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Action Functional

» We look at conservative dynamical systems.

» Simplest case: Point-mass in a field.

> Position component of the state at time, ¢, is denoted by £(t) € R".
» Potential energy will be induced by some field: V: R" — R.

> Kinetic energy: T(£(t)) = 2T () ME(t).

> If £(t) is a point mass, M is simply mZ, where m is the mass.

» The action functional:
F(f(-))i/0 LET(r)ME(r) — V(&(r)) dr.

» Hamilton hypothesized that conservative systems moved along
paths that minimized the action functional.

» Feynman: “The average kinetic energy minus the average potential
energy is minimized along the true path. Here for ‘average’, we can
think of [...] the integral over time.” (orig. Hamilton)



Action Functional

» Feynman: “In fact, it doesn't really have to be a minimum... the
fundamental principle was that for any first-order variation away
from the optical path, the change in time was zero.”

» One seeks a stationary point of the action functional.

» This is the quantum viewpoint expanded to a larger domain. More
later.

» Conservation of momentum and conservation of energy follow from
stationarity of the action functional.

» The action functional (revised arguments):

F(£(0),€(0)) = /Ot 3ET(NME(r) = V(&(r)) dr.



Action Functional

» Write dynamics as &, = u, for r € (0, t), with initial condition
£(0) = x.

» The action functional:
Flxu() = / LyT()Mu(r) - V(E(r)) d.

» For short time durations, the stationary point is a minimum.

» Note second term has an integrator, which builds up over time,
destroying convexity.

> If V sufficiently smooth, the Fréchet derivative with respect to
u € L»(0,t) has Riesz representation

[Fu(x, )](r) = Mu(r) — /t Vi (&(p)) dp a.e. re(0,t).

(le., F(x,u+6) — F(x,u) — (Fu(x,u),8) = o([|4])) .)

P Second derivative representation: [Fyy(x, u)](r, p) = m — f,tvp Vix(&(o)) do ae.



Staticization
> Need to search for stationary (static) points of the action functional.

> Terminology: Staticization, statica (analogous to minimization,
minima).

» For longer durations, min over u is replaced by stat over u.

> Let y € Gy where Gy is an open subset of a Hilbert space. We say

Fy) - F(7
y € argstat F(y) if limsup M =0,
yeGy y—7,y€Gy ly — ¥l

and

Statyeg, F(y) = { F(7) |7 € angstar{ F()} |

if argstat{F(y)|y € Gy} # 0. If 3 a s.t. stat,cg, F(y) = {a},
then

stat F = a.
stat (¥)

> |If f Fréchet differentiable and Gy is open,

argstat F(y) = {y € Gy | F,(y) = 0}.
yeGy



General Theory for Staticization

One can generate an entire theory for stat that is analogous to standard
optimal control theory. We consider the action-functional case. General

system:
ér:Un gO:XeRn
ot
J(t.x,u,2) = / LT Mu, — V(&) dr + (& 2),
0

W (t = stat J(t ,
( 7X,Z) %E%{ ( 5 X Uyz),

Dynamic Programming Principle:

Suppose the stationary value, W(t, x, z) exists for 0 < ¢t < T < oo and
x,z € R", and that there are stationary trajectories Holder in x with
constant greater than 1/2. Then, for s € (0, t),

W(t,x,z) = stat { /5 Tul Mu, — V(&) dr + W(t - S,Es,z)}.
0

uel



General Theory for Staticization

HJ-Stat PDE Problem:
0 :sggn {%VTMV = V(x) = W,(r,x,z) + Wi(r,x,z)-f(x, v)},

for (r,x) € (0,t) x R", and by the convexity,
0= rglil?nm {IvT My — V(x) — W,(r,x,z) + Wi(r,x,2z) - f(x,v)},
W(0,x,z) = ¢(x, z), x € R".

A Stat Representation Theorem:

Suppose (0, t) \ A consists only of isolated points. Suppose that for
s € A, the stationary-action value exists for all x € R",and that the
above Holder continuity in x holds there. Then, the stationary-action
value function satisfies the HJ-Stat PDE on A x R".



Fundamental Solutions to TPBVPs

» Shorthand: TPBVP = two-point boundary value problem.

» The action functional approach will allow us to obtain a
fundamental solution for classes of TPBVPs (e.g., n-body
and wave equation).

» The fundamental solution may be computed offline.

» By fundamental solution for a TPBVP here, we mean an
object, that once computed, allows for solution of
TPBVPs for a variety of boundary data without
re-solution /re-integration of the TPBVP problem.

» Given specific boundary conditions, staticization of the
fundamental solution with an appropriate appended
(terminal payoff) functional will generate the solution to
the TPBVP of interest.



Action Functional Approach

» Formulate control problem. Dynamics:
=u, (0)=x, wel=IL§

> Payoff/Value:

Lt x, u) = / —V(&(r)) + 2u" (r)Mu(r) dr,
0

0 - 0
Wo(t, x) = iteab‘[cJ (t,x, u).
» HJB PDE (forward HJB PDE):

0= 7% W(r,x) + stat {v - VW(r,x) + 3vT My} = V(x)
vER"

__9 : 1.T
= —EW(r,X)+Vlg’1;n{v~VXW(r,x)+5v My} — V(x)

o 1 —
- 7&‘/‘/(“ x) = V(x) - E[VXW(r,X)]TM VL W(r,x).



Action Functional Approach to TPBVPs

» Use terminal cost to effect boundary condition at termination.

> Payoff (now with terminal cost):

J(t,x,u) = /Ot Jul (NMu(r) = V(E(r)) dr + 9 (&(2))-

> If 1)(x) = —v' Mx, we obtain boundary conditions (via either
characteristic equations for HJB or Pontryagin):

E0)=x, p(t)=Vx(£() = £0)=x &(t)=-MT"p(t)=7.

> Solution of the control problem with this terminal cost yields solution of
the desired TPBVP. £(0) = u(0) is required second initial condition.

> If (x) = ¢>=°(x;z) = &y (x — z) where

- JO ify=20
% (v) = {+oo otherwise,

we obtain boundary conditions:

§0)=x, &)=z



Fundamental Solutions (easier short-duration case)

» Using terminal cost to effect boundary condition at termination - short
horizon case.

» Payoff and Value:

J7(t, x, u; 2) :/0 Jul (NMu(r) = V(E(r)) dr + 9> (£(1). 2)
W=(t,x) = W(t,x,z) = itga}} JZ(t,x,u; 2)) = u”e]zf{ JZ=(t, %, u; z).

> If replace 9> with ¥(x) = —v" Mx, obtain value,
W(t,x) = statueu J(t, x, u),

W(t,x) = stat { /Ot %uT(r)MU(r) — V(&(r))dr +1/_’(§(t))}

ueld

~ inf inf {/ LT () Mu(r) — V(ER) dr + 97 (€(0).2) + 3(2)

ueU zeR"

_ ® _
= inf {Wm(t,x;z) +w(z)}: W (t,x;z) ® ¥(z2).

zERM RN

» Min-plus convolution of W with various terminal costs yields solution of
TPBVPs. W is the fundamental solution.



Motivational Example

» Simple problem: Mass, m, and
spring-constant, K. .

Newton form: & = —(K/m)¢. LIS m

JE— x=0
> Two-point boundary value problem (TPBVP) from x to z in time
[s, t] with velocity/control u € U = L££(0, c0), is

J2(t, x, u,Z)I/OtZ’UZ(r) §E(r) dr+ 9> (&(1), 2),
§(r) =u(r),  £(0) =x,
02 = T cthenuie

> 1) forces solution to hit terminal state £(t) = z.

> One seeks W™ (t, x; z) = stat ey J(t, x, u, 2).



Motivational Example
» The associated HJ PDE problem is
0= —stat [Zv? — Kx? + Wi(s, x) + vWi(s, x)]

vER

— H m 2 K 2
= _ ‘r/nelfr_} [jv — 5x° + We(s, x) + VWX(S,X)]

= ﬁ[WX(s, x)]? + §X2 — Wi(s,x) s€(0,t),xeR
W(t,x) =¢>(x,z) x€R.

» Note the min even though problem is stat.
» Suggests optimal control u*(r) = d0*(r,x) = (=1/m)W.(r,&£*(r)).
> Try W(t,x,z) = 1[P(t)x* +2Q(t)xz + R(t)Z?].

v

Then the solution is given by

P(t) = R(t) = cot(t), Q(t)=—1/sin(t).



Motivational Example: Mass-Spring

> One finds velocity/control, u*, and trajectory, £*, given by (modulo
sign errors)

—cos(t —r) 1

w (1) = IP(e = NE () + Qe = N2l = B PE () + s

Z,

iy z — xcos(t) .
& (r) = xcos(r) + (D) sin(r).

> Note that one loses convexity of J°° in u, and one must seek a
staticum rather than a minimum.

» Asymptotes correspond to times
when the quadratic in u(-) becomes °
purely linear in one direction. 4

» stat propagates past asymptotes. ¥ \ py-rg

» At t = m, either no solution or
infinite number of solutions, -
depending on x, z. p




Mass-Spring Example

» Only have convexity of action for a short period.
» Stationary value exists except at isolated points.

» stat propagates past

Region of existence of stat, mass-spring case

asymptotes/times where
domain contracts.

» Time axis is vertical in this

plot.

g Stationary value exists

Action functional convex

2 Bl o 1



Mass-Spring Example

Wee(t, x;z) = stlz}t J(t,x,u,z) = [XTPf°x+2zTQf°x—|—zTRt°°z] (when fini
uclo,+

2 Vertical asymptote in Riccati
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» Asymptotes correspond to times when ‘
the quadratic in u(-) becomes purely
linear in one direction. e

» Need to propagate stat past T R L
asymptotes.




Propagation Through Asymptotes

» Propagation through stat duality:

Primal and Dual (complementary asymptote locations)

» Dual satisfies: .

ér = —ay[D7t + CT'BCT Yo,

Be = —a[D™" + CT'BCTB NG
+ BCilﬁta

Y= =B [D7" + C'BCB..

3

4 Q()

> Locations of asymptotes may be different between primal and dual.

» Propagation recipe:

1. Propagate primal [dual] Riccati until approaching asymptote.
2. Switch to dual [primal] Riccati until approaching dual [primal]
asymptote, and return to step 1.

> (Symplectic methods provide alternative, of course.)



The n-body Problem (Fundamental Solutions)

> Recall classic gravitational .
potential for two bodies at x' and
x) with masses m; and m;:

5 8 8 & & 3 3 8

» Inverse norm is difficult.

> Additive inverse of potential as optimized quadratic (with
G = (3/2)%26).
Gmim, (ad|x — xI |)2} }

=G sup {m;mjai’j {1 -
) 2

‘Xi - Xj| alJe[0,00
> Total potential (for many bodies):

~ - Iyl — xd )2
*V(X) = Z G sup {m,-mja”l |:]_ — (OZXXD} } )
(ij)eT ali€[0,00) 2




The n-body Problem

» Physical bodies have positive radius.

» This implies there exists maximum
possible relevant a.

»> One can also obtain an a priori bound
on maximal separation of bodies,
yielding minimum possible relevant a.

» Total potential: R

—~ . il Ji)2
V)= > 6 s {m,-m,-aw {1‘¥”
()ET  ai€(ea,\/2/3571)

/\

J \ (Actually also valid for uniform density spherical
— 7| body - inside and outside the object.)

g




The n-body Problem
» Total potential:
~ . il _ d])2
V=3 6 swp {m’.mjaw [1 - (alxle)]}
(i))ET a€E(ea,n/2/3571)
= sup {%XTB(CV)X + )\(a)} (concave in «)
€(ea,n/2/35-1)#T
» Dynamics: € =u, £(00)=x, vel = Lye
» Action functional:

T (t,x,u;2) = / B2+ sup {2ET(DB@E() + Aa)} dr

a€(ea,\/2/38-1)#T

L U(E(t). 2)
— sup { /O mu(R)P + 36T (NB(r)E(r) + Mal(r)) dr

a-)eA

+¢°O(§(t),z)} (concave in a(+))



The n-body Problem

» Action functional:

J7(t,x,u;2) = sup {/o Flu(r)? + 367 (rB(a(n))&(r) + Aa(r)) dr

acA

+ wm(f(t),z)} (concave in «f+))
> Value function (short horizon case):

w™ (t,x; z) =inf sup {/t ’"|u(r)\2 + %gT(r)B(a(r))g(r) + Ma(r)) dr

uEU o A
+w°°(f(r),z)},

and letting a* be the optimal «,

= inf J®(t,x,u,a%; z) = W 2(t, x; 2).
ueU

> If t < T =1(5), then Jo(t,x,-,a* z) is convex (i.e., in u).



The n-body Problem

» If t < t=F(5), then Jo(t,x, u,a*;z) is convex in u.
> J®(t,x,u,q; z) is concave in a.
» Using above, one finds value function satisfies

Woo(t,x; z) =inf sup { /Ot %|u(r)|2 + %fT(r)ﬁ(a(r))f(r) + Ma(r)) dr

uel ne A

(e 2)

=inf sup J*(t,x, u,; z)

uel ne A

=sup inf J(t,x, u,q; z) (surprising, work required)
ac A ueUd

=sup W™ (t, x; z).
acA

» For each o € A, W*™(t, x; z) is solution of an LQ control problem.



The n-body Fundamental Solution as a Set

> We have
W>®(t,x;2) = 3 [xT PP(a)x + 22" Q°(a)x + z" R (a)z + r° ()]
where P20, Q°, RY° are solutions of Riccati equations and r®° is a
simple integral.
> Keep in mind o = «(-).

> Value is W (t, x; 2) = sup,eq W™ (t, x; 2)



The n-body Problem Fundamental Solution as a Set

» The sets
{PZ(a), @F(a), RZ(a), r*(a) [ € A}

represent the fundamental solution
of n-body TPBVPs.

» Each quadruple obtained by
Riccatis.

» Sets are indexed by the body o]
masses and the length of the time v
interval.

» A two-body fundamental solution ]
is depicted in figure.

» TPBVPs are converted to initial value problems via a max-plus
convolution of the fundamental solution with the appropriate
terminal cost (as in previous example).



Orbital Mechanics Application

> Special case of a small body moving among large bodies in known orbits.

> One constructs fundamental solution as a finite-dimensional set (similar
to set in n-body case).

» The same fundamental solution set may be applied to different TPBVPs,
with different x, z points.

» For each problem, multiple solutions of the TPBVP were found.

> First plot is projection of fundamental solution; second and third display
multiple solutions of the TPBVPs.



Orbital Mechanics Application

» Application of the TPBVP fundamental solution to a single small object
moving among two large bodies.

» Boundary data is initial and terminal position.

» Fundmntl.
solution
specific to
masses and
duration.

» Multiple
solutions
unexpected.




Orbital Mechanics Application

» Application of the TPBVP fundamental solution to a single small object
moving among two large bodies.

» SAME fundamental solution applies to multiple TPBVPs.

» Fundmntl.
solution
specific to
masses and
duration.

» Multiple
solutions
unexpected.




» Dynamics movie not included.
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» Dynamics movie not included.
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