Approaches for bilevel optimal control problems

Matthias Gerdts (joint work with Konstantin Palagachev (UniBwM))

Institute of Mathematics and Applied Computing Department of Aerospace Engineering University of the Federal Armed Forces at Munich matthias.gerdts@unibw.de, www.optimal-control.de

NUMOC, Rome, June 19-23, 2017

Fotos: http://de.wikipedia.org/wiki/München

Magnus Manske (Panorama), Luidger (Theatinerkirche), Kurmis (Chin. Turm), Arad Mojtahedi (Olympiapark), Max-k (Deutsches Museum), Oliver Raupach (Friedensengel), Andreas Praefcke (Nationaltheater)

Contents

Introduction

Some Theory on Bilevel Optimal Control

Bilevel Scheduling Problems

MPCC Approach Routing, Collision Detection and Avoidance

Current Section

Introduction

Some Theory on Bilevel Optimal Control

Bilevel Scheduling Problems

MPCC Approach Routing, Collision Detection and Avoidance

Bilevel Optimization Problem

Minimize	F(x, y)
s.t.	$G(x,y) \in K$
	H(x,y)=0
	$y \in Y(x)$

where Y(x) is the set of minimizers of

Minimize	f(x, y)
w.r.t.	у
s.t.	$g(x,y) \in C$
	h(x,y)=0

upper level problem

lower level problem $NLP_L(x)$

(optimistic viewpoint)

Applications

locomotion and biomechanics

[K. Hatz: Efficient numerical methods for hierarchical dynamic optimization with application to cerebral palsy gait modeling, Phd thesis, Uni Heidelberg, 2014]

[K. Mombaur: Stability Optimization of Open-loop Controlled Walking Robots. PhD thesis, Uni Heidelberg, 2001.]

[S. Albrecht: Modeling and numerical solution of inverse optimal control problems for the analysis of human motions, Phd thesis, TU München, 2013.]

optimal control under safety constraints

[M. Knauer: Bilevel-Optimalsteuerung mittels hybrider Lösungsmethoden am Beispiel eines deckengeführten Regalbediengerätes in einem Hochregallager. PhD thesis, Uni Bremen, 2009.]

Red Bull Air Races (upper level : safety/fairness, lower level : minimize lap time) [F. Fisch: Development of a Framework for the Solution of High-Fidelity Trajectory Optimization Problems and Bilevel Optimal Control Problems, Phd thesis, FSD, TUM, 2011]

Stackelberg dynamic games

[H. Ehtamo, T. Raivio: On Applied Nonlinear and Bilevel Programming for Pursuit-Evasion Games, JOTA, 108 (1), pp. 65-96, 2001]

- optimization of mechanical multibody systems with contact and friction
- terminal aircraft scheduling

[M. Sama, K. Palagachev, A. D'Ariano, M. Gerdts, D. Pacciarelli: Terminal Control Area Aircraft Scheduling and Trajectory Optimization Approaches, Proceedings of the Applied mathematical programming and Modelling (APMOD 2016) conference, Brno, Czech Republic, 2016]

...

Current Section

Introduction

Some Theory on Bilevel Optimal Control

Bilevel Scheduling Problems

MPCC Approach Routing, Collision Detection and Avoidance

General idea: Reduction to single level optimization problem

General idea: Reduction to single level optimization problem

Black Box Approach

View lower level problem as parametric optimal control problem:

Minimize F(x, y(x)) s.t. $G(x, y(x)) \in K$, H(x, y(x)) = 0

issues: properties of map $x \mapsto y(x)$ (non-smooth, discontinuous, set-valued)?

General idea: Reduction to single level optimization problem

Black Box Approach

View lower level problem as parametric optimal control problem:

```
Minimize F(x, y(x)) s.t. G(x, y(x)) \in K, H(x, y(x)) = 0
```

issues: properties of map $x \mapsto y(x)$ (non-smooth, discontinuous, set-valued)?

MPCC approach

Replace lower level problem by its first order necessary conditions and solve single level (mixed-integer) MPCC!

issues: not equivalent to bilevel problem, treatment of MPCC & state constraints

General idea: Reduction to single level optimization problem

Black Box Approach

View lower level problem as parametric optimal control problem:

Minimize F(x, y(x)) s.t. $G(x, y(x)) \in K$, H(x, y(x)) = 0

issues: properties of map $x \mapsto y(x)$ (non-smooth, discontinuous, set-valued)?

MPCC approach

Replace lower level problem by its first order necessary conditions and solve single level (mixed-integer) MPCC!

issues: not equivalent to bilevel problem, treatment of MPCC & state constraints

Value Function Approach

Use value function of lower level problem to obtain single level problem.

issues: computation of value function, properties of value function?

Bilevel Optimal Control Problem

Bilevel Optimal Control Problem

Minimize	$\Phi(x(t_f), y(t_f))$)
s.t.	$y'(t) = F(x(t), y(t), v(t)), y(t_0) = y_0$	
	$\mathbf{v}(t) \in V$	
	$(x, \boldsymbol{u}) \in \boldsymbol{\mathcal{S}}(y(t_f))$	J

where $S(y_f)$ is the set of minimizers of

Minimize	$\boldsymbol{\varphi}(\mathbf{x}(t_f))$	
w.r.t.	(<i>x</i> , <i>u</i>)	laura la relación de la relación
s.t.	$x'(t) = f(x(t), u(t)), x(t_0) = x_0$	$OCP_{i}(v_{i})$
	$u(t) \in U$	
	$\boldsymbol{\psi}(\boldsymbol{x}(t_f),\boldsymbol{y}_f)=\boldsymbol{0}$	J

Notion:

- ▶ upper level variables: $(y, v) \in W^{1,\infty}([t_0, t_f], \mathbb{R}^{n_y}) \times L^{\infty}([t_0, t_f], \mathbb{R}^{n_v})$
- ▶ lower level variables: $(x, u) \in W^{1,\infty}([t_0, t_f], \mathbb{R}^{n_X}) \times L^{\infty}([t_0, t_f], \mathbb{R}^{n_U})$

Solution operator: For a given control u let $x_{x_0,u}(\cdot)$ denote a solution of the IVP

$$x'(t) = f(x(t), u(t)), \quad x(t_0) = x_0$$

Feasible set of $OCP_L(y)$: $(y \in \mathbb{R}^{n_y})$

$$\mathcal{A}(y) := \left\{ u \in L^{\infty}([t_0, t_f], U) \ \Big| \ \exists \ x_{x_0, u}(\cdot) \in W^{1, \infty}([t_0, t_f], \mathbb{R}^{n_x}) \ : \ \psi(x_{x_0, u}(t_f), y) = 0 \right\}$$

Value function of $OCP_L(y)$

$$\mathcal{V}(y) := \inf_{u \in \mathcal{A}(y)} \varphi(x_{x_0, u}(t_f))$$

(convention: $\inf \emptyset := +\infty$)

Assumptions

- (A₁) The functions Φ , F, φ and f are continuously differentiable and ψ is twice continuously differentiable with respect to all arguments.
- (A₂) V and U are compact and convex subsets of \mathbb{R}^{n_v} and \mathbb{R}^{n_u} respectively.
- (A₃) There exists an integrable function $k : [t_0, t_f] \rightarrow \mathbb{R}$ such that

 $\|f(x, u)\| \leq k(t)(1+\|x\|) \quad \forall (t, x, u) \in [0, T] \times \mathbb{R}^{n_x} \times U.$

- (A₄) f(x, U) is a convex subset of \mathbb{R}^{n_x} for every $x \in \mathbb{R}^{n_x}$.
- $(A_5) \ \nabla_y \psi(x, y)$ has a full rank for every $(x, y) \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_y}$.

Bilevel Optimal Control Problem

Theorem (Lipschitz continuity)

Let $(A_1) - (A_5)$ hold and let $y \in \mathbb{R}^{n_y}$ be such that there exists a neighborhood $B_{\varepsilon}(y)$ of y and a constant $C_y > 0$, such that for every $y' \in B_{\varepsilon}(y)$, $S(y') \neq \emptyset$, and for every (x', u') solution of $OCP_L(y')$ with associated multipliers $(\lambda'_0, \lambda', \sigma')$, it holds $\lambda'_0 = 1$ and $\|\sigma'\| \leq C_y$.

Then ${\boldsymbol{\mathcal{V}}}$ is Lipschitz continuous in y and

$$\partial \mathcal{V}(y) \subseteq co \bigcup_{(x,u)\in\mathcal{S}(y)} \left\{ \zeta \in \mathbb{R}^{n_y} \middle| \begin{array}{l} \exists \lambda \in W^{1,\infty}([t_0,t_f],\mathbb{R}^{n_x}), \ \sigma \in \mathbb{R}^{n_\psi} :\\ \lambda'(t) = -\nabla_x f(x(t),u(t))^\top \lambda(t) \\ \lambda(t_f) = \nabla \varphi(x(t_f)) + \nabla_x \psi(x(t_f),y)^\top \sigma \\ \zeta = \nabla_y \psi(x(t_f),y)^\top \sigma \end{array} \right\}$$

Single level reformulation of bilevel OCP: (~> equivalent, nonsmooth, CQs typically fail)

01	\sim	\sim	D
SL	U		Г

Minimize	$\Phi(x(t_f), y(t_f))$
s.t.	$y'(t) = F(x(t), y(t), v(t)), y(t_0) = y_0$
	$x'(t) = f(x(t), u(t)), x(t_0) = x_0$
	$u(t) \in U, v(t) \in V$
	$\psi(x(t_f), y(t_f)) = 0$
	$\varphi(x(t_f)) \leq \mathcal{V}(y(t_f))$

[J. V. Outrata: On the numerical solution of a class of Stackelberg problems, Z. Oper. Res. 34 (1990), 255–277]
 [J. J. Ye: Necessary conditions for bilevel dynamic optimization problems. SICON 33 (1995), 1208–1223]

[J. J. Ye: Optimal strategies for bilevel dynamic problems, SICON 35 (1997), 512-531]

Definition (Calmness constraint qualification)

Let $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ be an optimal solution for *SLOCP*. *SLOCP* is said to be partially calm in $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ with modulus $\mu \ge 0$, if for every (x, y, u, v) satisfying

$$\begin{aligned} x'(t) &= f(x(t), u(t)), \quad x(t_0) = x_0 \\ y'(t) &= F(x(t), y(t), v(t)), \quad y(t_0) = y_0 \\ u(t) &\in U, \quad v(t) \in V \\ \psi(x(t_f), y(t_f)) &= 0 \end{aligned}$$

we have

$$\Phi(x(t_f), y(t_f)) - \Phi(\hat{x}(t_f), \hat{y}(t_f)) + \mu\left(\varphi(x(t_f)) - \mathcal{V}(y(t_f))\right) \geq 0.$$

[J. J. Ye and D. L. Zhu: Optimality conditions for bilevel programming problems, Optimization, 33 (1995), 9–27]
[J. J. Ye, D. L. Zhu and Q. J. Zhu: Exact penalization and necessary optimality conditions for generalized bilevel programming problems, SIOPT 7 (1997), 481–507]

Theorem (Necessary conditions I)

Let $(A_1) - (A_5)$ hold and let $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ be a local solution of SLOCP, such that it is partially calm in $(\hat{x}, \hat{y}, \hat{u}, \hat{v})$ with modulus $\mu \ge 0$.

Then there exist $\lambda_0 \geq 0$, $p_x \in W^{1,\infty}([t_0, t_f], \mathbb{R}^{n_x})$, $p_y \in W^{1,\infty}([t_0, t_f], \mathbb{R}^{n_y})$, $\xi \in \mathbb{R}^{n_{\psi}}$, and $h \in \mathbb{R}$, such that

$$p'_{x}(t) = -\nabla_{x}f(\hat{x}(t), \hat{u}(t))^{\top}p_{x}(t) - \nabla_{x}F(\hat{x}(t), \hat{y}(t), \hat{v}(t))^{\top}p_{y}(t)$$

$$p'_{y}(t) = -\nabla_{y}F(\hat{x}(t), \hat{y}(t), \hat{v}(t))^{\top}p_{y}(t)$$

$$\min_{u \in U} \{f(\hat{x}(t), u)^{\top}p_{x}(t)\} = f(\hat{x}(t), \hat{u}(t))^{\top}p_{x}(t)$$

$$\min_{v \in V} \{F(\hat{x}(t), \hat{y}(t), v)^{\top}p_{y}(t)\} = F(\hat{x}(t), \hat{y}(t), \hat{v}(t))^{\top}p_{y}(t)$$

$$p_{x}(t_{f}) = \lambda_{0}\nabla_{x}\Phi(\hat{x}(t_{f}), \hat{y}(t_{f})) + \lambda_{0}\mu\nabla_{x}\varphi(\hat{x}(t_{f})) + \nabla_{x}\psi(\hat{x}(t_{f}), \hat{y}(t_{f}))^{\top}\xi$$

$$p_{y}(t_{f}) \in \lambda_{0}\nabla_{y}\Phi(\hat{x}(t_{f}), \hat{y}(t_{f})) - \lambda_{0}\mu\partial\mathcal{V}(\hat{y}(t_{f})) + \nabla_{y}\psi(\hat{x}(t_{f}), \hat{y}(t_{f}))^{\top}\xi$$

$$f(\hat{x}(t), \hat{u}(t))^{\top}p_{x}(t) + F(\hat{x}(t), \hat{y}(t), \hat{v}(t))^{\top}p_{y}(t) = h$$

Theorem (Necessary conditions II)

If the matrix

$$\begin{bmatrix} \nabla_{u} f(\hat{x}(t), \hat{u}(t)) & 0 \\ 0 & \nabla_{v} F(\hat{x}(t), \hat{y}(t), \hat{v}(t)) \end{bmatrix}$$

is of full rank a.e. in (t_0, t_f) and there exist a solution $\hat{d} = (\hat{d}_x, \hat{d}_y, \hat{d}_u, \hat{d}_v)$ of the system

$$\begin{aligned} d'_{x}(t) &= \nabla_{x} f(\hat{x}, \hat{u}) d_{x}(t) + \nabla_{u} f(\hat{x}, \hat{u}) d_{u}(t), \\ d'_{y}(t) &= \nabla_{x} F(\hat{x}, \hat{y}, \hat{v}) d_{x}(t) + \nabla_{y} F(\hat{x}, \hat{y}, \hat{v}) d_{y}(t) + \nabla_{v} F(\hat{x}, \hat{y}, \hat{v}) d_{v}(t) \\ d_{x}(0) &= 0, \qquad d_{y}(0) = 0 \\ \nabla_{x} \psi(\hat{x}(t_{f}), \hat{y}(t_{f})) d_{x}(t_{f}) + \nabla_{y} \psi(\hat{x}(t_{f}), \hat{y}(t_{f})) d_{y}(t_{f}) = 0, \end{aligned}$$

such that $\hat{u}(t) + \hat{d}_u(t) \in int(U)$ and $\hat{v}(t) + \hat{d}_v(t) \in int(V)$ almost everywhere in (t_0, t_f) , then $\lambda_0 = 1$.

Proof Idea

Outline of proof:

- calmness CQ allows to shift φ(x(t_f)) − V(y(t_f)) ≤ 0 as a penalty term into objective
- apply necessary conditions of Fritz John type from non-smooth analysis in [R. Vinter: *Optimal control*, Birkhäuser, Bostson, 2010]
- \blacktriangleright show normality of multiplier λ_0 by MFCQ condition and contradiction

Details:

[K. Palagachev, M. Gerdts: *Necessary conditions for a class of bilevel optimal control problems exploiting the value function*, Pure and Applied Functional Analysis, Vol. 1(4), pp. 505-524, 2016]

Lower Level Problem (Pursuer)

Motivation: pursuit-evasion dynamic Stackelberg game in the 2d plane

lower level problem $OCP_L(z_{P,f})$

Minimize

$$t_f = \int_0^{t_f} 1 dt$$

subject to the constraints

$$\begin{aligned} z'_{P}(t) &= v_{P}(t), \quad z_{P}(0) = z_{P,0}, \quad z_{P}(t_{f}) = z_{P,f}, \\ v'_{P}(t) &= u_{P}(t), \quad v_{P}(0) = v_{P}(t_{f}) = 0, \\ u_{P,i}(t) &\in [-u_{max}, u_{max}], \quad i = 1, 2. \end{aligned}$$

Notion:

- $z_P = (x_P, y_P)^\top$: position of pursuer
- > $z_{P,f}$ is an input parameter from an upper level problem.

Value Function / Minimum Time Function

Optimal value function of OCP_L: (=minimum time function)

$$\mathcal{V}(x_{P,f}, y_{P,f}) = \max\left\{2\sqrt{\frac{|x_{P,0} - x_{P,f}|}{u_{max}}}, 2\sqrt{\frac{|y_{P,0} - y_{P,f}|}{u_{max}}}\right\}$$

 $(x_{P,0} = y_{P,0} = 0, u_{max} = 1)$

Upper Level Problem (Evader)

upper level problem (OCP-U)

Minimize

$$-t_{f}+\int_{0}^{t_{f}}\frac{\alpha_{1}}{2}w(t)^{2}+\frac{\alpha_{2}}{2}a(t)^{2}dt$$

subject to the constraints

$$\begin{aligned} x'_{E}(t) &= v_{E}(t) \cos \psi(t), \\ y'_{E}(t) &= v_{E}(t) \sin \psi(t), \\ \psi'(t) &= \frac{v_{E}(t)}{\ell} \tan \delta(t), \\ \delta'(t) &= w(t), \\ v'_{E}(t) &= a(t), \\ v_{E}(t) &\in [0, v_{E,max}], \\ w(t) &\in [-w_{max}, w_{max}], \\ a(t) &\in [a_{min}, a_{max}]. \end{aligned}$$

 $\begin{aligned} x_{E}(0) &= x_{E,0}, \ x_{E}(t_{f}) = x_{P}(t_{f}), \\ y_{E}(0) &= y_{E,0}, \ y_{E}(t_{f}) = y_{P}(t_{f}), \\ \psi(0) &= \psi_{0}, \\ \delta(0) &= \delta_{0}, \\ v_{E}(0) &= v_{E,0}, \end{aligned}$

Reformulation

Equivalent single level problem

Minimize

der Bundeswehr Universität 🚯 München

$$-t_f + \int_0^{t_f} \frac{\alpha_1}{2} w(t)^2 + \frac{\alpha_2}{2} a(t)^2 dt$$

subject to the constraints

 $x'_{\mathsf{F}}(t) = v_{\mathsf{F}}(t) \cos \psi(t),$ $x_{F}(0) = x_{E,0},$ $v'_{E}(t) = v_{E}(t) \sin \psi(t),$ $V_{F}(0) = V_{F 0}$ $\psi'(t) = \frac{v_E(t)}{\ell} \tan \delta(t),$ $\psi(0)=\psi_0,$ $\delta'(t) = w(t),$ $\delta(0) = \delta_0,$ $v'_{\mathsf{F}}(t) = a(t),$ $v_{F}(0) = v_{F,0}$ $z'_{P}(t) = v_{P}(t),$ $Z_P(0) = Z_{P,0}, \ Z_P(t_f) = Z_E(t_f),$ $v_P'(t) = u_P(t),$ $v_P(0) = v_P(t_f) = 0,$ $v_E(t) \in [0, v_{E,max}], \quad w(t) \in [-w_{max}, w_{max}],$ $a(t) \in [a_{min}, a_{max}],$ $u_P(t) \in [-u_{max}, u_{max}]^2$ $t_f < \mathcal{V}(x_F(t_f), y_F(t_f))$

> M<mark>ngenieur</mark> Athematik

Numerical Issue

Caution!

The constraint

$$t_f \leq \mathcal{V}(x_E(t_f), y_E(t_f))$$

with value function V of continuous OCP may become infeasible, if it is used in the discretized problem!

 \rightsquigarrow the value function V_h of the discretized problem should be used

→ or use relaxation

$$t_f \leq \mathcal{V}(x_E(t_f), y_E(t_f)) + \varepsilon, \qquad \varepsilon > 0$$

Approaches for bilevel optimal control problems Matthias Gerdts

Numerical Results

 $v_{E,0} = 10, \psi_E(0) = \pi/4, \alpha_1 = 10, \alpha_2 = 0, w_{max} = 0.5, v_{E,max} = 20, a_{min} = -5, a_{max} = 1, u_{max} = 5, N = 50, t_f \approx 18.01$

Numerical Results

Value Function

How to compute the value function?

- analytically
- Hamilton-Jacobi-Bellman theory (continuous case) / dynamic programming (discrete case) [Grüne, Zidani, Bokanowski, Bardi/Capuzzo-Dolcetta, Falcone, Kalise, Mitchell, Turova/Botkin, ...]
 software ROC-HJ [Bokanowski/Zidani]
- in case of minimum time function: reachable sets [Baier/Le 2015, Colombo/Le 2015, ...]
- ▶ pointwise evaluation at (x(t₀), x(t_f), p) using suitable optimal control software → typically only local minima are obtained

Current Section

Introduction

Some Theory on Bilevel Optimal Control

Bilevel Scheduling Problems

MPCC Approach Routing, Collision Detection and Avoidance

Scenario:

Interaction of two robots in multiple phases, e.g.

- phase 1: approach
- phase 2: interaction/rendezvous/docking
- phase 3: separation

Scenario:

Interaction of two robots in multiple phases, e.g.

- phase 1: approach
- phase 2: interaction/rendezvous/docking
- phase 3: separation

~> multiphase optimal control problem

Scenario:

Interaction of two robots in multiple phases, e.g.

- phase 1: approach
- phase 2: interaction/rendezvous/docking
- phase 3: separation

~> multiphase optimal control problem

~ can be transformed to standard optimal control problem

One step further:

- Interaction of many robots to fulfill predefined jobs
- Each job can have multiple phases, e.g.
 - phase 1: approach
 - phase 2: interaction/rendezvous/docking
 - phase 3: separation

One step further:

- Interaction of many robots to fulfill predefined jobs
- Each job can have multiple phases, e.g.
 - phase 1: approach
 - phase 2: interaction/rendezvous/docking
 - phase 3: separation

If sequence of jobs is fixed ...

~ multiphase optimal control problem with free initial and final time

One step further:

- Interaction of many robots to fulfill predefined jobs
- Each job can have multiple phases, e.g.
 - phase 1: approach
 - phase 2: interaction/rendezvous/docking
 - phase 3: separation

If sequence of jobs is fixed ...

~ multiphase optimal control problem with free initial and final time

If sequence of jobs and starting times of jobs are not fixed ...

 \leadsto coupling of scheduling problem and optimal control problem

Mixed-integer bilevel optimization problem

Mixed-integer bilevel optimization problem

- upper level: scheduling problem
 - \rightsquigarrow find starting times of jobs such that total time is minimized

Mixed-integer bilevel optimization problem

- upper level: scheduling problem
 - ~> find starting times of jobs such that total time is minimized
- Iower level: (multiphase) optimal control problem
 - \rightsquigarrow for a given starting time find optimal trajectory

Mixed-integer bilevel optimization problem

- upper level: scheduling problem
 - ~> find starting times of jobs such that total time is minimized
- Iower level: (multiphase) optimal control problem
 - \rightsquigarrow for a given starting time find optimal trajectory

Mixed-integer bilevel optimization problem

Bilevel structure:

- upper level: scheduling problem
 - ~> find starting times of jobs such that total time is minimized
- Iower level: (multiphase) optimal control problem
 - \rightsquigarrow for a given starting time find optimal trajectory

Notation: (single phase)

- ▶ jobs 1,...,*J*
- t_i = starting time of job j
- $d_j(t)$ = duration of job j with starting time t \rightarrow solution of optimal control problem

t

Scheduling Problem (mixed-integer optimization problem)

Minimize

$$\max_{j=1,\ldots,J} \{t_j + d_j(t_j)\}$$

w.r.t.

$$j_j$$
 $(j = 1, \ldots, J),$ w_{jk} $(j, k = 1, \ldots, J, j \neq k)$

s.t.

$$t_{j} + d_{j}(t_{j}) - t_{k} \leq M \cdot w_{jk} \qquad (j \neq k)$$

$$t_{k} + d_{k}(t_{k}) - t_{j} \leq M \cdot (1 - w_{jk}) \qquad (j \neq k)$$

$$t_{j} \geq 0$$

$$w_{jk} \in \{0, 1\} \qquad (j, k \in \{1, \dots, J\})$$

(M > 0 sufficiently large number)

Input parameter: initial times t_j for jobs $j = 1, \ldots, J$

Parametric Optimal Control Problem OCP(t) for Job *j*

Minimize

$$\int_{t_j}^{t_j+T_j} f_0(t, x(t), \boldsymbol{u}(t)) dt$$

w.r.t. (x, u, T_j) s.t.

$$\begin{aligned} c'(t) &- f(t, x(t), u(t)) = 0 & t_j \le t \le t_j + T_j \\ c(t, x(t), u(t)) \le 0 & t_j \le t \le t_j + T_j \\ s(t, x(t)) \le 0 & t_j \le t \le t_j + T_j \\ \psi(x(t_j), x(t_j + T_j)) = 0 \end{aligned}$$

Output: phase durations $d_i(t_i) = T_i$, for jobs j = 1, ..., J

MPCC Approach

Approach:

replace lower level OCP by its necessary conditions

→ discretize first vs. stay in continuous formulation

solve resulting mixed-integer MPCC

MPCC Approach

Approach:

replace lower level OCP by its necessary conditions

→ discretize first vs. stay in continuous formulation

solve resulting mixed-integer MPCC

Standard OCP

s.t. $x'(t) - f(x(t), u(t)) = 0$ a.e. in [0, $c(x(t), u(t)) \leq 0$ a.e. in [0, $s(x(t)) \leq 0$ in [0, 1] $\psi(x(0), x(1)) = 0$	Minimize	$\Phi(x(0), x(1))$			
$c(x(t), u(t)) \le 0$ a.e. in [0, $s(x(t)) \le 0$ in [0, 1] $\psi(x(0), x(1)) = 0$	s.t.	$x'(t) - f(x(t), \mathbf{u}(t))$	=	0	a.e. in [0, 1]
$s(x(t)) \leq 0$ in [0, 1] $\psi(x(0), x(1)) = 0$		$c(x(t), \boldsymbol{u}(t))$	\leq	0	a.e. in [0, 1]
$\boldsymbol{\psi}(\boldsymbol{x}(0),\boldsymbol{x}(1)) = \boldsymbol{0}$		s(x(t))	\leq	0	in [0, 1]
		$\psi(x(0), x(1))$	=	0	

Augmented Hamiltonian:

$$H := \boldsymbol{\lambda}^{\top} f(x, u) + \boldsymbol{\eta}^{\top} c(x, u)$$

Necessary Conditions

Augmented Hamiltonian:

$$H := \boldsymbol{\lambda}^{\top} f(x, u) + \boldsymbol{\eta}^{\top} c(x, u)$$

Necessary Conditions

Adjoint equation: $(\lambda, \mu \in BV)$

$$\boldsymbol{\lambda}(t) = \boldsymbol{\lambda}(1) + \int_{t}^{1} \boldsymbol{\nabla}_{x} \boldsymbol{H}[\boldsymbol{\tau}] d\boldsymbol{\tau} + \int_{t}^{1} \boldsymbol{\nabla}_{x} \boldsymbol{s}[\boldsymbol{\tau}] d\boldsymbol{\mu}(\boldsymbol{\tau})$$

Augmented Hamiltonian:

$$H := \boldsymbol{\lambda}^{\top} f(x, u) + \boldsymbol{\eta}^{\top} c(x, u)$$

Necessary Conditions

Adjoint equation: $(\lambda, \mu \in BV)$

$$\boldsymbol{\lambda}(t) = \boldsymbol{\lambda}(1) + \int_{t}^{1} \boldsymbol{\nabla}_{x} \boldsymbol{H}[\boldsymbol{\tau}] d\boldsymbol{\tau} + \int_{t}^{1} \boldsymbol{\nabla}_{x} \boldsymbol{s}[\boldsymbol{\tau}] d\boldsymbol{\mu}(\boldsymbol{\tau})$$

Transversality conditions:

$$\lambda(0)^{\top} = -\ell_0 \Phi'_{x_0} - \psi'_{x_0}^{\top} \sigma, \qquad \lambda(1)^{\top} = \ell_0 \Phi'_{x_1} + \psi'_{x_1}^{\top} \sigma$$

Augmented Hamiltonian:

$$H := \boldsymbol{\lambda}^{\top} f(x, u) + \boldsymbol{\eta}^{\top} c(x, u)$$

Necessary Conditions

Adjoint equation: $(\lambda, \mu \in BV)$

$$\boldsymbol{\lambda}(t) = \boldsymbol{\lambda}(1) + \int_{t}^{1} \boldsymbol{\nabla}_{x} \boldsymbol{H}[\boldsymbol{\tau}] d\boldsymbol{\tau} + \int_{t}^{1} \boldsymbol{\nabla}_{x} \boldsymbol{s}[\boldsymbol{\tau}] d\boldsymbol{\mu}(\boldsymbol{\tau})$$

Transversality conditions:

$$\lambda(0)^{\top} = -\ell_0 \Phi'_{x_0} - \psi'_{x_0}^{\top} \sigma, \qquad \lambda(1)^{\top} = \ell_0 \Phi'_{x_1} + \psi'_{x_1}^{\top} \sigma$$

Stationarity of Hamiltonian:

$$\nabla_u H[t] = 0$$

Augmented Hamiltonian:

$$H := \boldsymbol{\lambda}^{\top} f(x, u) + \boldsymbol{\eta}^{\top} c(x, u)$$

Necessary Conditions

Adjoint equation: $(\lambda, \mu \in BV)$

$$\boldsymbol{\lambda}(t) = \boldsymbol{\lambda}(1) + \int_t^1 \boldsymbol{\nabla}_x \boldsymbol{H}[\boldsymbol{\tau}] d\boldsymbol{\tau} + \int_t^1 \boldsymbol{\nabla}_x \boldsymbol{s}[\boldsymbol{\tau}] d\boldsymbol{\mu}(\boldsymbol{\tau})$$

Transversality conditions:

$$\lambda(0)^{\top} = -\ell_0 \Phi'_{x_0} - \psi'_{x_0}^{\top} \sigma, \qquad \lambda(1)^{\top} = \ell_0 \Phi'_{x_1} + \psi'_{x_1}^{\top} \sigma$$

Stationarity of Hamiltonian:

$$\nabla_u H[t] = 0$$

Complementarity conditions:

$$\bullet \ 0 \leq \eta(t) \ \perp \ -c[t] \geq 0$$

μ is monotonically increasing and constant on inactive parts.

(constraint qualification $\Rightarrow \ell_0 = 1$)

If order of pure state constraint $s(x) \leq 0$ is one ...

 λ is in $W^{1,\infty}([0,1],\mathbb{R}^{n_{\chi}})$ and adjoint equation reduces to

$$\lambda'(t) = -\nabla_{x}H[t] - \nabla_{x}s[t]\mu'(t)$$

and complementarity condition reads

$$0 \leq \mu'(t) \quad \perp \quad -s[t] \geq 0$$

but: often the order of a pure state constraint is greater than one!

Virtual Control Regularization

If order of pure state constraint is greater than one ...

Virtual Control Regularization of Standard OCP

[Krumbiegel/Cherednichenko/Rösch'08, G./Hüpping'12]

Note: basically equivalent to penalty method, since $v^*(t) = \frac{1}{\gamma(\alpha)} \max\{0, s(x^*(t))\}$

Bilevel Optimization Problem – MPCC Formulation

MPCC Formulation (single phase, standard problem)

Minimize

Universität 🚯 München

$$\max_{j=1,\ldots,J} t_j + d_j$$

s.t.

$$\begin{aligned} t_{j} + d_{j} - t_{k} &\leq M \cdot \mathbf{w}_{jk} & (j \neq k) \\ t_{k} + d_{k} - t_{j} &\leq M \cdot (1 - \mathbf{w}_{jk}) & (j \neq k) \\ t_{j} &\geq 0, \ \mathbf{w}_{jk} \in \{0, 1\} & (j, k \in \{1, \dots, J\}) \\ x^{(l)'}(t) &= f^{(l)}(x^{(l)}(t), u^{(l)}(t)) & t \in [t_{j}, t_{j} + d^{(l)}] \\ 0 &= \psi(x^{(l)}(t_{j}), x^{(l)}(t_{j} + d_{j})) \\ \lambda^{(l)'}(t) &= -\nabla_{x} H^{(l)}[t] & (+ \text{ transversality conditions}) \\ 0 &= \nabla_{u} H^{(l)}[t] \\ 0 &\leq \eta^{(l)}(t) \perp - c^{(l)}(x^{(l)}(t), u^{(l)}(t)) \geq 0 \end{aligned}$$

Numerical Solution

- ► solve $\nabla_u H^{(j)}[t] = 0$ for u, i.e. $u = U(x^{(j)}, \lambda^{(j)}, \eta^{(j)})$
- apply branch & bound method and direct shooting technique with SQP

Treatment of MPCC:

- relaxation/regularization approaches
 [Steffensen, Fletcher/Leyffer/Scholtes/Ralph, Kanzow/Schwartz, ...]
- penalty approaches
 [Luo/Pang/Ralph, ...]
- best results by applying NCP function (Fischer-Burmeister) and relaxation

$$-\varepsilon \leq \varphi_{FB}(\eta^{(j)}(t), -c^{(j)}(x^{(j)}(t), \boldsymbol{u}^{(j)}(t))) \leq \varepsilon$$

resp.

$$\varphi_{FB}(\eta^{(j)}(t), -c^{(j)}(x^{(j)}(t), u^{(j)}(t)))^2 \le \varepsilon^2$$

~> small violation of constraints permitted

Example

Optimal control problem for job j

Minimize

der Bundeswehr

Universität 🚯 München

$$d_{1}^{(j)} + d_{2}^{(j)} + \frac{c}{2} \int_{t_{j}}^{t_{j} + d_{1}^{(j)} + d_{2}^{(j)}} \|u(t)\|^{2} dt$$

s.t.

$$\begin{aligned} x_1'(t) &= x_3(t) \\ x_2'(t) &= x_4(t) \\ x_3'(t) &= u_1(t) \\ x_4'(t) &= u_2(t) \\ x(t_j) &= [x_{0,1}^{(j)}, x_{0,2}^{(j)}, 0, 0]^T \\ x(t_j + d_1^{(j)}) &= (x_{T,1}(t_j + d_1^{(j)}), x_{T,2}(t_j + d_1^{(j)}), \text{ free, free})^T \\ x(t_j + d_1^{(j)} + d_2^{(j)}) &= (x_{0,1}^{(j)}, x_{0,2}^{(j)}, 0, 0)^T \end{aligned}$$

+ state constraint to avoid ball-shaped obstacle

(J = 3 jobs, P = 2 phases)

Motion Planning for Robots

[joint work with C. Landry, W. Welz, D. Hömberg, R. Henrion]

1. Compute the approximated trajectories

Details:

[C. Landry, W. Welz, M. Gerdts: Combining discrete and continuous optimization to solve kinodynamic motion planning problems, Optimization and Engineering, Vol. 17(3), pp. 533-556, 2016]

[C. Landry, M. Gerdts, R. Henrion, D. Hömberg: Path planning and Collision avoidance for robots, Numerical Algebra, Control and Optimization, Vol. 2(3), pp. 437-463, 2012]

- 1. Compute the approximated trajectories
- 2. Find optimal sequences [Skutella/Welz]

Details:

[C. Landry, W. Welz, M. Gerdts: Combining discrete and continuous optimization to solve kinodynamic motion planning problems, Optimization and Engineering, Vol. 17(3), pp. 533-556, 2016]

[C. Landry, M. Gerdts, R. Henrion, D. Hömberg: Path planning and Collision avoidance for robots, Numerical Algebra, Control and Optimization, Vol. 2(3), pp. 437-463, 2012]

- 1. Compute the approximated trajectories
- 2. Find optimal sequences [Skutella/Welz]
- 3. Compute exact trajectories that have not been computed yet

Details:

[C. Landry, W. Welz, M. Gerdts: Combining discrete and continuous optimization to solve kinodynamic motion planning problems, Optimization and Engineering, Vol. 17(3), pp. 533-556, 2016]

[C. Landry, M. Gerdts, R. Henrion, D. Hömberg: Path planning and Collision avoidance for robots, Numerical Algebra, Control and Optimization, Vol. 2(3), pp. 437-463, 2012]

- 1. Compute the approximated trajectories
- 2. Find optimal sequences [Skutella/Welz]
- 3. Compute exact trajectories that have not been computed yet
- 4. If collision then
 - (a) add new constraint: these two trajectories cannot be used simultaneously
 - (b) goto 2.

else

- (c) Compute the optimal sequences with the exact trajectories
- (d) If same output then return else goto 3.

endif

Details:

[C. Landry, W. Welz, M. Gerdts: Combining discrete and continuous optimization to solve kinodynamic motion planning problems, Optimization and Engineering, Vol. 17(3), pp. 533-556, 2016]

[C. Landry, M. Gerdts, R. Henrion, D. Hömberg: Path planning and Collision avoidance for robots, Numerical Algebra, Control and Optimization, Vol. 2(3), pp. 437-463, 2012]

Summary

Approaches towards bilevel problems:

- black-box approach
- MPCC approach
- value function approach

Common issues:

- nonsmoothness, discontinuities, local minima
- equivalence to bilevel problem?
- ▶ numerical stability ~→ initial guess generation?
- ▶ branch & bound ~→ local minima? convex underestimators?

▶ ...

Thanks for your attention!

Further Information:

Questions?

matthias.gerdts@unibw.de www.unibw.de/lrt1/gerdts www.optimal-control.de

Fotos: http://de.wikipedia.org/wiki/München

Magnus Manske (Panorama), Luidger (Theatinerkirche), Kurmis (Chin. Turm), Arad Mojtahedi (Olympiapark), Max-k (Deutsches Museum), Oliver Raupach (Friedensengel), Andreas Praefcke (Nationaltheater)

