Performance Verification and Optimal Synthesis of Optimization-based Controllers

Colin Jones

Ivan Pejcic Milan Korda

"Correct" MPC

Great results! ... but extreme tuning

Truncated Computation \Rightarrow Unstable Behavior

Toy Example:

$$x^{+} = \begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u \qquad |x_{1}| \le 5, -5 \le x_{2} \le 1 \\ |u| \le 1, N = 5, Q = I, R = 1$$

Truncated Computation \Rightarrow Unstable Behavior

Toy Example:

$$x^{+} = \begin{bmatrix} 1.2 & 1 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u \qquad |x_{1}| \le 5, -5 \le x_{2} \le 1 \\ |u| \le 1, N = 5, Q = I, R = 1$$

High Variability in Computation Times

Time to 1% sub-optimality

Worst-case occurs in rare, but extremely important conditions

Today: Real-time Certification of MPC Controllers

How do we analyse / design "fast" MPC?

Background : Two Roads to Certification

1 Control perspective

- Bound sub-optimality
- Design robust controller

Challenge: Bounding error is very difficult

Worst-Case Iteration Bounds for 1st Order Methods

How many iterations guarantee convergence to ε -optimality for all states?

$$f(z_k; \mathbf{x}) - f^*(\mathbf{x}) \le \mathbf{r}(k) \cdot \mathbf{C} \cdot \max_{\mathbf{x} \in \mathbb{X}_0} ||z_0(\mathbf{x}) - z^*(\mathbf{x})|| \le \epsilon$$

$$(1)$$

$$(2)$$

$$(3)$$

1 Convergence rate – depends on algorithm

- 1/k No assumptions required
- $1/k^2$ Strong convexity of *f* (possible for many control problems)
- W^k Strong convexity of f and constraints (rarely possible)

② Constant

• Function of Lipschitz constants / convexity parameters

③ Initial residual

- Non-convex optimization
- Solvable for some restricted cases

Problem: Computing any of these numbers is extremely difficult!

Ball and Plate / Fast Gradient Method

Quad-Copter / Fast AMA

Background : Two Roads to Certification

Optimization perspective

- Bound rate of change of the system (function of sampling rate)
- Show stability of the optimizer

Challenge: No concrete computation – indicates trends

Stability of Parametric Tracking

Define the primal-dual point w

$\underbrace{\ w_{k} - w^{*}(x_{k})\ }_{k} \leq \beta_{w} \underbrace{\ w_{k-1} - w^{*}(x_{k-1})\ }_{k} + \beta_{x} \underbrace{\ x_{k} - x_{k-1}\ }_{k}$				
Sub- at	optimality time <i>k</i>	Sub-optimality at time $k - 1$	Change in state	
	Optimizer convergence (β_w)	Sensitivity to system state (β_x)	Recommendation	
nterior-point	Small	Large	Sample as quickly as possible	
1 st order methods & distributed optimization	Large	Small	Sample slowly	

Optimal Sample Frequency

Suggests:

- $\Delta w = C^{-\alpha} \rightarrow$ significantly decreasing gains for increased computing
- Contrary to standard result for second order methods

Experiments Match Predicted Behaviour

1.1 kW Separately Excited DC Motor

Background : Two Roads to Certification

Ontrol perspective

- Bound sub-optimality
- Design robust controller

Challenge:Bounding error is very difficultResult:Effective for some very simple systems

Optimization perspective

- Bound rate of change of the system (function of sampling rate)
- Show stability of the optimizer

Challenge:No concrete computationResult:Indicates basic principles

- Interior-point : Sample as fast as possible!
- First-order / distributed : Slower sampling is better

Today: Non-conservative direct verification

Direct Stability Verification

Classic approach : Model closed-loop system and search for Lyapunov function

$$x \mapsto \lim_{z} J(z; x)$$

s.t. $g(z; x) \ge 0$
$$x^{+} = f(x, u)$$

$$u = Lz$$

$$z^{*}(x)$$

$$x^{+} = f_{cl}(x)$$

Stability
$$x_t \to 0 \text{ as } t \to \infty$$

Lyapunov Function

$$V(f_{cl}(x)) - V(x) \le - ||x||^2$$

 $V(x) \ge ||x||^2$

Direct Stability Verification

Classic approach : Model closed-loop system and search for Lyapunov function

Lyapunov Function

$$V(f_{cl}(x)) - V(x) \le - ||x||^2$$

 $V(x) \ge ||x||^2$

Parametric Optimization - Polynomial Constraints

Set of **all** optimal solutions

Parametric optimization $\min_{z} J(z; x)$ s.t. $g(z; x) \ge 0$

KKT conditions

$$\nabla J(z; x) + \lambda^{T} \nabla g(z; x) = 0$$
$$g(z; x), \ \lambda \ge 0$$
$$\lambda^{T} g(z; x) = 0$$

Basic semialgebraic set

$$(z, \lambda, x) \in K$$

The control law is a projection of this set

 $(x, u) \in \operatorname{proj}_{x, Lz} K$

Piecewise polynomial function

Example: Quadratic program Piecewise affine function

Parametric Optimization - Polynomial Constraints

Set of **all** optimal solutions

Parametric optimization $\min_{z} J(z;x)$ s.t. $g(z; x) \ge 0$

onditionsBasic semi-
algebraic set
$$\mathcal{T} \nabla g(z; x) = 0$$
 $(z, \lambda, x) \in K$

Leave the control law in implicit polynomial form

Closed-loop system $x^+ = f(x, Lz)$ subject to $(z, \lambda, x) \in K$

Result : Polynomial representation of an optimization-based control law

set

Simple Example : Constrained Linear Control

$$u = \operatorname{argmin} \|u - Lx\|^{2}$$

s.t. $-1 \le u \le 1$
 $x^{+} = Ax + Bu$

Simple Example : Constrained Linear Control

$$\begin{bmatrix} u = \operatorname{argmin} \|u - Lx\|^{2} \\ \text{s.t.} -1 \le u \le 1 \\ \\ x^{+} = Ax + Bu \end{bmatrix} \quad K = \begin{cases} (x, u, \lambda) & u - Lx - \lambda_{l} + \lambda_{u} = 0 \\ -1 \le u \le 1 \\ \lambda > = 0 \\ \\ \lambda_{l}^{T}(1+u) = \lambda_{u}^{T}(1-u) = 0 \end{cases}$$

Demonstrate the existence of a function V such that

$$V(x, u, \lambda) \ge 0 \text{ for all } (x, u, \lambda) \in K$$

$$V(0, u, \lambda) = 0 \text{ for all } (0, u, \lambda) \in K$$

$$V(x^+, u^+, \lambda^+) - V(x, u, \lambda) \le -||x|| \text{ for all } (x, u, \lambda) \in K, \ (x^+, u^+, \lambda^+) \in K$$

Note

- V can be a function of the primal and dual variables \rightarrow piecewise polynomial
- Expression is linear in V

Example : Linear Quadratic Predictive Control

Simple Example : Constrained Linear Control

Demonstrate the existence of a function V such that

 $V(x, u, \lambda) \ge 0 \text{ for all } (x, u, \lambda) \in K$ $V(0, u, \lambda) = 0 \text{ for all } (0, u, \lambda) \in K$ $V(x^+, u^+, \lambda^+) - V(x, u, \lambda) \le -||x|| \text{ for all } (x, u, \lambda) \in K, \ (x^+, u^+, \lambda^+) \in K$

Convex Analysis of Polynomial Systems

Example – Stability of Real-Time Iterations

*YALMIP + Mosek

 $y_0 \leftarrow y_2$

 $y_0 \leftarrow y_2$ $y_1 = \pi_C \left(y_0 - \alpha \nabla J(x, y_0) \right) \xrightarrow{y_1} y_2 = \pi_C \left(y_1 - \alpha \nabla J(x, y_1) \right)$ *Y*₂ $x_{t+1} = f(x_t, F \cdot y_2)$ Each iteration is $y_k + \alpha \nabla J(x, y_k)$ an optimization problem y_{k+1} Уk

 $y_0 \leftarrow y_2$ *y*₁ $(y_0, y_1, x, \lambda_0) \in K_1$ $(y_1, y_2, x, \lambda_1) \in K_2$ *Y*₂ $x_{t+1} = f(x_t, F \cdot y_2)$ Each iteration can be modeled as the inclusion in a basic semi-algebraic set

Result : Fixed-time MPC can be modeled as a set of polynomial constraints

Framework is Very General

Key: Optimizer does not have to be derived from classic MPC theory

From Verification to Synthesis

From Verification to Synthesis

Solve the non-convex problem in $\boldsymbol{\theta}$

Global Bayesian Optimization

Permanent Magnet Synchronous Motor

Standard Control Approach

Recent Fast-MPC Approach

Low inertia motors: Slower electrical & faster mechanical dynamics

- Faster response and smaller overshoots
- 2.3% and 4.2% improvement in speed and torque tracking

[Cimini, Bernardini, Bemporad, Levijoki, ICIT, 2015] 40

Convex Controller for Bilinear System

IdeaReplace both loops with a single fast loopBenefitMuch faster speed response (good for smaller motors)ChallengeDynamics are bilinear, resistance changes significantly

Convex Controller for Bilinear System

Optimization: Choose value function for stability and optimal performance

Constraints : Robust stability

Optimal Control Law

Control Performance

	Linear MPC	'Optimal' tuning for convex optimizer
Time from 0-3000 RPM	~60ms	~30ms
Computation time	QP Variables 14 Constraints 122	SOCPQPVariables4Constraints217
Sampling time	Speed : 1 ms Current : 300 µs	100 µs
	$\begin{array}{c} \text{Inverter} \\ \text{PWM} \\ \text{abc} \\ \text{dq} \\ \text{u}_{d} \\ \text{u}_{d} \\ \text{u}_{d} \\ \text{WPC} \\ \text{ref} \\ \text{PMSM} \\ \text{PMSM} \\ \text{PMSM} \\ \theta \\ \text{s} \\ \omega_{ref} \\ \omega_{ref} \\ \text{wref} \\ \text{wref}$	$\begin{array}{c} \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $

Note: Problem size estimated from description in paper

Conclusion

