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Introduction - Model predictive control

Model predictive control (MPC)

Modern, optimization-based control technique

Successful applications in many industrial fields

t + 1

state x

x(k|t + 1)`
x(t + 1)

input u u(k|t + 1)

k = 0 k = N

Basic MPC scheme

At each time t,

solve finite horizon optimal
control problem

apply first part of optimal
solution

Main advantages of MPC

Can handle hard constraints on states and inputs

Optimization of some performance criterion

Applicable to nonlinear, MIMO systems
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Model predictive control

Nonlinear discrete time system x(t + 1) = f (x(t), u(t))

State and input constraints x(t) ∈ X, u(t) ∈ U

Standard MPC problem formulation

J∗N(x(t)) = min
u(·|t)

N−1∑

k=0

`(x(k|t), u(k|t)) + V f (x(N|t))

s.t. x(0|t) = x(t), x(k + 1|t) = f (x(k|t), u(k|t)), k = 0, . . . ,N − 1

x(k|t) ∈ X, u(k|t) ∈ U, k = 0, . . . ,N − 1

x(N|t) ∈ Xf

Most results in MPC literature: classical control objective of setpoint
stabilization is considered

MPC controller design: determine V f and Xf s.t. closed loop is stable
[Chen & Allgöwer ’98, Mayne et al. ’00, Grüne ’09, ...]

Basic assumption: stage cost ` is positive definite w.r.t. setpoint to be
stabilized

However: different control objective is of interest in many applications
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Economic model predictive control

Maximization of product in process industry

Minimization of energy consumption in building climate control

Manufacturing industry: cost efficient scheduling of production process

⇒ Setpoint stabilization is not primary control objective

Economic MPC

Stage cost ℓ can be general cost function, need not be positive definite
⇒ Closed-loop system does not necessarily converge to steady-state

Resulting questions:
What is the optimal operating regime (steady-state, periodic, . . . )?
Does the closed-loop system “find” optimal operating behavior?
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Dissipativity in economic MPC

Definition - optimal operation at steady-state

Optimal steady-state: (x∗, u∗) = arg min
x∈X,u∈U,x=f (x,u)

ℓ(x , u)

A system is optimally operated at steady-state if for each feasible state
and input sequences x(·) and u(·) the following holds:

lim inf
T→∞

T−1∑

t=0

ℓ(x(t), u(t))

T
≥ ℓ(x∗, u∗).

steady-states

(x∗, u∗)

Economic model predictive control 5

Dissipativity in economic MPC

Definition - Dissipativity [Willems ’72, Byrnes & Lin ’94]

A system is strictly dissipative with respect to the supply rate s if there exists
a storage function λ such that for all x ∈ X and u ∈ U it holds that

λ(f (x , u))− λ(x) ≤ s(x , u)− α(‖x − x∗‖), α ∈ K∞.

Dissipativity and optimal steady-state operation

Optimal operation
at steady-state

Dissipativity w.r.t. supply rate
s(x , u) = ℓ(x , u)− ℓ(x∗, u∗)

[Angeli et al. ’12]

additional controllability condition

[Müller et al. ’13,15]
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Dissipativity in economic MPC

If steady-state operation is optimal, does closed-loop converge to x∗?

Strict dissipativity and optimal steady-state operation

optimal operation

at steady-state

(strict form)

Strict dissipativity w.r.t. supply rate

s(x, u) = `(x, u)− `(x∗, u∗)

Closed-loop

convergence to x∗

local controllability at x∗

[Müller et al. 15]
[Diehl et al. ’11, Angeli et al. ’12,

Grüne ’13, Müller et al. ’14, Faulwasser&Bonvin ’15]

Discussion

Stability analysis different than in stabilizing MPC

Closed-loop system “does the right thing”, i.e., “finds” optimal
operating behavior

Can be concluded without having to compute storage function λ

Economic model predictive control 9

Dissipativity in economic MPC

Results can be extended to optimal periodic behavior:

Dissipativity and optimal periodic operation

Optimal peri-

odic operation

Strict dissipativity of P-step system

w.r.t. s(x̃, ũ) = ˜̀(x̃, ũ)− ˜̀(x̃∗, ũ∗)

Closed-loop

convergence to Π∗

local controllability at Π∗

[Müller et al. 15] [Müller&Grüne’16, Zanon et al. ’17]

Discussion

Dissipativity plays central role in economic MPC

Closed-loop system “does the right thing”, i.e., “finds” optimal operating
behavior

Can be concluded without having to compute storage function

Results hold for both optimal steady-state and periodic behavior
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Distributed implementation for large-scale systems

Large-scale system, composed of M interconnected subsystems

xNi

xi

Coupled linear dynamics
x+
i = ANi xNi + Biui

Coupled constraints
XNi = {xNi |CNi xNi ≤ ci}, Ui = {ui |Diui ≤ di}

Convex economic stage cost: `i (xi , ui )
 also coupled cost functions are possible
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Distributed implementation for large-scale systems

Centralized (overall) optimization problem

min
M∑

i=1

N−1∑

k=0

`i (xi (k|t), ui (k|t)) + V f
i (xi (N|t))

s.t. xi (k + 1|t) = ANi xNi (k|t) + Biui (k|t), k = 0, ..,N − 1

xNi (k|t) ∈ XNi , ui (k|t) ∈ Ui , k = 0, ..,N − 1

xi (0|t) = xi (t), x(N|t) ∈ Xf .

Many different distributed MPC implementation approaches available
[Stewart et al. ’10, Grüne & Worthmann ’12, Müller et al. ’12, Conte et al. ’12, . . . ]

Methods for computation of distributed terminal region available
[Müller et al. ’12, Conte et al. ’12, Köhler et al. ’17]

In case of coupled dynamics: dual decomposition methods well suited,
e.g., ADMM, dual gradient methods

Problem: Inexact minimization due to real-time requirements
 Closed-loop constraint satisfaction? Recursive feasibility?
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Distributed implementation for large-scale systems

Define consolidated trajectory x satisfying dynamic constraints, i.e.

x i (k + 1|t) = ANi xNi (k|t) + Biui (k|t)

Problem: Consolidated trajectory might not satisfy constraints!

xi

x i

k
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Distributed implementation for large-scale systems

Define consolidated trajectory x satisfying dynamic constraints, i.e.

x i (k + 1|t) = ANi xNi (k|t) + Biui (k|t)

Problem: Consolidated trajectory might not satisfy constraints!

Remedy: tighten constraints s.t. x satisfies constraints

Employ ideas from robust tube MPC

xi

x i

k
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Distributed implementation for large-scale systems

Robust tube MPC

System dynamics: x+ = Ax + Bu + Ew , w ∈ W
Use parameterized feedback u = Kx + v , where v is MPC input
 Uncertainty in predicted state trajectory can be bounded

k

x

k

X

Theorem [Chisci et al. ’01]

Suppose

suitable constraint tightening,

suitable terminal region / terminal cost.

Then the closed-loop converges to the minimal robust positively invariant set.
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Distributed implementation for large-scale systems

Idea to handle inexact distributed optimization:

define relaxed optimization problem

assume maximum constraint violation ε through inexact minimization

use suitable constraint tightening

min
M∑

i=1

N−1∑

k=0

`i (xi (k|t), ui (k|t)) + V f
i (xi (N|t)) (1a)

st. xi (0|t) = xi (t) (1b)

‖(ANi + BiKNi )xNi (k|t) + Biui (k|t)− xi (k + 1|t)‖∞ ≤ εzi ,k (1c)

xNi (k|t) ∈ XNi ,k , (1d)

vi (k) + KNi xNi (k|t) ∈ Ui,k (1e)

x(N|t) ∈ Xf
. (1f)

Inexact Solution:
Assume maximum constraint violation εi , εui , εxi , εf in (1c)-(1f)
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Distributed implementation for large-scale systems

Candidate solution at time t + 1:

ṽ(k|t + 1) =

{
v(k + 1|t), k = 0, ...,N − 2

0 k = N − 1

x̃(k|t + 1) =





x(t + 1) =: x(1|t) + w k = 0

x(k + 1|t) + (A + BK)kw k = 1, ...,N − 1

(A + BK)x̃(N − 1|t + 1) k = N

x
x̃

w

k
Tightened Constraints

Dynamic constraints: εzi ,k+1 = εzi ,k − εi .
State constraints: XNi ,k = {xNi |CNi xNi ≤ c i,k} with

c i,k,j = ci,j − σW(C
>
Ni ,j , k)− (k + 1)εxi

Similar for input and terminal constraints

Economic model predictive control 19

Distributed implementation for large-scale systems

Theorem [Köhler et al. ’17]

Suppose

distributed optimization with maximum constraint violation εi , εui , εxi , εf ,

suitable constraint tightening,

suitable terminal region / terminal cost.

Then the MPC optimization problem is recursively feasible and the closed-loop
satisfies state and input constraints.

Remarks:

Closed-loop performance guarantees can be obtained by assuming a
certain degree of suboptimality for the distributed optimization.

Maximum constraint violation needs to be guaranteed  can be verified
online, but in general no a priori bound on number of iterations.
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Application: Economic dispatch in power systems

1 2

34

Power system dynamics:
xi = [PM

i , ωi , δi ], ui = PC
i , di = PL

i

x+
i = ANi xNi + Biui + Eidi

Economic dispatch: Power load PL
i changes

⇒ drive system to (new) economic steady state

min
M∑

i=1

(
PM
i

)2

st.
M∑

i=1

PM
i =

M∑

i=1

PL
i
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Application: Economic dispatch in power systems

State of the art solution:
Economic Automatic Generation Control (EAGC) [Li et al. ’14]
⇒ converges to (new) economic optimal steady state

Distributed Economic MPC solution:

Economic stage cost: li = (PM
i )2 + cω2

i

Constraints: PM
i ∈ [Pmin

M ,Pmax
M ], Pij ∈ [Pmin

ij ,Pmax
ij ]

Average constraints: Av [ωi ] = 0

Strict dissipativity: system is optimally operated at steady-state
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Application: Economic dispatch in power systems

Simulation Result
EAGC DEMPC
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Application: Economic dispatch in power systems
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Application: Economic dispatch in power systems

Inexact DEMPC State of the art control
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Case study: large load change
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Application: Economic dispatch in power systems

Inexact DEMPC State of the art control
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Case study - random load fluctuations
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Conclusions

Conclusions

Economic model predictive control
Consideration of general control objectives
Closed-loop system not necessarily convergent

Dissipativity plays a crucial role in economic MPC:
Classify optimal operating behavior
Convergence analysis of closed-loop system

Distributed implementation
Important to consider inexact optimization due to real-time constraints
Recursive feasibility and constraint satisfaction can be achieved using
suitable constraint tightening
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