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Bilevel Optimization Problem

Bilevel Optimization Problem

Minimize F (x, y)

s.t. G(x, y) ∈ K

H(x, y) = 0

y ∈ Y (x)


upper level problem

where Y (x) is the set of minimizers of

Minimize f (x, y)

w.r.t. y

s.t. g(x, y) ∈ C

h(x, y) = 0


lower level problem NLPL(x)

(optimistic viewpoint)
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Applications

I locomotion and biomechanics
[K. Hatz: Efficient numerical methods for hierarchical dynamic optimization with application to cerebral palsy gait modeling, Phd

thesis, Uni Heidelberg, 2014]

[K. Mombaur: Stability Optimization of Open-loop Controlled Walking Robots. PhD thesis, Uni Heidelberg, 2001.]

[S. Albrecht: Modeling and numerical solution of inverse optimal control problems for the analysis of human motions, Phd thesis, TU

München, 2013.]

I optimal control under safety constraints
[M. Knauer: Bilevel-Optimalsteuerung mittels hybrider Lösungsmethoden am Beispiel eines deckengeführten Regalbediengerätes

in einem Hochregallager. PhD thesis, Uni Bremen, 2009.]

I Red Bull Air Races (upper level : safety/fairness, lower level : minimize lap time)
[F. Fisch: Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal

Control Problems, Phd thesis, FSD, TUM, 2011]

I Stackelberg dynamic games
[H. Ehtamo, T. Raivio: On Applied Nonlinear and Bilevel Programming for Pursuit-Evasion Games, JOTA, 108 (1), pp. 65-96, 2001]

I optimization of mechanical multibody systems with contact and friction
I terminal aircraft scheduling

[ M. Sama, K. Palagachev, A. D’Ariano, M. Gerdts, D. Pacciarelli: Terminal Control Area Aircraft Scheduling and Trajectory

Optimization Approaches, Proceedings of the Applied mathematical programming and Modelling (APMOD 2016) conference, Brno,

Czech Republic, 2016]

I ...
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Overview on Approaches

General idea: Reduction to single level optimization problem

Black Box Approach
View lower level problem as parametric optimal control problem:

Minimize F (x, y(x)) s.t. G(x, y(x)) ∈ K , H(x, y(x)) = 0

issues: properties of map x 7→ y(x) (non-smooth, discontinuous, set-valued)?

MPCC approach
Replace lower level problem by its first order necessary conditions and solve single
level (mixed-integer) MPCC!

issues: not equivalent to bilevel problem, treatment of MPCC & state constraints

Value Function Approach
Use value function of lower level problem to obtain single level problem.

issues: computation of value function, properties of value function?
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Bilevel Optimal Control Problem

Bilevel Optimal Control Problem

Minimize Φ(x(tf ), y(tf ))

s.t. y′(t) = F (x(t), y(t), v(t)), y(t0) = y0

v(t) ∈ V

(x, u) ∈ S(y(tf ))

 upper level problem

where S(yf ) is the set of minimizers of

Minimize ϕ(x(tf ))

w.r.t. (x, u)

s.t. x′(t) = f (x(t), u(t)), x(t0) = x0

u(t) ∈ U

ψ(x(tf ), yf ) = 0


lower level problem
OCPL(yf )

Notion:
I upper level variables: (y, v) ∈ W 1,∞([t0, tf ], Rny )× L∞([t0, tf ], Rnv )

I lower level variables: (x, u) ∈ W 1,∞([t0, tf ], Rnx )× L∞([t0, tf ], Rnu )
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Bilevel Optimization Problem

Solution operator: For a given control u let xx0,u(·) denote a solution of the IVP

x′(t) = f (x(t), u(t)), x(t0) = x0

Feasible set of OCPL(y): (y ∈ Rny )

A(y) :=
{

u ∈ L∞([t0, tf ],U)
∣∣∣ ∃ xx0,u(·) ∈ W 1,∞([t0, tf ],Rnx ) : ψ(xx0,u(tf ), y) = 0

}

Value function of OCPL(y)

V(y) := inf
u∈A(y)

ϕ(xx0,u(tf ))

(convention: inf ∅ := +∞)
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Bilevel Optimization Problem

Assumptions

(A1) The functions Φ, F , ϕ and f are continuously differentiable and ψ is twice
continuously differentiable with respect to all arguments.

(A2) V and U are compact and convex subsets of Rnv and Rnu respectively.

(A3) There exists an integrable function k : [t0, tf ]→ R such that

‖f (x, u)‖ ≤ k(t)(1 + ‖x‖) ∀ (t, x, u) ∈ [0, T ]× Rnx × U.

(A4) f (x,U) is a convex subset of Rnx for every x ∈ Rnx .

(A5) ∇yψ(x, y) has a full rank for every (x, y) ∈ Rnx × Rny .
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Bilevel Optimal Control Problem

Theorem (Lipschitz continuity)
Let (A1)− (A5) hold and let y ∈ Rny be such that there exists a neighborhood Bε(y)
of y and a constant Cy > 0, such that for every y ′ ∈ Bε(y), S(y ′) 6= ∅, and for every
(x′, u′) solution of OCPL(y ′) with associated multipliers (λ′0, λ

′, σ′), it holds λ′0 = 1
and ‖σ′‖ ≤ Cy .

Then V is Lipschitz continuous in y and

∂V(y) ⊆ co
⋃

(x,u)∈S(y)


ζ ∈ Rny

∣∣∣∣∣∣∣∣∣∣∣

∃ λ ∈ W 1,∞([t0, tf ],Rnx ), σ ∈ Rnψ :

λ′(t) = −∇x f (x(t), u(t))>λ(t)

λ(tf ) = ∇ϕ(x(tf )) +∇xψ(x(tf ), y)>σ

ζ = ∇yψ(x(tf ), y)>σ


.
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Single Level Reformulation

Single level reformulation of bilevel OCP: ( equivalent, nonsmooth, CQs typically fail)

SLOCP

Minimize Φ(x(tf ), y(tf ))

s.t. y ′(t) = F (x(t), y(t), v(t)), y(t0) = y0

x′(t) = f (x(t), u(t)), x(t0) = x0

u(t) ∈ U, v(t) ∈ V

ψ(x(tf ), y(tf )) = 0

ϕ(x(tf )) ≤ V(y(tf ))

[J. V. Outrata: On the numerical solution of a class of Stackelberg problems, Z. Oper. Res. 34
(1990), 255–277]
[J. J. Ye: Necessary conditions for bilevel dynamic optimization problems. SICON 33 (1995),
1208–1223]
[J. J. Ye: Optimal strategies for bilevel dynamic problems, SICON 35 (1997), 512–531]
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Single Level Reformulation

Definition (Calmness constraint qualification)
Let (x̂, ŷ, û, v̂) be an optimal solution for SLOCP. SLOCP is said to be partially calm in
(x̂, ŷ, û, v̂) with modulus µ ≥ 0, if for every (x, y, u, v) satisfying

x′(t) = f (x(t), u(t)), x(t0) = x0

y ′(t) = F (x(t), y(t), v(t)), y(t0) = y0

u(t) ∈ U, v(t) ∈ V

ψ(x(tf ), y(tf )) = 0

we have

Φ(x(tf ), y(tf ))− Φ(x̂(tf ), ŷ(tf )) + µ (ϕ(x(tf ))− V(y(tf ))) ≥ 0.

[J. J. Ye and D. L. Zhu: Optimality conditions for bilevel programming problems, Optimization, 33
(1995), 9–27]
[J. J. Ye, D. L. Zhu and Q. J. Zhu: Exact penalization and necessary optimality conditions for
generalized bilevel programming problems, SIOPT 7 (1997), 481–507]
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Single Level Reformulation

Theorem (Necessary conditions I)
Let (A1)− (A5) hold and let (x̂, ŷ, û, v̂) be a local solution of SLOCP, such that it is
partially calm in (x̂, ŷ, û, v̂) with modulus µ ≥ 0.

Then there exist λ0 ≥ 0, px ∈ W 1,∞([t0, tf ],Rnx ), py ∈ W 1,∞([t0, tf ],Rny ),
ξ ∈ Rnψ , and h ∈ R, such that

p′x (t) = −∇x f (x̂(t), û(t))>px (t)−∇x F (x̂(t), ŷ(t), v̂(t))>py (t)

p′y (t) = −∇y F (x̂(t), ŷ(t), v̂(t))>py (t)

min
u∈U

{
f (x̂(t), u)>px (t)

}
= f (x̂(t), û(t))>px (t)

min
v∈V

{
F (x̂(t), ŷ(t), v)>py (t)

}
= F (x̂(t), ŷ(t), v̂(t))>py (t)

px (tf ) = λ0∇x Φ(x̂(tf ), ŷ(tf )) + λ0µ∇xϕ(x̂(tf )) +∇xψ(x̂(tf ), ŷ(tf ))>ξ

py (tf ) ∈ λ0∇y Φ(x̂(tf ), ŷ(tf ))− λ0µ∂V(ŷ(tf )) +∇yψ(x̂(tf ), ŷ(tf ))>ξ

f (x̂(t), û(t))>px (t) + F (x̂(t), ŷ(t), v̂(t))>py (t) = h
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Single Level Reformulation

Theorem (Necessary conditions II)
If the matrix [

∇u f (x̂(t), û(t)) 0

0 ∇v F (x̂(t), ŷ(t), v̂(t))

]

is of full rank a.e. in (t0, tf ) and there exist a solution d̂ = (d̂x , d̂y , d̂u, d̂v ) of the system

d′x (t) = ∇x f (x̂, û)dx (t) +∇u f (x̂, û)du(t),

d′y (t) = ∇x F (x̂, ŷ, v̂)dx (t) +∇y F (x̂, ŷ, v̂)dy (t) +∇v F (x̂, ŷ, v̂)dv (t),

dx (0) = 0, dy (0) = 0

∇xψ(x̂(tf ), ŷ(tf ))dx (tf ) +∇yψ(x̂(tf ), ŷ(tf ))dy (tf ) = 0,

such that û(t) + d̂u(t) ∈ int(U) and v̂(t) + d̂v (t) ∈ int(V ) almost everywhere in
(t0, tf ), then λ0 = 1.
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Proof Idea

Outline of proof:
I calmness CQ allows to shift ϕ(x(tf ))− V(y(tf )) ≤ 0 as a penalty term into

objective

I apply necessary conditions of Fritz John type from non-smooth analysis in
[R. Vinter: Optimal control, Birkhäuser, Bostson, 2010]

I show normality of multiplier λ0 by MFCQ condition and contradiction

Details:

[K. Palagachev, M. Gerdts: Necessary conditions for a class of bilevel optimal control problems
exploiting the value function, Pure and Applied Functional Analysis, Vol. 1(4), pp. 505-524, 2016]
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Lower Level Problem (Pursuer)

Motivation: pursuit-evasion dynamic Stackelberg game in the 2d plane

lower level problem OCPL(zP,f )

Minimize

tf =

∫ tf

0
1dt

subject to the constraints

z′P(t) = vP(t), zP(0) = zP,0, zP(tf ) = zP,f ,

v ′P(t) = uP(t), vP(0) = vP(tf ) = 0,

uP,i (t) ∈ [−umax , umax ], i = 1, 2.

Notion:
I zP = (xP , yP)> : position of pursuer
I zP,f is an input parameter from an upper level problem.
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Value Function / Minimum Time Function

Optimal value function of OCPL: (=minimum time function)

V(xP,f , yP,f ) = max

2

√
|xP,0 − xP,f |

umax
, 2

√
|yP,0 − yP,f |

umax



-100
-50

 0
 50

 100-100

-50

 0

 50

 100

 0

 5

 10

 15

 20

value function/minimum time function

x_Pf

y_Pf

 0

 5

 10

 15

 20

(xP,0 = yP,0 = 0, umax = 1)
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Upper Level Problem (Evader)

upper level problem (OCP-U)
Minimize

−tf +

∫ tf

0

α1

2
w(t)2 +

α2

2
a(t)2dt

subject to the constraints

x′E (t) = vE (t) cosψ(t), xE (0) = xE,0, xE (tf ) = xP(tf ),

y ′E (t) = vE (t) sinψ(t), yE (0) = yE,0, yE (tf ) = yP(tf ),

ψ′(t) =
vE (t)
`

tan δ(t), ψ(0) = ψ0,

δ′(t) = w(t), δ(0) = δ0,

v ′E (t) = a(t), vE (0) = vE,0,

vE (t) ∈ [0, vE,max ],

w(t) ∈ [−wmax ,wmax ],

a(t) ∈ [amin, amax ].
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Reformulation

Equivalent single level problem
Minimize

−tf +

∫ tf

0

α1

2
w(t)2 +

α2

2
a(t)2dt

subject to the constraints

x′E (t) = vE (t) cosψ(t), xE (0) = xE,0,

y ′E (t) = vE (t) sinψ(t), yE (0) = yE,0,

ψ′(t) =
vE (t)
`

tan δ(t), ψ(0) = ψ0,

δ′(t) = w(t), δ(0) = δ0,

v ′E (t) = a(t), vE (0) = vE,0,

z′P(t) = vP(t), zP(0) = zP,0, zP(tf ) = zE (tf ),

v ′P(t) = uP(t), vP(0) = vP(tf ) = 0,

vE (t) ∈ [0, vE,max ], w(t) ∈ [−wmax ,wmax ], a(t) ∈ [amin, amax ],

uP(t) ∈ [−umax , umax ]2, tf ≤ V(xE (tf ), yE (tf ))
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Numerical Issue

Caution!
The constraint

tf ≤ V(xE (tf ), yE (tf ))

with value function V of continuous OCP may become infeasible, if it is used in the
discretized problem!

 the value function Vh of the discretized problem should be used

 or use relaxation
tf ≤ V(xE (tf ), yE (tf )) + ε, ε > 0
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Numerical Results

Trajectories
(green=upper level, red=lower level)
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tf ≈ 18.01



Approaches for bilevel optimal control problems
Matthias Gerdts

Numerical Results
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Value Function

How to compute the value function?

I analytically

I Hamilton-Jacobi-Bellman theory (continuous case) / dynamic programming
(discrete case) [Grüne, Zidani, Bokanowski, Bardi/Capuzzo-Dolcetta, Falcone,
Kalise, Mitchell, Turova/Botkin, ...]
 software ROC-HJ [Bokanowski/Zidani]

I in case of minimum time function: reachable sets [Baier/Le 2015, Colombo/Le
2015, ...]

I pointwise evaluation at (x(t0), x(tf ), p) using suitable optimal control software
 typically only local minima are obtained
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Interaction of Robots

Scenario:

Interaction of two robots in multiple phases, e.g.
I phase 1: approach
I phase 2: interaction/rendezvous/docking
I phase 3: separation

 multiphase optimal control problem

 can be transformed to standard optimal control problem
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Interaction of Robots

One step further:

I Interaction of many robots to fulfill predefined jobs
I Each job can have multiple phases, e.g.

I phase 1: approach
I phase 2: interaction/rendezvous/docking
I phase 3: separation

If sequence of jobs is fixed ...

 multiphase optimal control problem with free initial and final time

If sequence of jobs and starting times of jobs are not fixed ...

 coupling of scheduling problem and optimal control problem
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Bilevel Optimization Problem

Mixed-integer bilevel optimization problem
Bilevel structure:

I upper level: scheduling problem

 find starting times of jobs such that total time is minimized

I lower level: (multiphase) optimal control problem

 for a given starting time find optimal trajectory

Notation: (single phase)
I jobs 1, . . . , J
I tj = starting time of job j
I dj (t) = duration of job j with starting time t  solution of optimal control problem
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Bilevel Optimization Problem

Scheduling Problem (mixed-integer optimization problem)
Minimize

max
j=1,...,J

{tj + dj (tj )}

w.r.t.
tj (j = 1, . . . , J), wjk (j, k = 1, . . . , J, j 6= k)

s.t.

tj + dj (tj )− tk ≤ M · wjk (j 6= k)

tk + dk (tk )− tj ≤ M · (1− wjk ) (j 6= k)

tj ≥ 0

wjk ∈ {0, 1} (j, k ∈ {1, . . . , J})

(M > 0 sufficiently large number)
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Bilevel Optimization Problem

Input parameter: initial times tj for jobs j = 1, . . . , J

Parametric Optimal Control Problem OCP(tj ) for Job j

Minimize ∫ tj +Tj

tj
f0(t, x(t), u(t))dt

w.r.t. (x, u, Tj ) s.t.

x′(t)− f (t, x(t), u(t)) = 0 tj ≤ t ≤ tj + Tj

c(t, x(t), u(t)) ≤ 0 tj ≤ t ≤ tj + Tj

s(t, x(t)) ≤ 0 tj ≤ t ≤ tj + Tj

ψ(x(tj ), x(tj + Tj )) = 0

Output: phase durations dj (tj ) = Tj , for jobs j = 1, . . . , J
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MPCC Approach

Approach:
I replace lower level OCP by its necessary conditions

 discretize first vs. stay in continuous formulation

I solve resulting mixed-integer MPCC

Standard OCP

Minimize Φ(x(0), x(1))

s.t. x′(t)− f (x(t), u(t)) = 0 a.e. in [0, 1]

c(x(t), u(t)) ≤ 0 a.e. in [0, 1]

s(x(t)) ≤ 0 in [0, 1]

ψ(x(0), x(1)) = 0
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Local Minimum Principle (for Standard OCP)

Augmented Hamiltonian:
H := λ

>f (x, u) + η>c(x, u)

Necessary Conditions

Adjoint equation: (λ, µ ∈ BV )

λ(t) = λ(1) +

∫ 1

t
∇x H[τ ]dτ +

∫ 1

t
∇x s[τ ]dµ(τ )

Transversality conditions:

λ(0)> = −`0Φ′x0
− ψ′x0

>
σ, λ(1)> = `0Φ′x1

+ ψ′x1
>
σ

Stationarity of Hamiltonian:
∇uH[t] = 0

Complementarity conditions:
I 0 ≤ η(t) ⊥ − c[t] ≥ 0
I µ is monotonically increasing and constant on inactive parts.

(constraint qualification⇒ `0 = 1)
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Local Minimum Principle (for Standard OCP)

If order of pure state constraint s(x) ≤ 0 is one ...

λ is in W 1,∞([0, 1],Rnx ) and adjoint equation reduces to

λ′(t) = −∇x H[t]−∇x s[t]µ′(t)

and complementarity condition reads

0 ≤ µ′(t) ⊥ − s[t] ≥ 0

but: often the order of a pure state constraint is greater than one!
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Virtual Control Regularization

If order of pure state constraint is greater than one ...

Virtual Control Regularization of Standard OCP

Minimize Φ(x(0), x(1)) +
κ(α)

2

∫ 1

0
‖v(t)‖2dt

s.t. x′(t)− f (x(t), u(t)) = 0 a.e. in [0, 1]

c(x(t), u(t)) ≤ 0 a.e. in [0, 1]

s(x(t))− γ(α)v(t) ≤ 0 a.e. in [0, 1]

ψ(x(0), x(1)) = 0

→ mixed constraint

[Krumbiegel/Cherednichenko/Rösch’08, G./Hüpping’12]

Note: basically equivalent to penalty method, since v∗(t) = 1
γ(α)

max{0, s(x∗(t))}
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Bilevel Optimization Problem – MPCC Formulation

MPCC Formulation (single phase, standard problem)
Minimize

max
j=1,...,J

tj + dj

s.t.

tj + dj − tk ≤ M · wjk (j 6= k)

tk + dk − tj ≤ M · (1− wjk ) (j 6= k)

tj ≥ 0, wjk ∈ {0, 1} (j, k ∈ {1, . . . , J})

x (j)′(t) = f (j)(x (j)(t), u(j)(t)) t ∈ [tj , tj + d (j)]

0 = ψ(x (j)(tj ), x (j)(tj + dj ))

λ(j)′(t) = −∇x H(j)[t] (+ transversality conditions)

0 = ∇uH(j)[t]

0 ≤ η(j)(t) ⊥ − c(j)(x (j)(t), u(j)(t)) ≥ 0
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Numerical Solution

I solve∇uH(j)[t] = 0 for u, i.e. u = U(x (j), λ(j), η(j))

I apply branch & bound method and direct shooting technique with SQP

Treatment of MPCC:
I relaxation/regularization approaches

[Steffensen, Fletcher/Leyffer/Scholtes/Ralph, Kanzow/Schwartz, ...]

I penalty approaches
[Luo/Pang/Ralph, ...]

I best results by applying NCP function (Fischer-Burmeister) and relaxation

−ε ≤ ϕFB(η(j)(t),−c(j)(x (j)(t), u(j)(t))) ≤ ε

resp.
ϕFB(η(j)(t),−c(j)(x (j)(t), u(j)(t)))2 ≤ ε2

 small violation of constraints permitted
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Example

Optimal control problem for job j

Minimize

d (j)
1 + d (j)

2 +
c
2

∫ tj +d(j)
1 +d(j)

2

tj

‖u(t)‖2dt

s.t.

x1
′(t) = x3(t)

x2
′(t) = x4(t)

x3
′(t) = u1(t)

x4
′(t) = u2(t)

x(tj ) = [x (j)
0,1, x (j)

0,2, 0, 0]T

x(tj + d (j)
1 ) = (xT,1(tj + d (j)

1 ), xT,2(tj + d (j)
1 ), free, free)>

x(tj + d (j)
1 + d (j)

2 ) = (x (j)
0,1, x (j)

0,2, 0, 0)>

+ state constraint to avoid ball-shaped obstacle

(J = 3 jobs, P = 2 phases
per job)
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Motion Planning for Robots

[joint work with C. Landry, W. Welz, D.
Hömberg, R. Henrion]
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Vehicle Routing

1. Compute the approximated trajectories

2. Find optimal sequences [Skutella/Welz]

3. Compute exact trajectories that have not
been computed yet

4. If collision then
(a) add new constraint:

these two trajectories cannot be used
simultaneously

(b) goto 2.
else

(c) Compute the optimal sequences with the
exact trajectories

(d) If same output then return else goto 3.

endif

Details:
[C. Landry, W. Welz, M. Gerdts: Combining discrete and continuous optimization to solve
kinodynamic motion planning problems, Optimization and Engineering, Vol. 17(3), pp. 533-556,
2016]
[C. Landry, M. Gerdts, R. Henrion, D. Hömberg: Path planning and Collision avoidance for robots,
Numerical Algebra, Control and Optimization, Vol. 2(3), pp. 437-463, 2012]
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Summary

Approaches towards bilevel problems:
I black-box approach
I MPCC approach
I value function approach

Common issues:
I nonsmoothness, discontinuities, local minima
I equivalence to bilevel problem?
I numerical stability initial guess generation?
I branch & bound local minima? convex underestimators?
I ...
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Thanks for your attention!

Questions?

Further Information:

matthias.gerdts@unibw.de
www.unibw.de/lrt1/gerdts
www.optimal-control.de

Fotos: http://de.wikipedia.org/wiki/München
Magnus Manske (Panorama), Luidger (Theatinerkirche), Kurmis (Chin. Turm), Arad Mojtahedi (Olympiapark), Max-k (Deutsches Museum), Oliver Raupach (Friedensengel), Andreas Praefcke (Nationaltheater)
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