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Action Functional

I We look at conservative dynamical systems.

I Simplest case: Point-mass in a field.

I Position component of the state at time, t, is denoted by ξ(t) ∈ IRn.

I Potential energy will be induced by some field: V : IRn → IR .

I Kinetic energy: T (ξ̇(t))
.

= 1
2 ξ̇

T (t)Mξ̇(t).

I If ξ(t) is a point mass, M is simply mI, where m is the mass.

I The action functional:

F(ξ(·))
.

=

∫ t

0

1
2 ξ̇

T (r)Mξ̇(r)− V (ξ(r)) dr .

I Hamilton hypothesized that conservative systems moved along
paths that minimized the action functional.

I Feynman: “The average kinetic energy minus the average potential
energy is minimized along the true path. Here for ‘average’, we can
think of [. . . ] the integral over time.” (orig. Hamilton)



Action Functional

I Feynman: “In fact, it doesn’t really have to be a minimum... the
fundamental principle was that for any first-order variation away
from the optical path, the change in time was zero.”

I One seeks a stationary point of the action functional.

I This is the quantum viewpoint expanded to a larger domain. More
later.

I Conservation of momentum and conservation of energy follow from
stationarity of the action functional.

I The action functional (revised arguments):

F(ξ(0), ξ̇(·))
.

=

∫ t

0

1
2 ξ̇

T (r)Mξ̇(r)− V (ξ(r)) dr .



Action Functional

I Write dynamics as ξ̇r = ur for r ∈ (0, t), with initial condition
ξ(0) = x .

I The action functional:

F(x , u(·))
.

=

∫ t

0

1
2u

T (r)Mu(r)− V (ξ(r)) dr .

I For short time durations, the stationary point is a minimum.

I Note second term has an integrator, which builds up over time,
destroying convexity.

I If V sufficiently smooth, the Fréchet derivative with respect to
u ∈ L2(0, t) has Riesz representation

[Fu(x , u)](r) =Mu(r)−
∫ t

r

Vx(ξ(ρ)) dρ a.e. r ∈ (0, t).

(I.e., F (x , u + δ)− F (x , u)− 〈Fu(x , u), δ〉 = o(‖δ‖) .)

I Second derivative representation: [Fuu(x, u)](r, ρ) = m −
∫ t
r∨ρ Vxx (ξ(σ)) dσ a.e.



Staticization

I Need to search for stationary (static) points of the action functional.

I Terminology: Staticization, statica (analogous to minimization,
minima).

I For longer durations, min over u is replaced by stat over u.

I Let ȳ ∈ GY where GY is an open subset of a Hilbert space. We say

ȳ ∈ argstat
y∈GY

F (y) if lim sup
y→ȳ ,y∈GY

|F (y)− F (ȳ)|
|y − ȳ |

= 0,

and
staty∈GYF (y)

.
=
{
F (ȳ)

∣∣∣ ȳ ∈ argstat
y∈GY

{F (y)}
}

if argstat{F (y) | y ∈ GY} 6= ∅. If ∃ a s.t. staty∈GYF (y) = {a},
then

stat
y∈GY

F (y)
.

= a.

I If f Fréchet differentiable and GY is open,

argstat
y∈GY

F (y) = {y ∈ GY |Fy (y) = 0}.



General Theory for Staticization

One can generate an entire theory for stat that is analogous to standard
optimal control theory. We consider the action-functional case. General
system:

ξ̇r = ur , ξ0 = x ∈ IRn

J(t, x , u, z) =

∫ t

0

1
2u

T
r Mur − V (ξr ) dr + ψ(ξt , z),

W (t, x , z)
.

= stat
u∈U

J(t, x , u, z),

Dynamic Programming Principle:
Suppose the stationary value, W (t, x , z) exists for 0 ≤ t ≤ T <∞ and
x , z ∈ IRn, and that there are stationary trajectories Hölder in x with
constant greater than 1/2. Then, for s ∈ (0, t),

W (t, x , z) = stat
u∈U

{∫ s

0

1
2u

T
r Mur − V (ξr ) dr + W (t − s, ξs , z)

}
.



General Theory for Staticization

HJ-Stat PDE Problem:

0 = stat
v∈IRm

{
1
2v

TMv − V (x)−Wr (r , x , z) + Wx(r , x , z) · f (x , v)
}
,

for (r , x) ∈ (0, t)× IRn, and by the convexity,

0 = min
v∈IRm

{
1
2v

TMv − V (x)−Wr (r , x , z) + Wx(r , x , z) · f (x , v)
}
,

W (0, x , z) = ψ(x , z), x ∈ IRn.

A Stat Representation Theorem:

Suppose (0, t) \ A consists only of isolated points. Suppose that for
s ∈ A, the stationary-action value exists for all x ∈ IRn,and that the
above Hölder continuity in x holds there. Then, the stationary-action
value function satisfies the HJ-Stat PDE on A× IRn.



Fundamental Solutions to TPBVPs

I Shorthand: TPBVP = two-point boundary value problem.

I The action functional approach will allow us to obtain a
fundamental solution for classes of TPBVPs (e.g., n-body
and wave equation).

I The fundamental solution may be computed offline.

I By fundamental solution for a TPBVP here, we mean an
object, that once computed, allows for solution of
TPBVPs for a variety of boundary data without
re-solution/re-integration of the TPBVP problem.

I Given specific boundary conditions, staticization of the
fundamental solution with an appropriate appended
(terminal payoff) functional will generate the solution to
the TPBVP of interest.



Action Functional Approach

I Formulate control problem. Dynamics:

ξ̇ = u, ξ(0) = x , u ∈ U = Lloc2

I Payoff/Value:

J0(t, x , u) =

∫ t

0

−V (ξ(r)) + 1
2u

T (r)Mu(r) dr ,

W 0(t, x)
.

= stat
u∈U

J0(t, x , u).

I HJB PDE (forward HJB PDE):

0 = − ∂
∂t

W (r , x) + stat
v∈IRn

{
v · ∇xW (r , x) + 1

2v
TMv

}
− V (x)

= − ∂
∂t

W (r , x) + inf
v∈IRn

{
v · ∇xW (r , x) + 1

2v
TMv

}
− V (x)

= − ∂
∂t

W (r , x)− V (x)− 1

2
[∇xW (r , x)]TM−1∇xW (r , x).



Action Functional Approach to TPBVPs

I Use terminal cost to effect boundary condition at termination.

I Payoff (now with terminal cost):

J(t, x , u) =

∫ t

0

1
2
uT (r)Mu(r)− V (ξ(r)) dr + ψ(ξ(t)).

I If ψ(x) = −v̄TMx , we obtain boundary conditions (via either
characteristic equations for HJB or Pontryagin):

ξ(0) = x , p(t) = ∇xψ(ξ(t)) ⇒ ξ(0) = x , ξ̇(t) = −M−1p(t) = v̄ .

I Solution of the control problem with this terminal cost yields solution of
the desired TPBVP. ξ̇(0) = u(0) is required second initial condition.

I If ψ(x) = ψ∞(x ; z) = δ−0 (x − z) where

δ−0 (y)
.

=
{

0 if y = 0
+∞ otherwise,

we obtain boundary conditions:

ξ(0) = x , ξ(t) = z .



Fundamental Solutions (easier short-duration case)

I Using terminal cost to effect boundary condition at termination - short
horizon case.

I Payoff and Value:

J∞(t, x , u; z) =

∫ t

0

1
2
uT (r)Mu(r)− V (ξ(r)) dr + ψ∞(ξ(t), z)

W∞(t, x) = W∞(t, x , z) = stat
u∈U

J∞(t, x , u; z)) = inf
u∈U

J∞(t, x , u; z).

I If replace ψ∞ with ψ̄(x) = −v̄TMx , obtain value,

W̄ (t, x) = statu∈U J(t, x , u),

W̄ (t, x) = stat
u∈U

{∫ t

0

1
2
uT (r)Mu(r)− V (ξ(r)) dr + ψ̄(ξ(t))

}
= inf

u∈U
inf
z∈IRn

{∫ t

0

1
2
uT (r)Mu(r)− V (ξ(r)) dr + ψ∞(ξ(t), z) + ψ̄(z)

}
= inf

z∈IRn

{
W∞(t, x ; z) + ψ̄(z)

}
=

∫ ⊕
IRn

W∞(t, x ; z)⊗ ψ̄(z).

I Min-plus convolution of W∞ with various terminal costs yields solution of
TPBVPs. W∞ is the fundamental solution.



Motivational Example

I Simple problem: Mass, m, and
spring-constant, K .
Newton form: ξ̈ = −(K/m)ξ.

I Two-point boundary value problem (TPBVP) from x to z in time
[s, t] with velocity/control u ∈ U .

= Lloc
2 (0,∞), is

J∞(t, x , u, z)=

∫ t

0

m
2 u

2(r)− K
2 ξ

2(r) dr + ψ∞(ξ(t), z),

ξ̇(r) = u(r), ξ(0) = x ,

ψ∞(x , z)
.

=
{

0 if x = z ,
+∞ otherwise.

I ψ∞ forces solution to hit terminal state ξ(t) = z .

I One seeks W∞(t, x ; z) = statu∈U J
∞(t, x , u, z).



Motivational Example

I The associated HJ PDE problem is

0 = − stat
v∈IR

[
m
2 v

2 − K
2 x

2 + Ws(s, x) + vWx(s, x)
]

= −min
v∈IR

[
m
2 v

2 − K
2 x

2 + Ws(s, x) + vWx(s, x)
]

= 1
2m [Wx(s, x)]2 + K

2 x
2 −Ws(s, x) s ∈ (0, t), x ∈ IR

W (t, x) = ψ∞(x , z) x ∈ IR.

I Note the min even though problem is stat.

I Suggests optimal control u∗(r) = û∗(r , x)
.

= (−1/m)Wx(r , ξ∗(r)).

I Try W (t, x , z) = 1
2

[
P(t)x2 + 2Q(t)xz + R(t)z2

]
.

I Then the solution is given by

P(t) = R(t) = cot(t), Q(t) = −1/ sin(t).



Motivational Example: Mass-Spring

I One finds velocity/control, u∗, and trajectory, ξ∗, given by (modulo
sign errors)

u∗(r) = −[P(t − r)ξ∗(r) + Q(t − r)z ] =
− cos(t − r)

sin(t − r)
ξ∗(r) +

1

sin(t − r)
z ,

ξ∗(r) = x cos(r) +
z − x cos(t)

sin(t)
sin(r).

I Note that one loses convexity of J∞ in u, and one must seek a
staticum rather than a minimum.

I Asymptotes correspond to times
when the quadratic in u(·) becomes
purely linear in one direction.

I stat propagates past asymptotes.

I At t = π, either no solution or
infinite number of solutions,
depending on x , z .



Mass-Spring Example

I Only have convexity of action for a short period.

I Stationary value exists except at isolated points.

I stat propagates past
asymptotes/times where
domain contracts.

I Time axis is vertical in this
plot.



Mass-Spring Example

W∞(t, x ; z) = stat
u∈U0,t

J(t, x , u, z) =
[
xTP∞t x + 2zTQ∞t x + zTR∞t z

]
(when finite)

I Asymptotes correspond to times when
the quadratic in u(·) becomes purely
linear in one direction.

I Need to propagate stat past
asymptotes.



Propagation Through Asymptotes

I Propagation through stat duality:

I Dual satisfies:

α̇t = −αt [D
−1 + C−1BC−1]αt ,

β̇t = −αt [D
−1 + C−1BC−1]βt

+ BC−1βt ,

γ̇t = −βT
t [D−1 + C−1BC−1]βt .

I Locations of asymptotes may be different between primal and dual.

I Propagation recipe:

1. Propagate primal [dual] Riccati until approaching asymptote.
2. Switch to dual [primal] Riccati until approaching dual [primal]

asymptote, and return to step 1.

I (Symplectic methods provide alternative, of course.)



The n-body Problem (Fundamental Solutions)

I Recall classic gravitational
potential for two bodies at x i and
x j with masses mi and mj :

−V (x i , x j) =
Gmimj

|x i − x j |
.
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I Additive inverse of potential as optimized quadratic (with

Ĝ
.

= (3/2)3/2G ).

Ĝmimj

|x i − x j |
= Ĝ sup

αi,j∈[0,∞)

{
mimjα

i,j

[
1− (αi,j |x i − x j |)2

2

]}
.

I Total potential (for many bodies):

−V (x) =
∑

(i,j)∈I

Ĝ sup
αi,j∈[0,∞)

{
mimjα

i,j

[
1− (αi,j |x i − x j |)2

2

]}
.



The n-body Problem

I Physical bodies have positive radius.

I This implies there exists maximum
possible relevant α.

I One can also obtain an a priori bound
on maximal separation of bodies,
yielding minimum possible relevant α.
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I Total potential:

−V (x) =
∑

(i,j)∈I

Ĝ sup
αi,j∈(εα,

√
2/3δ̄−1)

{
mimjα

i,j

[
1− (αi,j |x i − x j |)2

2

]}
.

(Actually also valid for uniform density spherical
body - inside and outside the object.)



The n-body Problem

I Total potential:

−V (x) =
∑

(i,j)∈I

Ĝ sup
αi,j∈(εα,

√
2/3δ̄−1)

{
mimjα

i,j

[
1− (αi,j |x i − x j |)2

2

]}
= sup
α∈(εα,

√
2/3δ̄−1)#I

{
1
2x

Tβ(α)x + λ(α)
}

(concave in α)

I Dynamics: ξ̇ = u, ξ(0) = x , u ∈ U = Lloc2 .

I Action functional:

J
∞

(t, x , u; z) =

∫ t

0

m
2 |u(r)|2 + sup

α∈(εα,
√

2/3δ̄−1)#I

{
1
2ξ

T (r)β(α)ξ(r) + λ(α)
}
dr

+ ψ∞(ξ(t), z)

= sup
α(·)∈A

{∫ t

0

m
2 |u(r)|2 + 1

2ξ
T (r)β(α(r))ξ(r) + λ(α(r)) dr

+ ψ∞(ξ(t), z)

}
(concave in α(·))



The n-body Problem

I Action functional:

J
∞

(t, x , u; z) = sup
α∈A

{∫ t

0

m
2 |u(r)|2 + 1

2ξ
T (r)β(α(r))ξ(r) + λ(α(r)) dr

+ ψ∞(ξ(t), z)

}
(concave in α(·))

I Value function (short horizon case):

W
∞

(t, x ; z) =inf
u∈U

sup
α∈A

{∫ t

0

m
2 |u(r)|2 + 1

2ξ
T (r)β(α(r))ξ(r) + λ(α(r)) dr

+ ψ∞(ξ(t), z)

}
,

and letting α∗ be the optimal α,

= inf
u∈U

J∞(t, x , u, α∗; z)
.

=Wα∗,∞(t, x ; z).

I If t ≤ t̄ = t̄(δ̄), then J∞(t, x , ·, α∗; z) is convex (i.e., in u).



The n-body Problem

I If t ≤ t̄ = t̄(δ̄), then J∞(t, x , u, α∗; z) is convex in u.

I J∞(t, x , u, α; z) is concave in α.

I Using above, one finds value function satisfies

W
∞

(t, x ; z) =inf
u∈U

sup
α∈A

{∫ t

0

m
2 |u(r)|2 + 1

2ξ
T (r)β(α(r))ξ(r) + λ(α(r)) dr

+ ψ∞(ξ(t), z)

}
=inf
u∈U

sup
α∈A

J∞(t, x , u, α; z)

=sup
α∈A

inf
u∈U

J∞(t, x , u, α; z) (surprising, work required)

=sup
α∈A
Wα,∞(t, x ; z).

I For each α ∈ A, Wα,∞(t, x ; z) is solution of an LQ control problem.



The n-body Fundamental Solution as a Set

I We have

Wα,∞(t, x ; z) = 1
2

[
xTP∞t (α)x + 2zTQ∞t (α)x + zTR∞t (α)z + r∞t (α)

]
where P∞t ,Q∞t ,R∞t are solutions of Riccati equations and r∞t is a
simple integral.

I Keep in mind α = α(·).

I Value is W
∞

(t, x ; z) = supα∈AWα,∞(t, x ; z)



The n-body Problem Fundamental Solution as a Set

I The sets

{P∞t (α),Q∞t (α),R∞t (α), r∞t (α) |α ∈ A}

represent the fundamental solution
of n-body TPBVPs.

I Each quadruple obtained by
Riccatis.

I Sets are indexed by the body
masses and the length of the time
interval.

I A two-body fundamental solution
is depicted in figure.

I TPBVPs are converted to initial value problems via a max-plus
convolution of the fundamental solution with the appropriate
terminal cost (as in previous example).



Orbital Mechanics Application

I Special case of a small body moving among large bodies in known orbits.

I One constructs fundamental solution as a finite-dimensional set (similar
to set in n-body case).

I The same fundamental solution set may be applied to different TPBVPs,
with different x , z points.

I For each problem, multiple solutions of the TPBVP were found.
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I First plot is projection of fundamental solution; second and third display
multiple solutions of the TPBVPs.



Orbital Mechanics Application

I Application of the TPBVP fundamental solution to a single small object
moving among two large bodies.

I Boundary data is initial and terminal position.

I Fundmntl.
solution
specific to
masses and
duration.

I Multiple
solutions
unexpected.



Orbital Mechanics Application

I Application of the TPBVP fundamental solution to a single small object
moving among two large bodies.

I SAME fundamental solution applies to multiple TPBVPs.

I Fundmntl.
solution
specific to
masses and
duration.

I Multiple
solutions
unexpected.



Orbital Mechanics Application

I Dynamics movie not included.



Orbital Mechanics Application

I Dynamics movie not included.


