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Discrete Time Filtering
There are three variations on filtering problems:

• Continuous time dynamics, continuous time observations
• Continuous time dynamics, discrete time observations
• Discrete time dynamics, discrete time observations

We shall focus on the last. Here is the model of the plant.

x+ = f(t, x, u)

y = h(t, x, u)

x(0) = x0

where the state x(t) ∈ IRn×1 , the control u(t) ∈ IRm×1 , the
measurement y(t) ∈ IRp×1 and x+(t) = x(t+ 1) .

The filtering problem is to estimate x(t) from
u(s), 0 ≤ s ≤ t− 1 , from y(s), 1 ≤ s ≤ t− 1 and from some
inexact knowledge about x0 . We denote this estimate by
x̂(t|t− 1) . We also consider estimating x(t) using the
additional measurement y(t) , we denote this estimate x̂(t|t) .
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Three Noises

The standard approach is add three noises to the model, a
driving noise v(t) ∈ IRk×1 , an observation noise w(t) ∈ IRp×1

and an initial condition noise x̃0 ∈ IRn×1 to obtain

x+ = f(t, x, u) + g(t, x, u)v

y = h(t, x, u) + w

x(0) = x̂0 + x̃0

where x̂0 is our estimate of x(0) based on prior information.
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Stochastic Filtering

The stochastic version of this approach is to assume that v(t)
and w(t) are independent, standard white Gaussian noise
processes and x̃0 is an independent Gaussian random vector of
mean zero and known covariance.

Then the conditional density ρ(x, t|t− 1) of the state given the
past controls u(s), 0 ≤ s ≤ t− 1 and past measurements
y(s), 1 ≤ s ≤ t− 1 satisfies an integral-differential-difference
equation that is very difficult to solve.

About the only time it can be solved is when the system is linear
for then the conditional density is Gaussian. Then its mean and
covariance can be computed by a Kalman filter.
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Deterministic Filtering
The minimum energy version of this approach is to assume the
noises are deteministic but unknown. One finds the noise triple
that minimizes a so-called ”energy” like

1

2

(
‖x̃0‖2 +

t−1∑
s=0

‖v(s)‖2 +

t∑
s=1

‖w(s)‖2
)

subject to

z+ = f(s, z, u) + g(s, z, u)v

y = h(s, z, u) + w

z(0) = x̂0 + x̃0

where u(s), 0 ≤ s ≤ t− 1 and y(s), 1 ≤ s ≤ t− 1 are the
actual control and measurement sequences.

The MME is the endpoint of the minimizing state trajectory

x̂(t|t) = z(t)
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Minimum Energy Estimation
The heuristic behind MME is that the noises can be thought of
as ”slack variables” to make the system equations hold. The
Minimum Energy Estimate requires the least slack.

This idea goes back to Gauss’ method of least squares to
determine of the orbit of the planetoid Ceres.

Its application to filtering of control systems goes back at least
to Mortenson (1968) who called it Maximum Likelyhood
Estimation.

Hijab (1980) called it Minimum Energy Estimation (MEE).

Both Mortenson and Hijab dealt with systems in continuous
time, but their methods readily extend to discrete time systems.

If the system is linear then MME filtering is identical to Kalman
filtering provided that the weights of the norms in the
deterministic version are the inverses of the covariances of the
noises in the stochastic version.
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Minimum Horizon Estimation
Minimum Horizon Estimation (MHE) is a moving window
version of MEE. It has become very popular recently as it is the
mathematical dual of Model Predictive Control (MPC).

Again the system model is

x+ = f(t, x, u), y = h(t, x, u)

One chooses a past window of length T . At time t minimize

min
zt−T ,v,w

{
‖zt−T − x̂(t− T |t− T )‖2P (t−T )

+

t−1∑
s=t−T

‖v(s)‖2Q(s) +
t∑

s=t−T+1

‖w(s)‖2R(s)


subject to

z+ = f(s, z, u) + g(s, z, u)v

y = h(s, z, u) + w

where u(s) is the actual input and y(s) is the actual output.
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Minimum Horizon Estimation
The MHE estimate is

x̂(t|t) = z(t)

where z(s) is the minimizing state trajectory.

This minimization problem is solved in real time by a nonlinear
program solver. The complexity of the MHE nonlinear program
is dictated by the nonlinearities of f, g, h and the length of the
past observation window T .

There is not much we can do about f, h as they are given by
the plant and we can take g constant as we did before. So the
question is can we shorten T and still get reasonable estimates.

We believe that the power series techniques described below will
allow us to take T as short as 1 time step. Instead of taking a
fixed past window of length T we use the whole past but with a
forgetting factor 0 < α ≤ 1 .
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MEE
Since we know u(t) we can simplify notation by redefining

f(t, x) = f(t, x, u(t))

g(t, x) = g(t, x, u(t))

h(t, x) = h(t, x, u(t))

Then the noisy model is

z(t+ 1) = f(t, z(t)) + g(t, z(t))v(t)

y = h(t, z(t)) + w(t)

z(0) = x̂0 + z̃0

The simplest definition of ”energy’ to time t is

αt

2
‖z0‖2 +

1

2

t−1∑
s=0

αt−s‖v(s)‖2 +
1

2

t∑
s=1

αt−s‖w(s)‖2

with a discount factor 0 < α ≤ 1 .
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MEE
We can extend MME by considering a more general form of
”energy”

αtπ0(z0) +
1

2

t−1∑
s=0

αt−s‖v(s)‖2Q(s) +
1

2

τ∑
s=1

αt−s‖w(s)‖2R(s)

where Q(s) > 0, R(s) > 0 , an initial energy π0(x) ≥ 0 and

‖v(s)‖2Q(s) = v′(s)Q(s)v(s), ‖w(s)‖2R(s) = w′(s)R(s)w(s)

Notice if we only consider measurements up to time τ ≤ t then
causality implies that the minimizing v(s) = 0 for s > τ .

Or even more generally

αtπ0(z0) +
1

2

t−1∑
s=0

αt−sl(s, z(s), v(s), w(s))

subject to constraints on the Lagrangian l(s, z, v, w) . For
simplicity of exposition we shall stick with quadratic Lagrangians.
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MME Function

The MEE function π(x, t|τ ) is the minimum of the generalized
energy subject to

z+ = f(s, z(s)) + g(s, z(s))v(s)

y(s) = h(s, z) + w(s)

z(0) = x̂0 + x̃0

z(t) = x

where y(s) are the actual observations.

Notice the additional terminal condition, z(t) = x .

The minimum energy estimate is then

x̂(t|τ ) = argminxπ(x, t|τ )
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MEE

Notice that the MEE function π(x, t|τ ) contains more
information than its minimum, the simple point estimate
x̂(t|τ ) = argminxπ(x, t|τ ) .

For starters its minimum value π(x̂(t|τ ), t|τ ) is a residual which
measures the ”reliability” of the point estimate. The smaller it
is the more confident we are of the estimate.

The eigenvalues of the Hessian of π(x, t|τ ) at x̂(t|τ ) measure
how ”tight” is the estimate. The bigger they are, the more
precise is the point estimate.

Finally π(x, t|τ ) might have multiple local minima. As these
change with t the global minimum might jump from one to
another.

Except for the residual, this additional information is not
available with MHE.
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Prediction Step
Filtering of a discrete time system is usually done in two
alternating steps.

In MEE the prediction step starts with x̂(t|t) and π(x, t|t) and
computes x̂(t+ 1|t) and π(x, t+ 1|t) by a solving functional
equation for π of dynamic programming type,

π(x, t+ 1|t) = min
z,v

{
απ(z, t|t) +

1

2
‖v(t)‖2Q(t)

}
subject to the constraint

x = f(t, z) + g(t, z)v

The predicted estimate x̂(t+ 1|t) is given by

x̂(t+ 1|t) = argminxπ(x, t+ 1|t)
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Assimilation Step

When y(t) becomes known the assimilation step is given by the
functional equation,

π(x, t|t) = π(x, t|t− 1) +
1

2
‖y(t)− h(t, x)‖2R(t)

The assimilated estimate x̂(t|t) is

x̂(t|t) = argminxπ(x, t|t)
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Constrained Optimiztion

The prediction step requires the solution of a family of
constrained optimization problems indexed by the variables t, x
of the terminal constraint z(t) = x .

To get unconstrained problems we add the constraint to the
criterion with a Lagrange multiplier λ(t, x) ∈ IRn×1 to get a
family of unconstrained minimization problems indexed by t, x ,

min
z,v,λ

{
απ(z, t|t) +

1

2
‖v‖2Q(t) + λ′(t, x) (x− f(t, z)− g(t, z)v)

}
To get the first order necessary conditions we set to zero the
partials of this quantity with respect to z, v, λ .

To simplify the presentation we shall assume g(t, x) = G(t)x .
The general case follows in a similar fashion.
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Necessary Conditions
Setting the partial of the augmented criterion with respect to λ
to zero yields the constraint

x = f(t, z) +G(t)v

Setting the partial of the augmented criterion with respect to v
to zero yields

0 = v′Q(t)− λ′(t, x)G(t)

Because Q(t) is assumed to be invertible this can be solved for
v(t, x) as a function of λ(t, x)

v(t, x) = Q−1(t)G′(t)λ(t, x)

Then the constraint becomes

x = f(t, z) + Q̄(t)λ(t, x)

where

Q̄(t) = G(t)Q−1(t)G′(t)
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Necessary Conditions

Setting the partial of of the augmented criterion with respect to
z to zero yields

0 = α
∂π

∂z
(z(t, x), t|t)− λ′(t, x)

∂f

∂z
(t, z(t, x))

So at each t, x we must solve this equation and the constraint
equation

x = f(t, z(t, x)) + Q̄(t)λ(t, x)

in the two unknowns z(t, x), λ(t, x) .

Solving these two nonlinear equations is a daunting task so we
turn to a series approach.
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Series Approach

Expand f and π in series in z̃ = z − x̂(t|t) ,

f(t, z) = f [0](t) + F (t)z̃ + f [2](t, z̃) + . . .

π(z, t|t) = π[0](t|t) +
1

2
z̃′P (t|t)z̃ + π[3](z̃, t|t) + . . .

where [d] denotes a homogeneous polynomial term of degree d
in z̃ with time dependent coefficients.

It is not hard to see that

π[0](t|t) = minxπ(x, t|t)
x̂(t|t) = argminxπ(x, t|t)

minxπ(x, t+ 1|t) = απ[0](t|t)
x̂(t+ 1|t) = argminxπ(x, t+ 1|t) = f [0](t)
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x̃ = f(t, z(t, x))− f [0](t) + Q̄(t)λ(t, x)

We collect from these equations the terms linear in x̃ to obtain

x̃ = F (t)Z(t)x̃+ Q̄(t)Λ(t)x̃

0 = αP (t|t)Z(t)x̃− F ′(t)Λ(t)x̃
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First Degree Terms

These equations must hold for any x̃ so Z(t),Λ(t) must satisfy[
I
0

]
= H(t)

[
Z(t)
Λ(t)

]
where

H(t) =

[
F (t) Q̄(t)

αP (t|t) −F ′(t)

]
The solvability of these equations depends on the invertibility of
H(t) which we will discuss in a moment.



Second Degree Terms

The terms of second degree in x̃ are

H(t)

[
z[2](t, x̃)

λ[2](t, x̃)

]
= −

[
k[2](t, x̃))

l[2](t, x̃)

]

where

k[2](t, x̃) = f [2](t, Z(t)x̃)

l[2](t, x̃) = α

(
∂π[3]

∂z
(t, Z(t)x̃)

)′

−
(
∂f [2]

∂z
(t, Z(t)x̃)

)′
Λ(t)x̃

Again the solvability of these equations depends on the
invertibility of H(t) .
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Third Degree Terms

The degree three terms are

H(t)

[
z[3](t, x̃)

λ[3](t, x̃)

]
= −

[
k[3](t, x̃)

l[3](t, x̃)

]



Third Degree Terms

where

k[3](t, x̃) = f [3](t, Z(t)x̃) +
(
f [2](t, Z(t)x̃) + z[2](t, x̃)

)[2]
l[3](t, x̃) = α

(∂π[3]

∂z
(t, Z(t)x̃+ z[2](t, x̃)

)[3]
′

+ α

(
∂π[4]

∂z
(t, Z(t)x̃)

)′
−
(
∂f [2]

∂z
(t, Z(t)x̃)

)′
λ[2](t, x̃)

−
(
∂f [2]

∂z
(t, z[2](t, x̃)

)′
Λ(t)x̃−

(
∂f [3]

∂z
(t, Z(t)x̃)

)′
Λ(t)x̃

and (·)[d] indicates the degree d terms of the enclosed
expression.

The higher degree terms are found in a similar fashion.
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Prediction Step
Suppose we have the expansions

z̃(t, x) ≈ Z(t)x̃+ z[2](t, x̃) + z[3](t, x̃)

λ(t, x) ≈ Λ(t)x̃+ λ[2](t, x̃) + λ[3](t, x̃)

then

v(t, x) = Q−1(t)G′(t)λ(t, x)

≈ Q−1(t)G′(t)
(
Λ(t)x̃+ λ[2](t, x̃) + λ[3](t, x̃)

)
and

π(x, t+ 1|t) ≈ απ(z(t, x), t|t) +
1

2
‖v(t, z(t, x), x)‖2Q(t)

x̂(t+ 1|t) ≈ argminxπ(x, t+ 1|t)

This completes the prediction step.
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Relation to EKF
If d = 1 the prediction step from x̂(t|t) to x̂(t+ 1|t) is the
same as that of the Extended Kalman Filter (EKF)

But the prediction step from P (t|t) to P (t+ 1|t) is not the
same as that of the EKF.

In the EKF, the matrices P (t|τ ) are covariances and the EKF
prediction step is

P (t+ 1|t) = F (t)P (t|t)F ′(t) +G(t)G′(t)

assuming that the driving noise is standard white Gaussian.

In the MEE, the matrices P (t|τ ) are Hessians and loosely
speaking the inverses of the covariances. The MEE prediction
step is

P (t+ 1|t) = αZ′(t)P (t|t)Z(t) + Λ′(t)Q̄Λ(t)
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assuming that the driving noise is standard white Gaussian.

In the MEE, the matrices P (t|τ ) are Hessians and loosely
speaking the inverses of the covariances. The MEE prediction
step is
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Assimilation Step
The assimilation step starts with y(t) , x̂(t|t− 1) and a degree
d+ 1 polynomial approximation to π(x, t|t− 1) expanded in
x̃ = x− x̂(t|t− 1) and computes x̂(t|t) and a degree d+ 1
polynomial approximation to π(x, t|t) .

To compute x̂(t|t) we assume that the polynomial π(x, t|t) is
strictly convex in x in a neighborhood around x̂(t|t− 1) and
that x̂(t|t) is in this neighborhood.

So we can use Newton’s method to minimize

π(x, t|t) = π(x, t|t− 1) +
1

2
‖y(t)− h(t, x)‖2R(t)

with initial guess x̂(t|t− 1) . The argminimum is x̂(t|t) .

Then π(x, t|t) is transformed into a polynomial of degree d+ 1
in the new x̃ = x− x̂(t|t) .

This completes the assimilation step.
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Open Question

But suppose π(x, t|t) has several local minima that are close to
x̂(t|t− 1) , what can happen?



Theorem

Suppose that P (0|0) is positive definite and the pair F (t), G(t)
is stabilizable at each t ≥ 0 then H(t) is invertible for each
t ≥ 0 .

Stabilizable is in the continuous time sense. Why?
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Example
Here is the Euler discretion of the Van der Pol Oscillator with
time step 0.1 second,

x+
1 = x1 + 0.1x2

x+
2 = −0.1x1 + x2 + 0.1(1− x2

1)x2

A typical trajectory of x1 is below Notice that the period of the
limit cycle is approximately seventy time steps.

Figure: Typical Trajectory



Example
Here is the Euler discretion of the Van der Pol Oscillator with
time step 0.1 second,

x+
1 = x1 + 0.1x2

x+
2 = −0.1x1 + x2 + 0.1(1− x2

1)x2

A typical trajectory of x1 is below Notice that the period of the
limit cycle is approximately seventy time steps.

Figure: Typical Trajectory



Example
Here is the Euler discretion of the Van der Pol Oscillator with
time step 0.1 second,

x+
1 = x1 + 0.1x2

x+
2 = −0.1x1 + x2 + 0.1(1− x2

1)x2

A typical trajectory of x1 is below Notice that the period of the
limit cycle is approximately seventy time steps.

Figure: Typical Trajectory



Example

The corresponding phase portrait is below.

Figure: Typical Phase Portrait



Example

We constructed a MEE filter with

G =

[
0
1

]
Q = 0.1

R = 0.01

α = 0.5

x(0) =

[
0.5
0

]
x̂(0|0) =

[
1
1

]
π(x, 0| − 1)) = ‖x− x̂(0|0)‖2



Example
The error x̃1(t|t) is shown below and is essentially zero after
about twenty time steps.

Figure: x̃1(t|t)



Example
The phase portrait of x(t) is in blue and that of x̂(t|t) is in red.
Notice that x̂(t|t) converges to x(t) faster than x(t) converges
to the limit cycle.

Figure: x(t) blue, x̂(t|t) red



Conclusion

We have extended Minimum Energy Estimation of Mortenson
and Hijab to discrete time systems.

We showed how a power series method can be employed to ease
the computational burden.

We believe that such techniques complement standard Moving
Horizon Estimation techniques for real time filtering of faster
processes as they essentially reduce the horizon length to one
time step.

Thank You.

Questions?
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