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Reachability / Viability

Does there exist a trajectory and/or do all trajectories of dynamic system H lead
from a state in initial set I to a state in terminal set T while staying within
constraint set K?

• Depending on the formulation, some of these sets may be omitted.

An analysis of transients

• Verification of a safety property
over a finite horizon.

• Not suitable for infinite horizon
properties such as stability or
liveness.
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Is that a Good Thing or a Bad Thing?

If target is desirable

• Design is validated by satisfying trajectory.

Image: Jan Erik Paulsen

If target is undesirable

• Design is falsified by counter-example trajectory.

• Proof of correctness requires demonstrating that
behaviour is impossible.

Image: NASA
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Motivation

Closed-loop control of anesthesia

Shared control of vehicles

Image: Ascending Technologies

System dynamics are often nonlinear, nondeterministic and/or poorly characterized.
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Backward Reachability

What states give rise to trajectories which will reach a target set?

• At a fixed time or over an interval?

• For all controls or for some control?
Reach+(t, T ) Reach−([ts, tf ], T )

Reach+(t, T ) , {x(0) | ∃u(·), x(t) ∈ T }
Reach−([ts, tf ], T ) , {x(0) | ∀u(·),∃t ∈ [ts, tf ], x(t) ∈ T }
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Invariance Kernel

Inv ([ts, tf ],S) , {x(ts) ∈ S | ∀u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Inv([ts,tf], S)

• What states will remain safe despite input uncertainty.

• Inputs treated in a worst-case fashion.
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Viability Kernel

Viab ([ts, tf ],S) , {x(ts) ∈ S | ∃u(·),∀t ∈ [ts, tf ], x(t) ∈ S},

S

Viab([ts,tf], S)

• Also called controlled invariant set.

• Inputs treated in a best-case fashion.

Ian M. Mitchell — 8



Capture Basin

Capt ([ts, tf ],ST ,SC) ,

{
x(ts) ∈ SC

∣∣∣∣∣ ∃u(·),∃tT ∈ [ts, tf ],∀t ∈ [ts, tT ],

x(t) ∈ SC ∧ x(tT ) ∈ ST

}
,

SC

Capt([ts,tf], ST, SC)

ST

• Trajectories must stay inside constraint SC until they reach target ST
• Inputs treated in a best-case fashion.
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Discriminating Kernel

Disc ([ts, tf ],S) , {x(ts) ∈ S | ∃u(·),∀v(·),∀t ∈ [ts, tf ], x(t) ∈ S},

That is hard to draw. . .

• Also called robust controlled invariant set.

• Two inputs “control” u(·) and “disturbance” v(·) treated adversarially.
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Game of Two (Identical) Vehicles

A classical collision avoidance problem

• Vehicle state: position in plane plus heading.

• Vehicle dynamics: unicycle (Dubin’s /
Reed-Shepp car).

• Collision if vehicles get within five units of
each other.

• Fixed (equal) linear velocity ve and vp.

• Bounded angular velocity u and d.

dynamics (pursuer)

d

dt

xpyp
θp

 =

vp cos θpvp sin θp
d
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Work in a Relative Coordinate Frame

Reformulate the problem with the evader
fixed at the origin.

• State variables are relative planar
location x and y and relative
heading ψ.

Dynamics:

d

dt

xy
ψ

 =

−ve + vp cosψ − uy
vp sinψ − ux

d− u


Target set

h(x) =
√
x2 + y2 − 5
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Implicit Surface Functions

Sets are represented by sublevel sets of scalar function

• State space dimension does not matter conceptually.

• Surfaces automatically merge and/or separate.

• Geometric quantities (such as surface normal) are easy to calculate.

S(t) = {x ∈ Rn | φ(t, x) ≤ 0}
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Hamilton-Jacobi Formulation

Implicit surface function for desired reachable tube / discriminating kernel given
by value function of Hamilton-Jacobi (HJ) PDE for finite horizon differential game
with optimal stopping time:

Dtφ(t, x) + min[0, H(x,Dxφ(t, x))] = 0

where

H(x, p) = max
u

min
d
f(x, u, d) · p φ(x, 0) = h(x)

dynamics: ẋ = f(x, u, d) target set: {x ∈ Rn | h(x) ≤ 0}

growth of reachable set final reachable set
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The Challenge: Scalability

Approximating sets, tubes or kernels using HJ PDE is

• Conceptually straightforward

• Computationally tractable for systems with 2–4 state space dimensions.

But most real systems have 6+ state space dimensions.

In contrast, algorithms using parametric representations for reachable sets are
widely available and scalable: Interval arithmetic, polygons, zonotopes, ellipsoids,
support functions / vectors. . .
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Longitudinal Model of a Quadrotor

• From [Bouffard 2012]

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = u1K sinx5,

ẋ4 = −g + u1K cosx5,

ẋ5 = x6,

ẋ6 = −d0x5 − d1x6 + n0u2,

• Inputs: total thrust u1 and desired
roll angle u2

x5

x1

x2
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Systems with Terminal Integrators

Common form of system dynamics

ẏ = f(y, u) coupled states y ∈ Rdy ,

ẋi = bi(y) terminal integrators xi ∈ R for i = 1, . . . , dx

Straightforward decoupled representation

• Run HJ formulation to find implicit representation φi(t, xi, y) for all states y
plus each xi individually

H(xi, y,Dxi
φi, Dyφi) = min

u
f(y, u) ·Dyφi + b(y)Dxi

φi

• States are inside overall reach set only if inside every individual reach set

S(t) = {(x, y) | φi(t, xi, y) ≤ 0 ∀i = 1, . . . , dx}

• Computational cost for solution (n nodes per dimension) drops from
O
(
(n(dy+dx)

)
to O

(
dxn

(dy+1)
)
.

Ian M. Mitchell — 17



Mixed Implicit Explicit Formulation

Consider a single terminal integrator dx = 1. Represent sets as an interval in x for
every y

S =
{
(x, y)

∣∣ ψ(y) ≤ x ≤ ψ(y)}
A mixed implicit explicit (MIE) formulation of the set.

upper bound

x ≤ ψ(y)
lower bound

ψ(y) ≤ x
overall set S
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MIE HJ PDE for Terminal Integrators

• If x(t, y) = ψ(t, y) is the upper boundary of the reach set then formally

b(y) = d
dtx(t, y) =

d
dtψ(t, y) = Dtψ(t, y) +Dyψ(t, y) · f(y, u)

• Rearrange to find a terminal value HJ PDE

Dtψ(t, y) +H
(
t, y,Dyψ(t, y)

)
= 0

ψ(y, 0) = ψ0(y) and H(x, y, p) = max
u

f(x, u) · p− b(y)

• Repeat with x(t, y) = ψ(t, y) for lower boundary

• Given target set {
(x, y)

∣∣∣ ψ
0
(y) ≤ x ≤ ψ0(y)

}
we can compute backward reach set at time t{

(x, y)
∣∣ ψ(t, y) ≤ x ≤ ψ(t, y)}

• Computational cost for solution (n nodes per dimension) drops from
O
(
dxn

(dy+1)
)

to O
(
2dxn

dy
)
.
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Example: Standard Double Integrator

Dynamics
ẏ = f(y, u) = u ẋ = y |u| ≤ umax

yields terminal integrator Hamiltonian (for upper bound)

H(t, y, p) = max
|u|≤umax

(p · u− y) = (|p|umax − y)

Regular implicit surface formulation

One HJ PDE in 2D

MIE formulation

Two HJ PDEs in 1D
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Proof by Finite Horizon Optimal Control

• Terminal integrator’s dynamics (for t < 0) are

x(0, y(0)) = x(t, y(t)) +

∫ 0

t

b(y(s)) ds

or

x(t, y(t)) =

∫ 0

t

−b(y(s)) ds+ x(0, y(0))

• Can be interpreted as a finite horizon optimal control problem with
associated HJ PDE

Dtψ(t, y) +H
(
t, y,Dyψ(t, y)

)
= 0

ψ(y, 0) = ψ0(y) and H(x, y, p) = max
u

f(x, u) · p− b(y)

• Solution ψ(t, y) provides the smallest x(t, y(t) giving rise to a trajectory
which reaches the upper boundary x(0, y(0)) = ψ0(y(0)) of the target set at
t = 0.
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Rotating Double Integrator

• Let u ∈ U = {u ∈ R2 | ‖u‖2 ≤ umax} and[
ẏ1
ẏ2

] [
−y2
y1

]
+ µ(‖y‖2)

[
u1
u2

]
ẋ = ‖y‖2

• If µ(α) = 1 it behaves radially like the first quadrant of a traditional double
integrator.

• For this experiment µ(α) = 2 sin(4πα).

Target set Standard Implicit MIE
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MIE for the Game of Two Vehicles?

Not possible to formulate in terminal
integrator form.

• All states are coupled for u 6= 0.

• Target set couples x and y.

Dynamics:

d

dt

xy
ψ

 =

−ve + vp cosψ − uy
vp sinψ − ux

d− u


Target set

h(x) =
√
x2 + y2 − 5
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Pursuit of an Oblivious Evader

• Oblivious evader has no input, so
relative position variables are
terminal integrators.

• Decouple target set using a box.

• Allow pursuer to adjust both
heading and speed: Bounded inputs
are ωp and ap

Dynamics:

d

dt


x
x2
θp
vp

 =


−ve + vp cos θp

vp sin θp
ωp

ap



Dynamics and target set suitable for an aerial refueling scenario [Ding & Tomlin,
CDC 2010].
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Pursuit of the Oblivious Evader Results

Projection into (x1, vp, θ)

Full Dimensional Implicit Decoupled Implicit MIE
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Pursuit of the Oblivious Evader Results

Projection into (x2, vp, θ)

Full Dimensional Implicit Decoupled Implicit MIE
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Pros & Cons

• Much faster
I Full dimensional implicit: 1512 × 65× 100 grid takes 30 hours (est).
I Decoupled implicit: 151× 65× 100 grid takes 541 seconds.
I MIE: 65× 100 grid takes 3.1 seconds.

• Projection formulations cannot represent true reach tube.
I They must overapproximate.
I For example: slices of reach tube for vp = 2.

Full
dimensional

implicit

Decoupled
implicit

or

MIE
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No Time For. . .

Monotone acceptance ordered upwind method [Alton & Mitchell, JSC 2012].
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No Time For. . .

Top: Fixed stepsize explicit (forward Euler).
Middle: Adaptive stepsize implicit (ode15s).

Bottom: Sampled gradient algorithm.

Sampled gradient particle filter [Traft & Mitchell, CDC 2016] for planning with
run-time uncertainty.
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No Time For. . .

Parametric approximations of viability and discriminating kernels with applications
to verification of automated anesthesia delivery [Maidens et al, Automatica 2013;

Yousefi et al, ACC 2016].
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No Time For. . .

Shared control smart wheelchair for older adults
with cognitive impairments [Viswanathan et al,

Autonomous Robots 2016].

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

x1

State Trajectories

0 2 4 6 8 10 12 14 16 18 20
0

1

2

x2

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

x3

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

x4

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1

x5

0 2 4 6 8 10 12 14 16 18 20
−2

0

2

x6

0 2 4 6 8 10 12 14 16 18 20
−0.5

0

0.5

u1
0 2 4 6 8 10 12 14 16 18 20

−0.2

0

0.2

t (seconds)
u2

Ensuring safety for human-in-the-loop flight
control of low sample rate indoor quadrotors

[Mitchell et al, CDC 2016].
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Reproducible Research

Central concept of the scientific method: Results should be independently
replicable, given appropriate resources.

[a]n article about computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship. The actual
scholarship is the complete software development environment and the
complete set of instructions which generated the figures.

[Jon Claerbout, as quoted by Buckheit & Donoho, 1995]

Computational science faces some challenges:

• Appropriate IP licensing standards.

• Disciplined software development processes.

• Availability of software (and increasingly hardware) infrastructure and tools.

• Weak (but strengthening) community norms.
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Some Suggestions for Doing It Better

• Use a (modern) version control system.
I Online repositories (eg: bitbucket, github) include wikis and issue trackers.

• Document in the data (and code is data).
I You will forget how and why you did things.
I Files and directories will get separated or lost.

• Write tests first and run them often.
I Bugs are inevitable and “static” code isn’t.

• If you do it twice, automate it
I Computers are better at repetition, you can automate a person with a

checklist, and automation is documentation.

• Plan to release your code
I If you think “I would be embarrassed by this bit of code” then either fix it now

or realize that everybody writes embarrassing code.

• Improve your process gradually by continually.
I Every little bit helps.

[Wilson et al, “Best Practices for Scientific Computing” in PLOS Biology, 2014].
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Mixed Implicit Explicit Formulation: Open Questions

• Inputs are calculated separately in each projection
and for upper and lower bounds.

I Pessimistic but sound for presented examples.
I Potentially “leaky corners” in the refueling scenario.
I What about adversarial inputs?

• What are appropriate “boundary conditions”?
I Implicit level set formulation can work around

non-physical boundary conditions.
I What should be done in MIE formulation when
ψ(y) < ψ(y)?

Double integrator MIE

• What class(es) of systems are amenable to MIE formulation?
I Terminal integrators with unstable linear self-coupling.
I Systems with monotone dynamics?
I Must all implicit states be decoupled?

• Is it possible to handle discontinuous ψ(y) and ψ(y)?

• Can we guarantee the sign of the approximation error?
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Mixed Implicit Explicit Formulation: Conclusions

HJ PDE formulation of reachable sets / discriminating kernels:

• Is a power approach to verification of nonlinear dynamic systems.

• Has had limited success due to curse of dimensionality.

Poor scaling may be overcome in some circumstances.

• Dynamics may be partially decoupled [Mitchell & Tomlin, JSC 2003; Chen &
Tomlin, CDC 2015].

• Mixed implicit explicit formulation may permit further reduction of dimension
[Mitchell, HSCC 2011].

Numerous questions in PDE and numerical analysis remain to be answered.
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