)

The standard Riccati operator (flow) is a strict contraction mapping
in Thompson’s part metric.

Theorem (Lawson and Lim 08)

The standard Riccati operator (flow) is a strict contraction mapping
in any invariant Finsler metric.

The proof relies on the symplectic structure of the standard Riccati
flow
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contraction of Riccati flow / McEneaney’s problem

For all m ∈ {1, . . . ,M}, the semigroup {Sm
t }t corresponds to the

flow of an indefinite Riccati equation:

Ṗ = (Am)′P + PAm + Dm + PΣmP . (1)

sign changed, −PΣmP in Bougerol, Liverani, Wojtwoski. . . !

Theorem (SG, Qu JDE 12)

Under assumptions (a bit more than well posedness), there is P0 � 0
and α > 0 such that for all solutions P1(·),P2(·) : [0,T ]→ (0,P0) of
the indefinite Riccati flow (1) we have:

dT (P1(t),P2(t)) 6 e−αtdT (P1(0),P2(0)), ∀t ∈ [0,T ] .
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Contraction rate in Thompson’s part metric

Denote by M t
s (·) the flow associated to the ODE

ẋ(t) = φ(t, x(t))

φ is a continuous function, C 1 in the second variable with bounded
differential. Let U ⊆ int C be an open set satisfying λU ⊆ U for all
λ ∈ (0, 1].

Theorem (SG, Qu JDE 12)

If the flow is order-preserving, then the best constant α such that

dT (M t
s (x1),M t

s (x2)) 6 e−α(t−s)dT (x1, x2), s 6 t < tU(s, xi)

holds for all xi ∈ U , i = 1, 2, is given by

α := − sup
s∈J, x∈U

λmax

((
Dφs(x)x − φ(s, x)

)
x−1
)
.
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Lipschitz properties of the invariant join

Lipt := sup
X1,X2,Y1,Y2

d(X1 t X2,Y1 t Y2)

dm(X1 ⊕ X2,Y1 ⊕ Y2)

where X1 ⊕ X2 := blockdiag(X1,X2).

Theorem (Stott, PhD)

The Lipschitz constant of the invariant join in the Thompson metric
satisfies:

1

π
log

n

4
6 LipT t 6 2 +

4

π
log n + o(log n) .

The invariant join is nonexpansive in the Riemann metric:

LipR t = 1 .

Proof relies on the theory of Schur multipliers.
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The classical power algorithm

The power algorithm is used to find the leading eigenvector of large
matrices, in the PageRank algorithm for instance:

PageRank algorithm

The PageRank iteration is

xT
k+1 = xT

k

[
(1− γ)P + γE

]
with 0 < γ < 1, E a rank 1 matrix and P denotes the transition
matrix of a random walker on the web-graph.

This algorithm introduces a perturbation through a damping process
with γ.
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The modified power algorithm

From our example, we look for an eigenvector of

T : S+
n → S+

n

X 7→ (A0XAT
0 ) t (A1XAT

1 ) .

The modified iteration is:

Xk+1 =
(1− ε)T (Xk) + εI

tr
[
(1− ε)T (Xk) + εI

]
with a damping parameter 0 < ε < 1.

Upon convergence, X∞ is an invariant if

1

1− ε
tr
[
(1− ε)T (X∞) + εI

]
< 1

Allamigeon et al., EMSOFT15 + ACM Emb. Soft.
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The multiplicative power algorithm

Multiplicative damping:

Allamigeon et al., ibid.

The modified iteration is:

Xk+1 =
T (Xk)1−ε

tr
[
T (Xk)1−ε

]
with a damping parameter 0 < ε < 1.

Upon convergence,
T (X∞) ≈ λX∞

The eigenvalue λ is fundamental in absorbing numerical errors,
ensuring robustness of the invariant if λ < 1.
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Benchmarks

We simulate a highly correlated damped oscillator, with a switch
mechanism, yielding non-sparse matrices:

( xk+1
vk+1 ) =

(
In hIn
−hM In−hD

)
φ(k)

( xk
vk ) ,

Comparison between
computation times:

SDP

Power

Usually, less than 100
Power Iterations are
needed.
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Benchmarks

Comparison between
computation times:

SDP

Power (mult)

Power (add)

Again, less than 100
Power Iterations were
needed.
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Convergence analysis of the power algorithm relies on the nonpositive
curvature properties of the Thompson and Riemann metrics.

Convergence if damping is large enough

See Allamigeon, SG, Goubault, Putot, Stott, EMSOFT 2015 and
ACM Trans on Embedded Software

Current refinements, using Krasnoselski-Mann iteration in spaces of
nonpositive curvature, xk+1 = midpoint(T (xk), xk) with T
nonexpansive.

Stephane Gaubert (INRIA and CMAP) Noncommutative Dynamic Programming NUMOC 62 / 66



LMI automata vs tropical Kraus

depth 3 LMI versus depth 6 tropical Kraus / joint spectral radius

Dimension n 5 10 20 30 40 45 50 100 500
CPU time (tropical) 0.9 s 1.5 s 3.5 s 7.9 s 13.7 s 18.1 s 25.2 s 1min 8min

CPU time (LMI) 3.1 s 4.2 s 31 s 3min 18min − − − −
Upper bound ρ (tropical) 2.767 3.797 5.4093 6.2038 7.3402 7.687 8.1591 11.487 25.44

Upper bound ρ (LMI) 2.7627 3.7426 5.3891 6.1942 7.3363 − − − −

LMI versus tropical Kraus when the depth d varies

Depth d 2 4 6 8 10

Size of [m]N 8 32 128 512 2048
CPU time
(tropical)

0.03s 0.07s 0.4s 2.0s 9.0s

CPU time
(LMI)

1.9s 4.0s 24s 1min 10min

Upper bound
ρ (tropical)

1.842 1.821 1.804 1.800 1.801

Upper bound
ρ (LMI)

1.8216 1.7974 1.7957 1.7922 1.7905
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Tropical Kraus method applied to McEneaney’s

switched linear quadratic problem

Dimension 2 6 6 20 20
] switches 3 6 6 2 4

τ 0.05 s 0.2 0.1 0.1 0.1
(] switches)d 81 216 1296 128 256
Initial error 0.78 1.12 1.12 4.2 4.79
Final error 0.047 0.071 0.090 0.0006 0.17
Iterations 194 115 200 55 288
CPU time 8 s 41 s 5 min 5 s 2.5 min
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Concluding remarks

Tropical Kraus operators = analogues of completely positive
maps in quantum information = noncommutative 1-player
deterministic Bellman operators

Generalized Riccati flows are other incarnations of
noncommutative Bellman operators

Non-linear fixed point schemes for tropical Kraus operators yield
new, scalable methods, avoiding interior points.

Potential of major speedup for switched control problems
(Barabanov norms, HJ PDE with piecewise quadratic
Hamiltonian).

Convergence analysis: too conservative estimates so far!

The selection t of a least upper bound creates a relaxation gap.
We would need to change the selection dynamically to reduce
this gap and get that the error does tend to zero.
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