Reduced Basis Method for Parametric \mathscr{H}_2 -Optimal Control Problems NUMOC2017

Andreas Schmidt, Bernard Haasdonk

University of Stuttgart Germany

and reas.schmidt@mathematik.uni-stuttgart.de

22nd June, 2017

1 Introduction

2 Reduced Basis Approximation

Introduction

In a more mathematical way: LTI System

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B_u \mathbf{u}(t) + B_u \mathbf{w}_1(t)$$
$$\mathbf{y}(t) = C_y \mathbf{x}(t) + D_{yu} \mathbf{w}_2(t)$$
$$\mathbf{z}(t) = C_z \mathbf{x}(t) + D_{zu} \mathbf{u}(t)$$
$$\mathbf{x}(0) = \mathbf{x}_0.$$

State equation Measurements Performance output

In a more mathematical way: LTI System

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B_{u}\mathbf{u}(t) + B_{w}w_{1}(t)$$

$$\mathbf{y}(t) = C_{y}\mathbf{x}(t) + D_{yw}w_{2}(t)$$

$$\mathbf{z}(t) = C_{x}\mathbf{x}(t) + D_{zu}\mathbf{u}(t)$$

$$\mathbf{x}(0) = \mathbf{x}_{0}.$$

State equation Measurements Performance output

In a more mathematical way: LTI System

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B_u \mathbf{u}(t) + B_w w_1(t)$$

$$\mathbf{y}(t) = C_y \mathbf{x}(t) + D_{yw} w_2(t)$$

$$\mathbf{z}(t) = C_z \mathbf{x}(t) + D_{zu} \mathbf{u}(t)$$

$$\mathbf{x}(0) = \mathbf{x}_0.$$

State equation Measurements Performance output

In a more mathematical way: LTI System

$$\begin{aligned} \dot{\mathbf{x}}(t) &= A(\mu)\mathbf{x}(t) + B_u(\mu)\mathbf{u}(t) + B_w(\mu)\mathbf{w}_1(t) & \text{State equation} \\ \mathbf{y}(t) &= C_y(\mu)\mathbf{x}(t) + D_{yw}(\mu)\mathbf{w}_2(t) & \text{Measurements} \\ \mathbf{z}(t) &= C_z(\mu)\mathbf{x}(t) + D_{zu}(\mu)\mathbf{u}(t) & \text{Performance output} \\ \mathbf{x}(0) &= \mathbf{x}_0(\mu). \end{aligned}$$

SimTech

What should the controller do?

Control objective

What should the controller do?

Control objective

What should the controller do?

Control objective

Try to find a **controller** that maps the noisy measurements $\mathbf{y}(t)$ to control signals $\mathbf{u}(t)$ such that certain goals are achieved:

What should the controller do?

Control objective

Try to find a **controller** that maps the noisy measurements $\mathbf{y}(t)$ to control signals $\mathbf{u}(t)$ such that certain goals are achieved:

- System is stable
- Effect of noise $\mathbf{w}(t)$ on output $\mathbf{z}(t)$ is minimized in \mathcal{H}_2 norm

 $\|G\|_{2} = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} \|G(i\omega)\|_{F}^{2} d\omega}, \text{ where } G(s) = \mathscr{C}(sl - \mathscr{A})^{-1} \mathscr{B}$

What should the controller do?

Control objective

Try to find a **controller** that maps the noisy measurements $\mathbf{y}(t)$ to control signals $\mathbf{u}(t)$ such that certain goals are achieved:

- · System is stable
- Effect of noise $\mathbf{w}(t)$ on output $\mathbf{z}(t)$ is minimized in \mathscr{H}_2 norm

$$\|G\|_{2} = \sqrt{\frac{1}{2\pi} \int_{-\infty}^{\infty} \|G(i\omega)\|_{F}^{2} d\omega}, \text{ where } G(s) = \mathscr{C}(sI - \mathscr{A})^{-1} \mathscr{B}$$

Theorem 1 ([Zhou, Doyle, Glover 1996])

Let $P, Q \in \mathbb{R}^{n \times n}$ be the unique stabilizing solutions to the algebraic Riccati equations (AREs)

$$A^{T}P + PA - PB_{u}(D_{zu}^{T}D_{zu})^{-1}B_{u}^{T}P + C_{z}^{T}C_{z} = 0$$
(1)

$$AQ + QA^{T} - QC_{y}^{T}(D_{yw}D_{yw}^{T})^{-1}C_{y}Q + B_{w}B_{w}^{T} = 0.$$
 (2)

Define the control gain $K := (D_{zu}^T D_{zu})^{-1} B_u^T P$ and the observer gain $L := QC_y^T (D_{yw} D_{yw}^T)^{-1}$. Then the \mathscr{H}_2 optimal controller is given by

$$\mathbf{u}(t) \coloneqq -K\mathbf{x}_K(t),\tag{3}$$

where $\mathbf{x}_{K}(t) \in \mathbb{R}^{n}$ is the solution to the observer-equation:

$$\dot{\mathbf{x}}_{K}(t) = (A - BK)\mathbf{x}_{K}(t) + L[\mathbf{y}(t) - C_{y}\mathbf{x}_{K}(t)].$$
(4)

K. Zhou, J. Doyle and K. Glover. Robust and Optimal Control. 1996.

Theorem 1 ([Zhou, Doyle, Glover 1996])

Let $P, Q \in \mathbb{R}^{n \times n}$ be the unique stabilizing solutions to the algebraic Riccati equations (AREs)

$$A^{T}P + PA - PB_{u}(D_{zu}^{T}D_{zu})^{-1}B_{u}^{T}P + C_{z}^{T}C_{z} = 0$$
(1)

$$AQ + QA^{T} - QC_{y}^{T} (D_{yw} D_{yw}^{T})^{-1} C_{y} Q + B_{w} B_{w}^{T} = 0.$$
 (2)

Define the control gain $K := (D_{zu}^T D_{zu})^{-1} B_u^T P$ and the observer gain $L := QC_v^T (D_{vw} D_{vw}^T)^{-1}$. Then the \mathcal{H}_2 optimal controller is given by

$$\mathbf{u}(t) \coloneqq -K\mathbf{x}_K(t),\tag{3}$$

where $\mathbf{x}_{K}(t) \in \mathbb{R}^{n}$ is the solution to the observer-equation:

$$\dot{\mathbf{x}}_{K}(t) = (A - BK)\mathbf{x}_{K}(t) + L[\mathbf{y}(t) - C_{y}\mathbf{x}_{K}(t)].$$
(4)

K. Zhou, J. Doyle and K. Glover. Robust and Optimal Control. 1996.

Theorem 1 ([Zhou, Doyle, Glover 1996])

Let $P, Q \in \mathbb{R}^{n \times n}$ be the unique stabilizing solutions to the algebraic Riccati equations (AREs)

$$A^{T}P + PA - PB_{u}(D_{zu}^{T}D_{zu})^{-1}B_{u}^{T}P + C_{z}^{T}C_{z} = 0$$
(1)

$$AQ + QA^{T} - QC_{y}^{T} (D_{yw} D_{yw}^{T})^{-1} C_{y} Q + B_{w} B_{w}^{T} = 0.$$
⁽²⁾

Define the control gain $K := (D_{zu}^T D_{zu})^{-1} B_u^T P$ and the observer gain $L := QC_y^T (D_{yw} D_{yw}^T)^{-1}$. Then the \mathscr{H}_2 optimal controller is given by

$$\mathbf{u}(t) \coloneqq -K\mathbf{x}_K(t),\tag{3}$$

where $\mathbf{x}_{K}(t) \in \mathbb{R}^{n}$ is the solution to the observer-equation:

$$\dot{\mathbf{x}}_{K}(t) = (A - BK)\mathbf{x}_{K}(t) + L[\mathbf{y}(t) - C_{Y}\mathbf{x}_{K}(t)].$$
(4)

K. Zhou, J. Doyle and K. Glover. Robust and Optimal Control. 1996.

Reduced Basis Approximation

Calculation is split in offline and online phase

- · Online efficiency through parameter separability
- · Basis generation (usually) by Greedy procedure
- Many **applications**: Elliptic/parabolic PDEs, variational inequalities, dyn. systems, Kalman filter, ...

B. Haasdonk. Reduced Basis Methods for Parametrized PDEs - A Tutorial Introduction for Stationary and Instationary Problems. SimTech Preprint. Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox (eds.): "Model Reduction and Approximation: Theory and Algorithms", SIAM, Philadelphia, 2016. IANS, University of Stuttgart, Germany, 2014.

A. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. 2007.

Calculation is split in offline and online phase

- · Online efficiency through parameter separability
- · Basis generation (usually) by Greedy procedure
- Many applications: Elliptic/parabolic PDEs, variational inequalities, dyn. systems, Kalman filter, ...

B. Haasdonk. Reduced Basis Methods for Parametrized PDEs - A Tutorial Introduction for Stationary and Instationary Problems. SimTech Preprint. Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox (eds.): "Model Reduction and Approximation: Theory and Algorithms", SIAM, Philadelphia, 2016. IANS, University of Stuttgart, Germany, 2014.

A. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. 2007.

Calculation is split in offline and online phase

- · Online efficiency through parameter separability
- · Basis generation (usually) by Greedy procedure
- Many **applications**: Elliptic/parabolic PDEs, variational inequalities, dyn. systems, Kalman filter, ...

B. Haasdonk. Reduced Basis Methods for Parametrized PDEs - A Tutorial Introduction for Stationary and Instationary Problems. SimTech Preprint. Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox (eds.): "Model Reduction and Approximation: Theory and Algorithms", SIAM, Philadelphia, 2016. IANS, University of Stuttgart, Germany, 2014.

A. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. 2007.

Calculation is split in offline and online phase

- · Online efficiency through parameter separability
- Basis generation (usually) by Greedy procedure
- Many **applications**: Elliptic/parabolic PDEs, variational inequalities, dyn. systems, Kalman filter, ...

B. Haasdonk. Reduced Basis Methods for Parametrized PDEs - A Tutorial Introduction for Stationary and Instationary Problems. SimTech Preprint. Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox (eds.): "Model Reduction and Approximation: Theory and Algorithms", SIAM, Philadelphia, 2016. IANS, University of Stuttgart, Germany, 2014.

A. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in (tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. 2007.

Recall: The ARE is a nonlinear matrix-valued equation for $X(\mu) \in \mathbb{R}^{n \times n}$:

 $A(\mu)^{T} X(\mu) + X(\mu) A(\mu) - X(\mu) B(\mu) R(\mu)^{-1} B(\mu)^{T} X(\mu) + C(\mu)^{T} C(\mu) = 0.$

SVD/Eigenvalue decomposition $X(\mu) = V \Sigma V^T$

Projection leads to small $N \ll n$ dimensional ARE

V. Simoncini, "Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations", SIAM Journal on Matrix Analysis and Applications (Jan. 2016).

A. Schmidt and B. Haasdonk. 'Reduced basis approximation of large scale parametric algebraic Riccati equations'. ESAIM: Control, Optimisation and Calculus of Variations (Feb. 2017).

Recall: The ARE is a nonlinear matrix-valued equation for $X(\mu) \in \mathbb{R}^{n \times n}$:

 $A(\mu)^{T} X(\mu) + X(\mu) A(\mu) - X(\mu) B(\mu) R(\mu)^{-1} B(\mu)^{T} X(\mu) + C(\mu)^{T} C(\mu) = 0.$

SVD/Eigenvalue decomposition $X(\mu) = V\Sigma V^T$

Projection leads to small *N* ≪ *n* dimensional ARE

V. Simoncini, 'Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations', SIAM Journal on Matrix Analysis and Applications (Jan. 2016).

A. Schmidt and B. Haasdonk. 'Reduced basis approximation of large scale parametric algebraic Riccati equations'. ESAIM: Control, Optimisation and Calculus of Variations (Feb. 2017).

Recall: The ARE is a nonlinear matrix-valued equation for $X(\mu) \in \mathbb{R}^{n \times n}$:

 $A(\mu)^{T} X(\mu) + X(\mu) A(\mu) - X(\mu) B(\mu) R(\mu)^{-1} B(\mu)^{T} X(\mu) + C(\mu)^{T} C(\mu) = 0.$

SVD/Eigenvalue decomposition $X(\mu) = V\Sigma V^T \approx Z(\mu)Z(\mu)^T$

Projection leads to small *N* ≪ *n* dimensional ARE

V. Simoncini, "Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations", SIAM Journal on Matrix Analysis and Applications (Jan. 2016).

A. Schmidt and B. Haasdonk. 'Reduced basis approximation of large scale parametric algebraic Riccati equations'. ESAIM: Control, Optimisation and Calculus of Variations (Feb. 2017).

Recall: The ARE is a nonlinear matrix-valued equation for $X(\mu) \in \mathbb{R}^{n \times n}$:

 $A(\mu)^{T} X(\mu) + X(\mu) A(\mu) - X(\mu) B(\mu) R(\mu)^{-1} B(\mu)^{T} X(\mu) + C(\mu)^{T} C(\mu) = 0.$

SVD/Eigenvalue decomposition $X(\mu) = V\Sigma V^T \approx Z(\mu)Z(\mu)^T$

Idea: [S., Haasdonk 2017] Approximate

 $X(\mu) \approx \widehat{X}(\mu) \coloneqq V_X X_N(\mu) V_X^T$

Projection leads to small *N* ≪ *n* dimensional ARE

V. Simoncini, 'Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations', SIAM Journal on Matrix Analysis and Applications (Jan. 2016).

A. Schmidt and B. Haasdonk. 'Reduced basis approximation of large scale parametric algebraic Riccati equations'. ESAIM: Control, Optimisation and Calculus of Variations (Feb. 2017).

Recall: The ARE is a nonlinear matrix-valued equation for $X(\mu) \in \mathbb{R}^{n \times n}$:

 $A(\mu)^{T} X(\mu) + X(\mu) A(\mu) - X(\mu) B(\mu) R(\mu)^{-1} B(\mu)^{T} X(\mu) + C(\mu)^{T} C(\mu) = 0.$

SVD/Eigenvalue decomposition $X(\mu) = V \Sigma V^T \approx Z(\mu) Z(\mu)^T$

Projection leads to small $N \ll n$ dimensional ARE

A. Schmidt and B. Haasdonk. 'Reduced basis approximation of large scale parametric algebraic Riccati equations'. ESAIM: Control, Optimisation and Calculus of Variations (Feb. 2017).

V. Simoncini. 'Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations'. SIAM Journal on Matrix Analysis and Applications (Jan. 2016).

Algorithm 1: Low-Rank Factor Greedy Algorithm (LRFG) for the basis generation.

Data: Initial basis matrix V_0 , training set $\mathscr{P}_{\text{train}} \subset \mathscr{P}$, tolerance ε , inner tolerance $tol_i \in [0, 1]$, error indicator $\Delta(V, \mu)$ Set $V := V_0$. **while** $\max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu) > \varepsilon$ **do** $\mu^* := \arg \max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu)$ Solve the full dimensional ARE for the low rank factor $Z(\mu^*)$ Set $Z_{\perp} := (I_n - VV^T)Z(\mu^*)$ $\widehat{Z} = \text{POD}(Z_{\perp}, \text{tol}_i)$ Extend the current basis matrix $V = (V, \widehat{Z})$ Return V.

Algorithm 2: Low-Rank Factor Greedy Algorithm (LRFG) for the basis generation.

Data: Initial basis matrix V_0 , training set $\mathscr{P}_{\text{train}} \subset \mathscr{P}$, tolerance ε , inner tolerance $tol_i \in [0, 1]$, error indicator $\Delta(V, \mu)$ Set $V := V_0$. **while** $\max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu) > \varepsilon$ **do** $\mu^* := \arg \max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu)$ Solve the full dimensional ARE for the low rank factor $Z(\mu^*)$ Set $Z_{\perp} := (I_n - VV^T)Z(\mu^*)$ $\widehat{Z} = \text{POD}(Z_{\perp}, \text{tol}_i)$ Extend the current basis matrix $V = (V, \widehat{Z})$ Return V.

Algorithm 3: Low-Rank Factor Greedy Algorithm (LRFG) for the basis generation.

Data: Initial basis matrix V_0 , training set $\mathscr{P}_{\text{train}} \subset \mathscr{P}$, tolerance ε , inner tolerance $tol_i \in [0, 1]$, error indicator $\Delta(V, \mu)$ Set $V := V_0$. **while** $\max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu) > \varepsilon$ **do** $\mu^* := \arg \max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu)$ Solve the full dimensional ARE for the low rank factor $Z(\mu^*)$ Set $Z_{\perp} := (I_n - VV^T)Z(\mu^*)$ $\widehat{Z} = \text{POD}(Z_{\perp}, \text{tol}_i)$ Extend the current basis matrix $V = (V, \widehat{Z})$ Return V.

 $\Delta(W,\mu) := \frac{\|\mathscr{R}(\widehat{P}(\mu))\|_F}{\|C(\mu)^T Q(\mu) C(\mu)\|_F}$

Algorithm 4: Low-Rank Factor Greedy Algorithm (LRFG) for the basis generation.

Data: Initial basis matrix V_0 , training set $\mathscr{P}_{\text{train}} \subset \mathscr{P}$, tolerance ε , inner tolerance $tol_i \in [0, 1]$, error indicator $\Delta(V, \mu)$ Set $V := V_0$. **while** $\max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu) > \varepsilon$ **do** $\mu^* := \arg \max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu)$ Solve the full dimensional ARE for the low rank factor $Z(\mu^*)$ Set $Z_{\perp} := (I_n - VV^T)Z(\mu^*)$ $\widehat{Z} = \text{POD}(Z_{\perp}, \text{tol}_i)$ Extend the current basis matrix $V = (V, \widehat{Z})$ Return V.

 $\Delta(W,\mu) := \frac{\|\mathscr{R}(\widehat{P}(\mu))\|_{F}}{\|C(\mu)^{T}Q(\mu)C(\mu)\|_{F}}$

Algorithm 5: Low-Rank Factor Greedy Algorithm (LRFG) for the basis generation.

Data: Initial basis matrix V_0 , training set $\mathscr{P}_{\text{train}} \subset \mathscr{P}$, tolerance ε , inner tolerance $tol_i \in [0, 1]$, error indicator $\Delta(V, \mu)$ Set $V := V_0$. **while** $\max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu) > \varepsilon$ **do** $\mu^* := \arg \max_{\mu \in \mathscr{P}_{\text{train}}} \Delta(V, \mu)$ Solve the full dimensional ARE for the low rank factor $Z(\mu^*)$ Set $Z_{\perp} := (I_n - VV^T)Z(\mu^*)$ $\widehat{Z} = \text{POD}(Z_{\perp}, \text{tol}_i)$ Extend the current basis matrix $V = (V, \widehat{Z})$ Return V.

 $\Delta(W,\mu) := \frac{\|\mathscr{R}(\widehat{P}(\mu))\|_{F}}{\|C(\mu)^{T}Q(\mu)C(\mu)\|_{F}} \qquad \text{POD}(X, \text{tol}_{i}) \text{ returns first } l \text{ SVs, such that:} \\ \frac{\sum_{i=1}^{l} \sigma_{i}^{2}}{\sum_{i=1}^{\text{rank}(X)} \sigma_{i}^{2}} \geq \text{tol}_{i}(> 0.99)$

The state estimation involves an *n*-dimensional ODE:

 $\dot{\mathbf{x}}_{K}(t;\mu) = (A(\mu) - B(\mu)K(\mu))\mathbf{x}_{K}(t;\mu) + L(\mu)[\mathbf{y}(t) - C_{Y}(\mu)\mathbf{x}_{K}(t;\mu)].$

Apply **POD** by calculating snapshots for some $\mu \in \mathcal{P}$ and inputs $\mathbf{y}(t)$:

 $X := [\mathbf{x}_K(t_1; \mu_1), \mathbf{x}_K(t_2; \mu_1), \dots, \mathbf{x}_K(t_l; \mu_P)]$

Figure: Some bases for an advection diffusion equation.

S. Volkwein. Lecture Notes: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. 2013.

What is the overall idea? The observer equation

The state estimation involves an *n*-dimensional ODE:

$$\dot{\mathbf{x}}_{K}(t;\mu) = (A(\mu) - B(\mu)K(\mu))\mathbf{x}_{K}(t;\mu) + L(\mu)[\mathbf{y}(t) - C_{Y}(\mu)\mathbf{x}_{K}(t;\mu)].$$

Apply **POD** by calculating snapshots for some $\mu \in \mathscr{P}$ and inputs $\mathbf{y}(t)$:

$$X := [\mathbf{x}_K(t_1; \mu_1), \mathbf{x}_K(t_2; \mu_1), \dots, \mathbf{x}_K(t_l; \mu_P)]$$

Figure: Some bases for an advection diffusion equation.

S. Volkwein. Lecture Notes: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. 2013.

Build three different bases V_P , V_Q and $V_{\mathbf{x}_K}$ (independently, offline). See[S., Haasdonk 2016].

Definition 2 (Reduced controller)

Let P_{N_p} and Q_{N_Q} be the solutions of the reduced AREs and define the reduced gains $\widehat{K} \coloneqq (D_{zu}^T D_{zu})^{-1} B_u^T \widehat{P}, \widehat{L} \coloneqq \widehat{Q} C_y^T (D_{yw} D_{yw}^T)^{-1}$, where

$$\widehat{P} = V_P P_{N_P} V_P^T, \quad \widehat{Q} = V_Q Q_{N_Q} V_Q^T,$$

and the control signal

$$\widehat{\mathbf{u}}(t) \coloneqq -\widehat{K}\widetilde{\mathbf{x}}(t),$$

where $\widetilde{\mathbf{x}}(t) \in \mathbb{R}^{N_{\widetilde{\mathbf{x}}}}$ satisfies the reduced observer equation

$$\dot{\widetilde{\mathbf{x}}} = V_{\mathbf{x}_{K}}^{T} (A - B\widehat{K} - \widehat{L}C_{y}) V_{\mathbf{x}_{K}} \widetilde{\mathbf{x}} + V_{\mathbf{x}_{K}}^{T} \widehat{L} \mathbf{y}$$

A. Schmidt and B. Haasdonk. 'Reduced basis method for H2 optimal feedback control problems'. IFAC-PapersOnLine (2016). 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2016.

Build three different bases V_P , V_Q and $V_{\mathbf{x}_K}$ (independently, offline). See[S., Haasdonk 2016].

Definition 2 (Reduced controller)

Let P_{N_P} and Q_{N_Q} be the solutions of the reduced AREs and define the reduced gains $\widehat{K} := (D_{zu}^T D_{zu})^{-1} B_u^T \widehat{P}, \widehat{L} := \widehat{Q} C_y^T (D_{yw} D_{yw}^T)^{-1}$, where

$$\widehat{P} = V_P P_{N_P} V_P^T, \quad \widehat{Q} = V_Q Q_{N_Q} V_Q^T,$$

and the control signal

$$\widehat{\mathbf{u}}(t) := -\widehat{K}\widetilde{\mathbf{x}}(t),$$

where $\tilde{\mathbf{x}}(t) \in \mathbb{R}^{N_{\hat{\mathbf{x}}}}$ satisfies the reduced observer equation

$$\dot{\widetilde{\mathbf{x}}} = V_{\mathbf{x}_{K}}^{T} (A - B\widehat{K} - \widehat{L}C_{y}) V_{\mathbf{x}_{K}} \widetilde{\mathbf{x}} + V_{\mathbf{x}_{K}}^{T} \widehat{L} \mathbf{y}$$

A. Schmidt and B. Haasdonk. 'Reduced basis method for H2 optimal feedback control problems'. IFAC-PapersOnLine (2016). 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2016. SimTech

Numerical Results

Distributed Control of Damped 2D Wave

Consider for $\Omega := [0, 1]^2$ the following damped wave-equation with parameters $\mu_1, \mu_2 \in [0, 1, 2] \times [1, 100]$.

$$f_{tt} - 0.1\Delta f + \boldsymbol{\mu}_1 f_t = 10 \cdot \mathbf{1}_{\Omega_u} u + 3 \cdot \mathbf{1}_{\Omega_w} w_1, \qquad t > 0,$$

$$f(0,\xi;\mu) = \sin(\xi_1\pi)\sin(\xi_2\pi), \qquad \xi \in \Omega$$

$$f_t(0,\xi;\mu) = 0, \qquad \xi \in \Omega,$$

$$s(t;\mu) = \frac{1}{|\Omega_{\gamma}|} \int_{\Omega_{\gamma}} f(t,\xi;\mu) d\xi + 0.05 w_{2}(t).$$

Consider two performance outputs:

$$o_1(t) = \frac{1}{|\Omega_y|} \int_{\Omega_y} \mu_2 f(t,\xi;\mu) d\xi, \quad o_2(t) = 0.1 u(t)$$

The equations are discretized in space by using FD: n = 800. We construct the three bases: V_P , V_Q and $V_{\hat{\mathbf{x}}}$. The observer system was simulated with $\mathbf{y}(t) = \sin(t^2)$ with $t \in [0, 2\pi]$.

	t _{full} [s]	$t_{red}[s]$	Basis size
Feedback ARE P	15.2	0.002	17
Observer ARE Q	14.3	0.004	30
State Estimation ODE $\hat{\mathbf{x}}$	$4.1 \cdot 10^{-4}$	$2.0 \cdot 10^{-5}$	25

Table: Basis generation results.

Overall RB approximation

Overall controller is ODE of dimension 25 instead of 800 and the speed up for the AREs is in the magnitude of **5.000** (using care). By using parameter separability, e.g. $A(\mu) = \sum_{i=1}^{Q_A} \theta_i(\mu) A_i$ the online simulation can be implemented **independent** of *n*.

Distributed Control of Damped 2D Wave

Approximation of control signal

Distributed Control of Damped 2D Wave

Approximation of control signal

Relative maximum error over test set \mathcal{P}_{test} with $|\mathcal{P}_{test}| = 50$.

$$\max_{\mu \in \mathscr{P}_{\text{test}}} \frac{\|G(\cdot;\mu) - \widehat{G}(\cdot;\mu)\|_2}{\|G(\cdot;\mu)\|_2}.$$
(5)

Table: Relative error in the transfer functions from \mathbf{w} to \mathbf{z} in the closed loop systems.

		N _P				
		5	10	12	17	
NQ	5	2.78e-02	2.63e-02	2.66e-02	2.88e-02	
	10	6.63e-03	7.20e-03	6.49e-03	5.23e-03	
	15	1.44e-03	1.94e-03	1.40e-03	8.29e-04	
	30	1.31e-03	1.83e-03	1.27e-03	6.34e-04	

Surprise: No instabilities occured! See famous one-page article[Doyle '78].

J. Doyle. 'Guaranteed margins for LQG regulators'. Automatic Control, IEEE Transactions on (Aug. 1978).

Conclusion and Outlook

We have seen: Model order reduction for \mathcal{H}_2 optimal control problems.

- · Full parametric and realistic control setup
- · Expensive due to two AREs and state estimation
- \Rightarrow Model reduction for AREs and the state estimation
- \Rightarrow Large speed-up

What next?

- · Stability considerations and error estimation
- Robustification?
- Same approach for $\mathscr{H}_\infty ext{-control}$ problems

We have seen: Model order reduction for \mathcal{H}_2 optimal control problems.

- · Full parametric and realistic control setup
- · Expensive due to two AREs and state estimation
- \Rightarrow Model reduction for AREs and the state estimation
- \Rightarrow Large speed-up

What next?

- · Stability considerations and error estimation
- Robustification?
- Same approach for $\mathscr{H}_\infty\text{-}\mathsf{control}$ problems

Thank you for your attention! Questions? Comments?

References I

J. Doyle. 'Guaranteed margins for LQG regulators'. *Automatic Control, IEEE Transactions* on 23.4 (Aug. 1978).

B. Haasdonk. *Reduced Basis Methods for Parametrized PDEs – A Tutorial Introduction for Stationary and Instationary Problems.* SimTech Preprint. Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox (eds.): "Model Reduction and Approximation: Theory and Algorithms", SIAM, Philadelphia, 2016. IANS, University of Stuttgart, Germany, 2014.

A. Patera and G. Rozza. *Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations.* 2007.

A. Schmidt and B. Haasdonk. 'Reduced basis method for H2 optimal feedback control problems'. *IFAC-PapersOnLine* 49.8 (2016). 2nd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2016.

A. Schmidt and B. Haasdonk. 'Reduced basis approximation of large scale parametric algebraic Riccati equations'. *ESAIM: Control, Optimisation and Calculus of Variations* (Feb. 2017).

V. Simoncini. 'Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations'. *SIAM Journal on Matrix Analysis and Applications* 37.4 (Jan. 2016).

References II

S. Volkwein. Lecture Notes: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. 2013.

K. Zhou, J. Doyle and K. Glover. Robust and Optimal Control. 1996.

Consider the open-loop system

 $\dot{\mathbf{x}} = A\mathbf{x} + B_u \mathbf{u} + B_w \mathbf{w}$ $\mathbf{z} = C_z \mathbf{x} + D_{zu} \mathbf{u}$ $\mathbf{y} = C_y \mathbf{x} + D_{yw} \mathbf{w}$

Ansatz for controller

$$\dot{\mathbf{x}}_K = A_K \mathbf{x}_K + B_K \mathbf{y}$$

 $\mathbf{u} = C_K \mathbf{x}_K$

The interconnection (i.e. the closed-loop system) for $h^T = (\mathbf{x}, \mathbf{x}_K)$ can be written as

$$\dot{h} = \mathscr{A} h + \mathscr{B} w,$$

z = C h.

Consider the open-loop system

The interconnection (i.e. the closed-loop system) for $h^T = (\mathbf{x}, \mathbf{x}_K)$ can be written as

$$\dot{h} = \mathscr{A} h + \mathscr{B} w,$$

 $z = \mathscr{C} h.$

Consider the open-loop system

The interconnection (i.e. the closed-loop system) for $h^T = (\mathbf{x}, \mathbf{x}_K)$ can be written as

$$\dot{h} = \mathscr{A}h + \mathscr{B}\mathbf{w},$$
$$\mathbf{z} = \mathscr{C}h.$$

