Taylor expansions for the HJB equation associated with a bilinear control problem

Tobias Breiten, Karl Kunisch and Laurent Pfeiffer

University of Graz, Austria

Rome, June 2017

European Research Council Established by the European Commission

Motivation

dragged Brownian particle following Langevin equation

 $dX_s = Y(s)ds, \ dY_s = -\beta Y_s ds + F(X,s)ds + \sqrt{2\beta kT/m}dB(s)$

particle confined by potential V: force $F(X, s) = -\nabla V(X, s)$ $\beta >>, t = \frac{s}{\beta}, \nu = \frac{kT}{m},$

Smoluchowski equation

$$dX_t = -
abla V(X,t) + \sqrt{2
u} dB_t$$

 atomic force microscopy, single molecule pulling, optical trapping

collinate light from laser into aperature of microscope objetive

► control by optical tweezer $V(X_t, t) = W(X_t) + u(X_t, t)$.

Consider probability distribution function

$$\rho(x, t) \mathrm{d}x = \mathbb{P}[X_t \in [x, x + \mathrm{d}x)]$$

Fokker-Planck equation

$$\begin{split} \frac{\partial \rho}{\partial t} &= \nu \Delta \rho + \nabla \cdot (\rho \nabla V) \quad \text{in } \Omega \times (0, \infty), \\ 0 &= (\nu \nabla \rho + \rho \nabla V) \cdot \vec{n} \quad \text{on } \Gamma \times (0, \infty), \\ \rho(x, 0) &= \rho_0(x) \qquad \qquad \text{in } \Omega, \end{split}$$

- $\Omega \subset \mathbb{R}^n$ bounded open set with boundary $\Gamma = \partial \Omega$,
- ρ_0 initial probability distribution with $\int_{\Omega} \rho_0(x) dx = 1$.

[E.G. BORZI ET AL., HARTMANN ET AL.

Control of the Fokker-Planck equation

$$\begin{split} \frac{\partial \rho}{\partial t} &= \nu \Delta \rho + \nabla \cdot (\rho \nabla V) & \text{in } \Omega \times (0, \infty), \\ 0 &= (\nu \nabla \rho + \rho \nabla V) \cdot \vec{n} & \text{on } \Gamma \times (0, \infty), \\ (x, 0) &= \rho_0(x) & \text{in } \Omega, \end{split}$$

- system converges to stationary distribution ρ_∞(x), (Boltzmann distribution)
- ▶ particles have to cross energy barrier between potential wells, → may be inadequately slow, ~ exp(ΔW/ν)

- ► can we control the potential $V(x, t) = W(x) + \alpha(x)u(t)$,
- if we can, what are "good" choices for α ?

Assumptions:

 ρ

- $W \in W^{2,\max(2,n+\varepsilon)}(\Omega), \varepsilon > 0$
- $\alpha \in W^{2,\max(2,n+\varepsilon)}(\Omega), \varepsilon > 0$ with $\nabla \alpha \cdot \vec{n} = 0$ on Γ

Control of the Fokker-Planck equation

$$\begin{split} \frac{\partial \rho}{\partial t} &= \nu \Delta \rho + \nabla \cdot (\rho \nabla V) & \text{in } \Omega \times (0, \infty), \\ 0 &= (\nu \nabla \rho + \rho \nabla V) \cdot \vec{n} & \text{on } \Gamma \times (0, \infty), \\ (x, 0) &= \rho_0(x) & \text{in } \Omega, \end{split}$$

- system converges to stationary distribution ρ_∞(x), (Boltzmann distribution)
- ▶ particles have to cross energy barrier between potential wells, → may be inadequately slow, ~ exp(ΔW/ν)

- ► can we control the potential $V(x, t) = W(x) + \alpha(x)u(t)$,
- if we can, what are "good" choices for α ?

Assumptions:

 ρ

- $W \in W^{2,\max(2,n+\varepsilon)}(\Omega), \varepsilon > 0$
- $\alpha \in W^{2,\max(2,n+\varepsilon)}(\Omega), \varepsilon > 0$ with $\nabla \alpha \cdot \vec{n} = 0$ on Γ

Solutions to the Fokker-Planck equation

For T > 0 we call ρ a (variational) solution on (0, T) if $\rho \in W(0, T) = L^2(0, T; H^1(\Omega)) \cap H^1(0, T; (H^1(\Omega))^*)$ and

 $\langle \rho_t(t), \mathbf{v} \rangle + \langle \nu \nabla \rho(t) + \rho(t) \nabla W, \nabla \mathbf{v} \rangle + u(t) \langle \rho(t) \nabla \alpha, \nabla \mathbf{v} \rangle = 0, \ \forall \mathbf{v} \in H^1(\Omega)$ $\rho(0) = \rho_0.$

Proposition

(i)
$$u \in L^2(0, T), \rho_0 \in L^2(\Omega) \Rightarrow \exists ! \text{ solution } \rho \in W(0, T)$$

(ii) If moreover
$$\Delta lpha \in L^{\infty}(\Omega),
ho_0 \in H^1(\Omega)$$

$$\Rightarrow \rho_t \in L^2(0, T; L^2(\Omega)), \ \rho \in C([0, T]; H^1(\Omega))$$

Proposition

Let $u \in L^2(0, T)$ and $\rho_0 \in L^2(\Omega)$.

(i) For every $t \in [0, T]$ we have $\int_{\Omega} \rho(t) dx = \int_{\Omega} \rho_0 dx$.

(ii) If $\rho_0 \ge 0$ a.e. on Ω , then $\rho(x, t) \ge 0 \ \forall t > 0$ and a.e. on Ω .

Solutions to the Fokker-Planck equation

For T > 0 we call ρ a (variational) solution on (0, T) if $\rho \in W(0, T) = L^2(0, T; H^1(\Omega)) \cap H^1(0, T; (H^1(\Omega))^*)$ and

 $\langle \rho_t(t), \mathbf{v} \rangle + \langle \nu \nabla \rho(t) + \rho(t) \nabla W, \nabla \mathbf{v} \rangle + u(t) \langle \rho(t) \nabla \alpha, \nabla \mathbf{v} \rangle = 0, \ \forall \mathbf{v} \in H^1(\Omega)$ $\rho(0) = \rho_0.$

Proposition

(i)
$$u \in L^2(0, T), \rho_0 \in L^2(\Omega) \Rightarrow \exists ! \text{ solution } \rho \in W(0, T)$$

(ii) If moreover
$$\Delta \alpha \in L^{\infty}(\Omega), \rho_0 \in H^1(\Omega)$$

$$\Rightarrow \rho_t \in L^2(0, T; L^2(\Omega)), \ \rho \in C([0, T]; H^1(\Omega))$$

Proposition

Let $u \in L^2(0, T)$ and $\rho_0 \in L^2(\Omega)$. (i) For every $t \in [0, T]$ we have $\int_{\Omega} \rho(t) dx = \int_{\Omega} \rho_0 dx$. (ii) If $\rho_0 \ge 0$ a.e. on Ω , then $\rho(x, t) \ge 0 \forall t > 0$ and a.e. on Ω .

A bilinear control system

Consider the bilinear control system

$$\dot{\rho}(t) = \mathcal{A}\rho(t) + u(t)\mathcal{N}\rho(t),$$

$$\rho(0) = \rho_0,$$

where the operators ${\cal A}$ and ${\cal N}$ are defined as follows

$$\begin{split} \mathcal{A} \colon \mathcal{D}(\mathcal{A}) \subset L^2(\Omega) \to L^2(\Omega), \\ \mathcal{D}(\mathcal{A}) &= \left\{ \rho \in H^2(\Omega) \left| (\nu \nabla \rho + \rho \nabla W) \cdot \vec{n} = 0 \text{ on } \Gamma \right\}, \\ \mathcal{A}\rho &= \nu \Delta \rho + \nabla \cdot (\rho \nabla W), \end{split}$$

 $\mathcal{N} \colon H^1(\Omega) \to L^2(\Omega), \quad \mathcal{N}\rho = \nabla \cdot (\rho \nabla \alpha).$

 $\sigma(\mathcal{A}) \subset \mathbb{R}_{-}, \qquad \Phi(x) = \log(\nu) + \frac{W(x)}{\nu}$ $\rho_{\infty} = e^{-\Phi} \text{ is an eigenfunction of } \mathcal{A} \text{ with } \mathcal{A}\rho_{\infty} = 0$

A shifted problem

Instead of ρ , consider the shifted state $\mathbf{y} := \rho - \rho_{\infty}$

$$\dot{y}(t) = \mathcal{A}y(t) + u(t)\mathcal{N}y(t) + \mathcal{B}u(t),$$

 $y(0) = \rho_0 - \rho_\infty,$

with
$$\mathcal{B} = \mathcal{N}\rho_{\infty}$$
, thus $\mathcal{B}u(t) = u(t)\mathcal{N}\rho_{\infty} = u(t)\nabla \cdot (\rho_{\infty}\nabla \alpha)$.

We decompose our state space

$$\begin{aligned} \mathcal{L}^{2}(\Omega) &=: \mathcal{Y}_{\mathcal{P}} \oplus \mathcal{Y}_{\mathcal{Q}} \\ \mathcal{Y}_{\mathcal{P}} &= \{ v \in \mathcal{L}^{2}(\Omega) \colon \int_{\Omega} v \, \mathrm{d} x = 0 \}, \quad \mathcal{Y}_{\mathcal{Q}} = \mathrm{span} \left\{ \rho_{\infty} \right\} \\ y &= y_{\mathcal{P}} + y_{\mathcal{Q}} = \mathcal{P} y + \mathcal{Q} y. \end{aligned}$$

Decoupling the problem

 \rightsquigarrow applying $\mathcal P$ and $\mathcal Q$ yields

$$\begin{pmatrix} \dot{y}_{\mathcal{P}} \\ \dot{y}_{\mathcal{Q}} \end{pmatrix} = \begin{pmatrix} \mathcal{P}\mathcal{A} & \mathcal{P}\mathcal{A} \\ \mathcal{Q}\mathcal{A} & \mathcal{Q}\mathcal{A} \end{pmatrix} \begin{pmatrix} y_{\mathcal{P}} \\ y_{\mathcal{Q}} \end{pmatrix} + u \begin{pmatrix} \mathcal{P}\mathcal{N} & \mathcal{P}\mathcal{N} \\ \mathcal{Q}\mathcal{N} & \mathcal{Q}\mathcal{N} \end{pmatrix} \begin{pmatrix} y_{\mathcal{P}} \\ y_{\mathcal{Q}} \end{pmatrix} + u \begin{pmatrix} \mathcal{P}\mathcal{B} \\ \mathcal{Q}\mathcal{B} \end{pmatrix}.$$

 \rightsquigarrow simplifies to

$$\begin{pmatrix} \dot{y}_{\mathcal{P}} \\ \dot{y}_{\mathcal{Q}} \end{pmatrix} = \begin{pmatrix} \mathcal{P}\mathcal{A} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_{\mathcal{P}} \\ y_{\mathcal{Q}} \end{pmatrix} + u \begin{pmatrix} \mathcal{P}\mathcal{N} & \mathcal{P}\mathcal{N} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_{\mathcal{P}} \\ y_{\mathcal{Q}} \end{pmatrix} + u \begin{pmatrix} \mathcal{P}\mathcal{B} \\ 0 \end{pmatrix}.$$

 \rightsquigarrow simplifies to

$$\dot{y}_{\mathcal{P}} = \widehat{\mathcal{A}} y_{\mathcal{P}} + u \widehat{\mathcal{N}} y_{\mathcal{P}} + \widehat{\mathcal{B}} u, \quad y_{\mathcal{P}}(0) = \mathcal{P} \rho_0,$$

 $y_{\mathcal{Q}}(t) = \mathcal{Q} \rho_0 - \rho_\infty = 0, \ t \ge 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An LQR problem for the linearized system

For $\delta > 0$ let us focus on the linearized system

$$\dot{y}_{\mathcal{P}} = (\widehat{\mathcal{A}} + \delta I) y_{\mathcal{P}}(t) + \widehat{\mathcal{B}}u, \quad y_{\mathcal{P}}(0) = \mathcal{P}\rho_0,$$

together with the quadratic cost functional

$$J(y_{\mathcal{P}}, u) = \frac{1}{2} \int_0^\infty \langle y_{\mathcal{P}}(t), \mathcal{M} y_{\mathcal{P}}(t) \rangle_{L^2(\Omega)} \, \mathrm{d}t + \frac{1}{2} \int_0^\infty |u(t)|^2 \, \mathrm{d}t,$$

where $\mathcal{M} \in \mathcal{L}(\mathcal{Y}_{\mathcal{P}})$ is a self-adjoint nonnegative operator on $\mathcal{Y}_{\mathcal{P}}$.

Riccati-based feedback law: $u = -\widehat{\mathcal{B}}^* \widehat{\Pi} y_{\mathcal{P}}$

$$(\widehat{\mathcal{A}}^*+\delta I)\widehat{\Pi}+\widehat{\Pi}(\widehat{\mathcal{A}}+\delta I)-\widehat{\Pi}\widehat{\mathcal{B}}\widehat{\mathcal{B}}^*\widehat{\Pi}+\mathcal{M}=0, \quad \widehat{\Pi}\in\mathcal{L}(\mathcal{Y}_\mathcal{P}).$$

The ∞ -dimensional Hautus test: The pair $(\widehat{\mathcal{A}}, \widehat{\mathcal{B}})$ is δ -stabilizable if

$$\ker(\lambda I - \widehat{\mathcal{A}}^*) \cap \ker(\widehat{\mathcal{B}}^*) = \{0\} \quad \text{for } \lambda \in \overline{\mathbb{C}}_{-\delta} \cap \sigma(\widehat{\mathcal{A}}^*).$$

Figure: 1D Fokker-Planck equation, n = 1024.

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

Figure: 1D Fokker-Planck equation, n = 1024.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Figure: 1D Fokker-Planck equation, n = 1024.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Figure: 1D Fokker-Planck equation, n = 1024.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Figure: 1D Fokker-Planck equation, n = 1024.

Figure: 1D Fokker-Planck equation, n = 1024.

Back to the 1D Fokker-Planck equation

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● のへで

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんで

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-5}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 …のへ(で)

2-D and movies removed

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Figure: 1D Fokker-Planck equation, n = 1024.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Bilinear quadratic optimization

Consider a bilinear control system

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + Bu(t), \quad x(0) = x_0,$$

 $y(t) = Cx(t),$

►
$$A, N \in \mathbb{R}^{n \times n}, B \in \mathbb{R},$$

- control $u \colon [0,\infty) \to \mathbb{R}$ and
- output $y \colon [0,\infty) \to \mathbb{R}^p$ of the system,
- ▶ (A, B) stabilizable.

For this system, we introduce the minimal value functional

$$\mathcal{V}(x_0) = \inf_{u \in L^2(0,\infty)} \frac{1}{2} \int_0^\infty \|y(t)\|^2 \mathrm{d}t + \frac{\alpha}{2} \int_0^\infty u(t)^2 \mathrm{d}t.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Dynamic programming

By the dynamic programming principle, for any x_0 and $\tau > 0$:

$$\mathcal{V}(x_0) = \inf_{u \in L^2(0,\tau)} \int_0^\tau \ell(y(u, x_0; t), u(t)) \mathrm{d}t + \mathcal{V}(x(u, x_0; \tau)),$$

henceforth $\ell(y, u) = \frac{1}{2} ||y||^2 + \frac{\alpha}{2} u^2$.

Under smoothness assumptions on \mathcal{V} , we obtain

$$\min_{u \in \mathbb{R}} \left[(Ax + (Nx + B)u)^T \nabla \mathcal{V}(x) + \frac{1}{2} \|Cx\|^2 + \frac{\alpha}{2} u^2 \right] = 0, \quad \mathcal{V}(0) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamic programming

By the dynamic programming principle, for any x_0 and $\tau > 0$:

$$\mathcal{V}(x_0) = \inf_{u \in L^2(0,\tau)} \int_0^\tau \ell(y(u, x_0; t), u(t)) \mathrm{d}t + \mathcal{V}(x(u, x_0; \tau)),$$

henceforth $\ell(y, u) = \frac{1}{2} ||y||^2 + \frac{\alpha}{2} u^2$.

Under smoothness assumptions on \mathcal{V} , we obtain

$$\min_{u \in \mathbb{R}} \left[(Ax + (Nx + B)u)^T \nabla \mathcal{V}(x) + \frac{1}{2} \|Cx\|^2 + \frac{\alpha}{2} u^2 \right] = 0, \quad \mathcal{V}(0) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Hamilton-Jacobi-Bellman equation

Consider again

$$\min_{u \in \mathbb{R}} \left[(Ax + (Nx + B)u)^T \nabla \mathcal{V}(x) + \frac{1}{2} \|y\|^2 + \frac{\alpha}{2} u^2 \right] = 0, \quad \mathcal{V}(0) = 0.$$

Minimization yields Hamilton-Jacobi-Bellman (HJB) equation

$$x^{T}A^{T}\nabla \mathcal{V}(x) + \frac{1}{2}\|Cx\|^{2} - \frac{1}{2\alpha}((Nx+B)^{T}\nabla \mathcal{V}(x))^{2} = 0, \quad \mathcal{V}(0) = 0.$$

Optimal feedback law via solving HJB equation

$$u_{\mathrm{opt}}(x) = -\frac{1}{lpha}(Nx+B)^T \nabla \mathcal{V}(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem: The HJB equation is a nonlinear n-dimensional PDE...

The Hamilton-Jacobi-Bellman equation

Consider again

$$\min_{u \in \mathbb{R}} \left[(Ax + (Nx + B)u)^T \nabla \mathcal{V}(x) + \frac{1}{2} \|y\|^2 + \frac{\alpha}{2} u^2 \right] = 0, \quad \mathcal{V}(0) = 0.$$

Minimization yields Hamilton-Jacobi-Bellman (HJB) equation

$$x^{T}A^{T}\nabla \mathcal{V}(x) + \frac{1}{2}\|Cx\|^{2} - \frac{1}{2\alpha}((Nx+B)^{T}\nabla \mathcal{V}(x))^{2} = 0, \quad \mathcal{V}(0) = 0.$$

Optimal feedback law via solving HJB equation

$$u_{\mathrm{opt}}(x) = -\frac{1}{lpha}(Nx+B)^T \nabla \mathcal{V}(x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Problem: The HJB equation is a nonlinear *n*-dimensional PDE...

HJB equation: the linear case

For the linear case, we obtain

$$x^{T}A^{T}\nabla \mathcal{V}(x) + \frac{1}{2}\|Cx\|^{2} - \frac{1}{2\alpha}(B^{T}\nabla \mathcal{V}(x))^{2} = 0, \quad \mathcal{V}(0) = 0.$$

The ansatz $\mathcal{V}(x) = \frac{1}{2}x^T \Pi x$, with $\Pi = \Pi^T \in \mathbb{R}^{n \times n}$ yields

$$x^{T}A^{T}\Pi x + \frac{1}{2}\|Cx\|^{2} - \frac{1}{2\alpha}(B^{T}\Pi x)^{2} = 0.$$

The more familiar expression is

$$\frac{1}{2}x^{T}\left(A^{T}\Pi + \Pi A + C^{T}C - \frac{1}{\alpha}\Pi BB^{T}\Pi\right)x = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 \Rightarrow algebraic Riccati equation

Taylor expansions - basic idea

Assume that \mathcal{V} can be expanded around 0 as follows

Feedback law can be determined via

$$u = -\frac{1}{\alpha} \sum_{k=2}^{\infty} \frac{1}{(k-1)!} D^k \mathcal{V}(0)(Nx+B,x,\ldots,x)$$

Finite-dimensional case: [Lukes, Cebuhar/Costanza, Krener]

Infinite-dimensional case: [Thevenet/Buchot/Raymond]

Question: Precise structure of $D^k \mathcal{V}(0)$?

Taylor expansions - basic idea

Assume that \mathcal{V} can be expanded around 0 as follows

$$\mathcal{V}(x) = \underbrace{\mathcal{V}(0)}_{\in \mathbb{R}} + \underbrace{\mathcal{D}\mathcal{V}(0)}_{\in \mathbb{R}^n}(x) + \frac{1}{2!} \underbrace{\mathcal{D}^2\mathcal{V}(0)}_{\in \mathbb{R}^{n \times n}}(x, x) + \frac{1}{3!} \underbrace{\mathcal{D}^3\mathcal{V}(0)}_{\in \mathbb{R}^{n \times n \times n}}(x, x, x) + \dots$$

Feedback law can be determined via

$$u = -\frac{1}{\alpha} \sum_{k=2}^{\infty} \frac{1}{(k-1)!} D^k \mathcal{V}(0) (Nx + B, x, \dots, x)$$

Finite-dimensional case: [Lukes, Cebuhar/Costanza, Krener]

Infinite-dimensional case: [THEVENET/BUCHOT/RAYMOND]

Question: Precise structure of $D^k \mathcal{V}(0)$?

Taylor expansions - basic idea

Assume that \mathcal{V} can be expanded around 0 as follows

$$\mathcal{V}(x) = \underbrace{\mathcal{V}(0)}_{\in \mathbb{R}} + \underbrace{\mathcal{D}\mathcal{V}(0)}_{\in \mathbb{R}^n}(x) + \frac{1}{2!} \underbrace{\mathcal{D}^2\mathcal{V}(0)}_{\in \mathbb{R}^{n \times n}}(x, x) + \frac{1}{3!} \underbrace{\mathcal{D}^3\mathcal{V}(0)}_{\in \mathbb{R}^{n \times n \times n}}(x, x, x) + \dots$$

Feedback law can be determined via

$$u = -\frac{1}{\alpha} \sum_{k=2}^{\infty} \frac{1}{(k-1)!} D^k \mathcal{V}(0) (Nx + B, x, \dots, x)$$

Finite-dimensional case: [Lukes, Cebuhar/Costanza, Krener]

Infinite-dimensional case: [THEVENET/BUCHOT/RAYMOND]

Question: Precise structure of $D^k \mathcal{V}(0)$?

Let us come back to

$$x^{\mathsf{T}}A^{\mathsf{T}}\nabla \mathcal{V}(x) + \frac{1}{2}\|\mathcal{C}x\|^2 - \frac{1}{2\alpha}((Nx+B)^{\mathsf{T}}\nabla \mathcal{V}(x))^2 = \mathbf{0},$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Let us come back to

$$x^{\mathsf{T}} A^{\mathsf{T}} \nabla \mathcal{V}(x) + \frac{1}{2} \| C x \|^2 - \frac{1}{2\alpha} ((N x + B)^{\mathsf{T}} \nabla \mathcal{V}(x))^2 = \mathbf{0},$$

 \Rightarrow one differentiation in direction $z_1 \in \mathbb{R}^n$ yields

 $D^{2}\mathcal{V}(x)(Ax, z_{1}) + D\mathcal{V}(x)Az_{1} + \langle Cx, Cz_{1} \rangle$ - $\frac{1}{\alpha} (D^{2}\mathcal{V}(x)(Nx + B, z_{1}) + D\mathcal{V}(x)Nz_{1}) (D\mathcal{V}(x)(Nx + B))] = 0.$

Let us come back to

$$x^{\mathsf{T}} A^{\mathsf{T}} \nabla \mathcal{V}(x) + \frac{1}{2} \| C x \|^2 - \frac{1}{2\alpha} ((N x + B)^{\mathsf{T}} \nabla \mathcal{V}(x))^2 = \mathbf{0},$$

 \Rightarrow two differentiations in directions $z_1, z_2 \in \mathbb{R}^n$ yield

$$D^{3}\mathcal{V}(x)(Ax, z_{1}, z_{2}) + D^{2}\mathcal{V}(x)(Az_{2}, z_{1}) + D^{2}\mathcal{V}(x)(Az_{1}, z_{2}) + \langle Cz_{1}, Cz_{2} \rangle$$

- $\frac{1}{\alpha} \Big(D^{2}\mathcal{V}(x)(Nx + B, z_{1}) + D\mathcal{V}(x)Nz_{1} \Big) \cdot$
 $\Big(D^{2}\mathcal{V}(x)(Nx + B, z_{2}) + D\mathcal{V}(x)Nz_{2} \Big)$
- $\frac{1}{\alpha} \Big(D^{3}\mathcal{V}(x)(Nx + B, z_{1}, z_{2}) + D^{2}\mathcal{V}(x)(Nz_{2}, z_{1}) + D^{2}\mathcal{V}(x)(Nz_{1}, z_{2}) \Big)$
 $\Big(D\mathcal{V}(x)(Nx + B) \Big) = \mathbf{0}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let us come back to

$$x^{\mathsf{T}} A^{\mathsf{T}} \nabla \mathcal{V}(x) + \frac{1}{2} \| C x \|^2 - \frac{1}{2\alpha} ((N x + B)^{\mathsf{T}} \nabla \mathcal{V}(x))^2 = \mathbf{0},$$

 \Rightarrow two differentiations in directions $z_1, z_2 \in \mathbb{R}^n$ yield

$$\frac{D^{3}\mathcal{V}(\mathbf{0})(\mathcal{A}\mathbf{0}, z_{1}, z_{2})}{\alpha} + D^{2}\mathcal{V}(\mathbf{0})(\mathcal{A}z_{2}, z_{1}) + D^{2}\mathcal{V}(\mathbf{0})(\mathcal{A}z_{1}, z_{2}) + \langle Cz_{1}, Cz_{2} \rangle \\
- \frac{1}{\alpha} \left(D^{2}\mathcal{V}(\mathbf{0})(\mathcal{M}\mathbf{0} + B, z_{1}) + D\mathcal{V}(\mathbf{0})\mathcal{M}z_{1} \right) \cdot \\
\left(D^{2}\mathcal{V}(\mathbf{0})(\mathcal{M}\mathbf{0} + B, z_{2}) + D\mathcal{V}(\mathbf{0})\mathcal{M}z_{2} \right) \\
- \frac{1}{\alpha} \left(D^{3}\mathcal{V}(\mathbf{0})(\mathcal{M}\mathbf{0} + B, z_{1}, z_{2}) + D^{2}\mathcal{V}(\mathbf{0})(\mathcal{N}z_{2}, z_{1}) + D^{2}\mathcal{V}(\mathbf{0})(\mathcal{N}z_{1}, z_{2}) \right) \\
\left(D\mathcal{V}(\mathbf{0})(\mathcal{M}\mathbf{0} \pm B) \right) = \mathbf{0}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This is the Riccati equation...

Let us come back to

$$x^{\mathsf{T}} A^{\mathsf{T}} \nabla \mathcal{V}(x) + \frac{1}{2} \| C x \|^2 - \frac{1}{2\alpha} ((N x + B)^{\mathsf{T}} \nabla \mathcal{V}(x))^2 = \mathbf{0},$$

 \Rightarrow three differentiations in directions $z_1, z_2, z_3 \in \mathbb{R}^n$ yield

 $D^{3}\mathcal{V}(0)(Az_{3}, z_{1}, z_{2}) + D^{3}\mathcal{V}(0)(Az_{2}, z_{1}, z_{3}) + D^{3}\mathcal{V}(0)(Az_{1}, z_{2}, z_{3})$

- $-\frac{1}{\alpha} \Big(D^3 V(0)(B, z_1, z_3) + D^2 \mathcal{V}(0)(Nz_3, z_1) + D^2 \mathcal{V}(0)(Nz_1, z_3) \Big) \Big(D^2 \mathcal{V}(0)(B, z_2) \Big)$
- $-\frac{1}{\alpha}\Big(D^{3}\mathcal{V}(0)(B, z_{2}, z_{3})+D^{2}\mathcal{V}(0)(Nz_{3}, z_{2})+D^{2}\mathcal{V}(0)(Nz_{2}, z_{3})\Big)\Big(D^{2}\mathcal{V}(0)(B, z_{1})\Big)$
- $-\frac{1}{\alpha} \Big(D^3 \mathcal{V}(0)(B, z_1, z_2) + D^2 \mathcal{V}(0)(Nz_2, z_1) + D^2 \mathcal{V}(0)(Nz_1, z_2) \Big) \Big(D^2 \mathcal{V}(0)(B, z_3) \Big)$ = 0.

Let us come back to

$$x^{\mathsf{T}} A^{\mathsf{T}} \nabla \mathcal{V}(x) + \frac{1}{2} \| C x \|^2 - \frac{1}{2\alpha} ((N x + B)^{\mathsf{T}} \nabla \mathcal{V}(x))^2 = \mathbf{0},$$

 \Rightarrow three differentiations in directions $z_1, z_2, z_3 \in \mathbb{R}^n$ yield

 $D^{3}\mathcal{V}(0)(Az_{3}, z_{1}, z_{2}) + D^{3}\mathcal{V}(0)(Az_{2}, z_{1}, z_{3}) + D^{3}\mathcal{V}(0)(Az_{1}, z_{2}, z_{3})$

 $-\frac{1}{\alpha} \Big(D^{3} \mathcal{V}(0)(B, z_{1}, z_{3}) + D^{2} \mathcal{V}(0)(Nz_{3}, z_{1}) + D^{2} \mathcal{V}(0)(Nz_{1}, z_{3}) \Big) \Big(D^{2} \mathcal{V}(0)(B, z_{2}) \Big) \\ -\frac{1}{\alpha} \Big(D^{3} \mathcal{V}(0)(B, z_{2}, z_{3}) + D^{2} \mathcal{V}(0)(Nz_{3}, z_{2}) + D^{2} \mathcal{V}(0)(Nz_{2}, z_{3}) \Big) \Big(D^{2} \mathcal{V}(0)(B, z_{1}) \Big) \\ -\frac{1}{\alpha} \Big(D^{3} \mathcal{V}(0)(B, z_{1}, z_{2}) + D^{2} \mathcal{V}(0)(Nz_{2}, z_{1}) + D^{2} \mathcal{V}(0)(Nz_{1}, z_{2}) \Big) \Big(D^{2} \mathcal{V}(0)(B, z_{3}) \Big) \\ = \mathbf{0}.$

 \odot Looks complicated \odot Linear in $D^3\mathcal{V}(0)$

The general structure

For $i, j \in \mathbb{N}$, consider the following set of permutations:

$$S_{i,j} = \big\{ \sigma \in S_{i+j} \, | \, \sigma(1) < \ldots < \sigma(i) \text{ and } \sigma(i+1) < \ldots < \sigma(i+j) \big\},$$

where S_{i+j} is the set of permutations of $\{1, ..., i+j\}$. Example

$$\begin{split} S_{2,2} &= \big\{ \sigma \in S_4 \, | \, \sigma(1) < \sigma(2) \text{ and } \sigma(3) < \sigma(4) \big\} \\ &= \big\{ (1,2,3,4), (1,3,2,4), (1,4,2,3), \\ &\quad (2,3,1,4), (2,4,1,3), (3,4,1,2) \big\} \end{split}$$

For given multilinear form \mathcal{T} (of order i + j), we define

$$\mathsf{Sym}_{i,j}(\mathcal{T})(z_1,...,z_{i+j}) := \binom{i+j}{i}^{-1} \Big[\sum_{\sigma \in S_{i,j}} \mathcal{T}(z_{\sigma(1)},...,z_{\sigma(i+j)})\Big].$$

The general structure

Define $A_{\Pi} = A - \frac{1}{\alpha} BB^* \Pi$. For $k \ge 3$ and $z_1, \ldots, z_k \in \mathbb{R}^n$ consider

$$\sum_{i=1}^{k} D^{k} \mathcal{V}(0)(z_{1},...,z_{i-1},A_{\Pi}z_{i},z_{i+1},...,z_{k}) = \frac{1}{2\alpha} \mathcal{R}_{k}(z_{1},...,z_{k}) \quad (*),$$

where $\mathcal{R}_k(z_1, \ldots, z_k)$ is given by:

$$\begin{aligned} \mathcal{R}_k(z_1,\ldots,z_k) &= 2k(k-1)\mathrm{Sym}_{1,k-1}\left(\mathcal{C}_1(z_1)\mathcal{G}_{k-1}(z_2,\ldots,z_k)\right) \\ &+ \sum_{i=2}^{k-2} \binom{k}{i} \mathrm{Sym}_{i,k-i} \bigg(\left(\mathcal{C}_i(z_1,\ldots,z_i) + i\mathcal{G}_i(z_1,\ldots,z_i)\right) \\ &\times \left(\mathcal{C}_{k-i}(z_{i+1},\ldots,z_k) + (k-i)\mathcal{G}_{k-i}(z_{i+1},\ldots,z_k)\right) \bigg), \end{aligned}$$

where:

$$C_i(z_1, ..., z_i) = D^{i+1} \mathcal{V}(0)(B, z_1, ..., z_i)$$

$$G_i(z_1, ..., z_i) = \frac{1}{i} \Big[\sum_{j=1}^i D^j \mathcal{V}(0)(z_1, ..., z_{j-1}, Nz_j, z_{j+1}, ..., z_i) \Big].$$

Tensor calculus

Main numerical task:

Solve
$$\underbrace{\left(\sum_{i=1}^{k} I^{k-i} \otimes A_{\Pi}^{T} \otimes I^{i-1}\right)}_{\mathbf{A}} T_{k} = \underbrace{R_{k}(T_{2}, \dots, T_{k-1})}_{? \text{ low rank }?}.$$

Since **A** is stable:
$$\mathbf{A}^{-1} = -\int_0^\infty e^{t\mathbf{A}} dt = -\int_0^\infty \bigotimes_{i=1}^k e^{tA_{\Pi}^T} dt.$$

Approximate by quadrature formula

[GRASEDYCK, HACKBUSCH, STENGER]

$$\mathbf{A}^{-1}\approx-\sum_{j=-r}^{r}w_{j}\bigotimes_{i=1}^{k}e^{t_{j}A_{\Pi}^{T}},$$

with suitable quadrature weights w_j and points t_j .

The infinite dimensional setup

Let us focus on the abstract bilinear control system

$$\dot{x}(t) = \mathcal{A}x(t) + \mathcal{N}x(t)u(t) + \mathcal{B}u(t), \quad x(0) = x_0 \in X,$$

- V ⊂ X ⊂ V* Gelfand triple of Hilbert spaces
- ► a: $V \times V \to \mathbb{R}$ a bounded *V*-*X* bilinear form, i.e., $\exists \nu > 0$ and $\lambda \in \mathbb{R}$ $a(v, v) \ge \nu \|v\|_{V}^{2} - \lambda \|v\|_{X}^{2} \, \forall v \in V$
- ► $\mathcal{N} \in \mathcal{L}(V, X) \cap \mathcal{L}(\mathcal{D}(\mathcal{A}), V), \ \mathcal{N}^* \in \mathcal{L}(V, X), \ B \in X$
- For $\beta > 0$ large enough define $A_0 := -A + \beta I$

$$\Rightarrow [\mathcal{D}(\mathcal{A}_0), X]_{\frac{1}{2}} = [\mathcal{D}(\mathcal{A}_0^*), X]_{\frac{1}{2}} = V$$

• $(\mathcal{A}, \mathcal{B})$ stabilizable

A multilinear operator equation

Well-posedness of $\mathcal{T}_k \equiv D^k \mathcal{V}(0)$ For $k \geq 3$, and $z_1, \ldots, z_k \in X$ define the multilinear form

$$\mathcal{T}_k \colon X imes \cdots imes X o \mathbb{R},$$

 $\mathcal{T}_k(z_1, \dots, z_k) = -rac{1}{2lpha} \int_0^\infty \mathcal{R}_k(e^{\mathcal{A}_{\Pi}t} z_1, \dots, e^{\mathcal{A}_{\Pi}t} z_k) \, \mathrm{d}t.$

Then \mathcal{T}_k is the unique solution of (*). Moreover, it holds that

$$|\mathcal{T}_k(z_1,\ldots,z_k)| \leq C \prod_{i=1}^k ||z_i||_X$$

Definition:

$$\mathcal{V}_p\colon Y\to\mathbb{R}, \quad \mathcal{V}_p(y)=\sum_{k=2}^p \frac{1}{k!}\mathcal{T}_k(y,\ldots,y).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A multilinear operator equation

Well-posedness of $\mathcal{T}_k \equiv D^k \mathcal{V}(0)$ For $k \geq 3$, and $z_1, \ldots, z_k \in X$ define the multilinear form

$$\mathcal{T}_k \colon X imes \cdots imes X o \mathbb{R},$$

 $\mathcal{T}_k(z_1, \dots, z_k) = -rac{1}{2lpha} \int_0^\infty \mathcal{R}_k(e^{\mathcal{A}_{\Pi}t} z_1, \dots, e^{\mathcal{A}_{\Pi}t} z_k) \, \mathrm{d}t.$

Then \mathcal{T}_k is the unique solution of (*). Moreover, it holds that

$$|\mathcal{T}_k(z_1,\ldots,z_k)| \leq C \prod_{i=1}^k ||z_i||_X$$

Definition:

$$\mathcal{V}_p\colon Y\to\mathbb{R}, \quad \mathcal{V}_p(y)=\sum_{k=2}^p \frac{1}{k!}\mathcal{T}_k(y,\ldots,y).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A suboptimal feedback law

Consider now the polynomial feedback law

$$u_p(x) = -\sum_{k=2}^p \frac{1}{(k-1)!} \mathcal{T}_k(\mathcal{N}x + \mathcal{B}, x, \dots, x)$$

and the corresponding (nonlinear) closed-loop system

(CL)
$$\dot{x} = \mathcal{A}x - (\mathcal{N}x + \mathcal{B})u_p(x), \quad x(0) = x_0.$$

Local well-posedness

There exist constants $C_1, C_2 > 0$ such that: if $||x_0||_X \le C_1$, then

- ► (CL) admits a unique solution $x \in W(0, \infty) = \{\varphi \in L^2(0, \infty; X) | \varphi_t \in L^2(0, \infty; V^*)\}$
- ▶ this solution satisfies $||x||_{W(0,\infty)} \leq C_2$

• and
$$\lim_{t\to\infty} \|x(t)\|_X = 0$$

A suboptimal feedback law

Consider now the polynomial feedback law

$$u_p(x) = -\sum_{k=2}^p \frac{1}{(k-1)!} \mathcal{T}_k(\mathcal{N}x + \mathcal{B}, x, \dots, x)$$

and the corresponding (nonlinear) closed-loop system

(CL)
$$\dot{x} = \mathcal{A}x - (\mathcal{N}x + \mathcal{B})u_p(x), \quad x(0) = x_0.$$

Local suboptimality

There exists a constant $C_3 > 0$, C_4 such that: if $||x_0||_X \leq C_3$,

•
$$\int_0^\infty \ell(x(u_p, x_0; t), u_p(t)) \, \mathrm{d}t \le \mathcal{V}(x_0) + C_4(\|x_0\|_X^{p+1})$$

•
$$|\mathcal{V}(x_0) - \mathcal{V}_p(x_0)| \le C ||y_0||_X^{p+1}$$

•
$$\|\bar{x}(\bar{u}, x_0) - x(u_p, x_0)\|_{W(0,\infty)} \le C_4 \|x_0\|_X^{\frac{p+1}{2}}$$

•
$$\|\bar{u} - u_p\|_{W(0,\infty)} \le C_4 \|x_0\|_X^{\frac{p+1}{2}}$$

Figure: 1D Fokker-Planck equation, n = 1024.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Figure: Fokker-Planck, $n = 1024, r = 10, \beta = 10^{-4}$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)

Miscellanea

- Applicable to Fokker Planck
- ► Feasible for general infinite dimensional control systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Combined with balanced truncation
- ▶ When is higher order useful ?
- Efficient tensor numerics

Finite-dimensional properties

Assume spatial discretization yields $A, N, \rho^d, e = \frac{1}{d} (1, \dots, 1)^T$.

$$\int_{\Omega} \rho(t) \, \mathrm{d}x = \int_{\Omega} \rho_0 \, \mathrm{d}x \rightsquigarrow e^{\mathsf{T}} \rho^d(t) = e^{\mathsf{T}} \rho_0^d = 1$$

•
$$\rho_0 \ge 0 \Rightarrow \rho(x, t) \ge 0 \ \forall t \rightsquigarrow A$$
 is a Metzler matrix

•
$$A_s = DAD^{-1}$$
 with $D = \operatorname{diag}(e^{\frac{\Phi^d}{2}})$ is a symmetric matrix

$$A^{T} e = N^{T} e = 0 = A \rho_{\infty}^{d}$$

$$\mu = \max(\varepsilon, \varepsilon + \frac{1}{2}\lambda_{\max}(\widehat{A} + \widehat{A}^{T}))$$

A two dimensional double well potential

As a numerical example, let us consider

$$\begin{split} \frac{\partial \rho}{\partial t} &= \nu \Delta \rho + \nabla \cdot (\rho \nabla W) + u \nabla \cdot (\rho \nabla \alpha) & \text{in } \Omega \times (0, \infty), \\ 0 &= (\nu \nabla \rho + \rho \nabla W) \cdot \vec{n} & \text{on } \Gamma \times (0, \infty), \\ \rho(x, 0) &= \rho_0(x) & \text{in } \Omega. \end{split}$$

•
$$\Omega = (-1.5, 1.5) \times (-1.1)$$

0

•
$$W(x) = 3(x_1^2 - 1)^2 + 6x_2^2$$

• finite differences with $n_x \cdot n_y = 96 \cdot 64 = 6144$ grid points

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

upwind scheme for convective terms

Conclusion

- ► Fokker-Planck equation yields a bilinear control system.
- Decoupled the system by spectral projections.
- Riccati-based feedback law \Rightarrow local stabilization.
- Lyapunov-based feedback law \Rightarrow global stabilization .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Numerically efficient approaches?
- Optimal feedback law for bilinear system?

Conclusion

- ► Fokker-Planck equation yields a bilinear control system.
- Decoupled the system by spectral projections.
- Riccati-based feedback law \Rightarrow local stabilization.
- Lyapunov-based feedback law \Rightarrow global stabilization .
- Numerically efficient approaches?
- Optimal feedback law for bilinear system?

Thank you for your attention!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <