
Reduced Basis Method for Parametric
H2-Optimal Control Problems

NUMOC2017

Andreas Schmidt, Bernard Haasdonk

Institute for Applied Analysis and Numerical Simulation, University of Stu�gart

andreas.schmidt@mathematik.uni-stuttgart.de

22nd June, 2017

1/24



2/24

Outline

1 Introduction

2 Reduced Basis Approximation

3 Numerical Results

4 Conclusion and Outlook



3/24

Introduction



4/24

Basic Overview
A general control problem

Goal: Set up a general framework for realistic control problems.

System

x(t) State

Control u(t)
y(t) Measurement

Noise w1(t)

Noise w2(t)

z(t) Performance

In a more mathematical way: LTI System

•x(t)=Ax(t)+Buu(t)+Bww1(t) State equation

y(t)=Cyx(t)+Dyww2(t) Measurements

z(t)=Czx(t)+Dzuu(t) Performance output

x(0)= x0.
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The Control Problem
What should the controller do?

System z(t)w(t)

Controller

y(t)u(t)

Control objective

Try to find a controller that maps the noisy measurements y(t) to control
signals u(t) such that certain goals are achieved:

• System is stable
• E�ect of noise w(t) on output z(t) is minimized in H2 norm

‖G‖2 =
√

1
2π

∫ ∞

−∞
‖G(iω)‖2

F dω, where G(s)=C (sI−A )−1B
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The Control Problem
The solution

Theorem 1 ( [Zhou, Doyle, Glover 1996])

Let P ,Q ∈Rn×n be the unique stabilizing solutions to the algebraic Riccati
equations (AREs)

AT P +PA−PBu(DT
zuDzu)

−1BT
u P +CT

z Cz = 0 (1)

AQ +QAT −QCT
y (DywDT

yw)
−1CyQ +BwBT

w = 0. (2)

Define the control gain K := (DT
zuDzu)

−1BT
u P and the observer gain

L :=QCT
y (DywDT

yw)
−1. Then the H2 optimal controller is given by

u(t) :=−KxK (t), (3)

where xK (t) ∈Rn is the solution to the observer-equation:

•xK (t)= (A−BK)xK (t)+L[y(t)−CyxK (t)]. (4)

K. Zhou, J. Doyle and K. Glover. Robust and Optimal Control. 1996.
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Reduced Basis Approximation
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Reduced Basis Method in a Nutshell

• Calculation is split in o�line and online phase

• Online e�iciency through parameter separability
• Basis generation (usually) by Greedy procedure
• Many applications: Elliptic/parabolic PDEs, variational inequalities,

dyn. systems, Kalman filter, . . .

A. Patera and G. Rozza. Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Di�erential Equations. To appear in
(tentative) MIT Pappalardo Graduate Monographs in Mechanical Engineering. 2007.

B. Haasdonk. Reduced Basis Methods for Parametrized PDEs – A Tutorial Introduction for Stationary and Instationary Problems. SimTech Preprint.
Chapter to appear in P. Benner, A. Cohen, M. Ohlberger and K. Willcox (eds.): "Model Reduction and Approximation: Theory and Algorithms", SIAM,
Philadelphia, 2016. IANS, University of Stu�gart, Germany, 2014.
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Reduction of the ARE
How to do that?

Recall: The ARE is a nonlinear matrix-valued equation for X(µ) ∈Rn×n:

A(µ)T X(µ)+X(µ)A(µ)−X(µ)B(µ)R(µ)−1B(µ)T X(µ)+C(µ)T C(µ)= 0.

SVD/Eigenvalue decomposition X(µ)=VΣV T

0 20 40 60 80 10010−18

10−10

10−2

Index i

σ
i

Idea:
[S., Haasdonk 2017]
Approximate

X(µ)≈ X̂(µ) :=VX XN (µ)V T
X

Projection leads to small N ¿ n dimensional ARE

AN (µ)
T XN (µ)+XN (µ)AN (µ)−XN (µ)BN (µ)R(µ)−1B(µ)T XN (µ)+CN (µ)

T CN (µ)= 0.

A. Schmidt and B. Haasdonk. ‘Reduced basis approximation of large scale parametric algebraic Riccati equations’. ESAIM: Control, Optimisation
and Calculus of Variations (Feb. 2017).

V. Simoncini. ‘Analysis of the Rational Krylov Subspace Projection Method for Large-Scale Algebraic Riccati Equations’. SIAM Journal on Matrix
Analysis and Applications (Jan. 2016).
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Low-Rank Factor Greedy Algorithm

Algorithm 1: Low-Rank Factor Greedy Algorithm (LRFG) for the basis
generation.
Data: Initial basis matrix V0, training set P train ⊂P , tolerance ε, inner

tolerance toli ∈ [0,1], error indicator ∆(V ,µ)
Set V :=V0.
while maxµ∈P train ∆(V ,µ)> ε do

µ∗ := argmaxµ∈Ptrain
∆(V ,µ)

Solve the full dimensional ARE for the low rank factor Z(µ∗)
Set Z⊥ := (In −VV T )Z(µ∗)
Ẑ = POD(Z⊥,toli)
Extend the current basis matrix V = (V , Ẑ)

Return V .
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Low-Rank Factor Greedy Algorithm

Algorithm 5: Low-Rank Factor Greedy Algorithm (LRFG) for the basis
generation.
Data: Initial basis matrix V0, training set P train ⊂P , tolerance ε, inner

tolerance toli ∈ [0,1], error indicator ∆(V ,µ)
Set V :=V0.
while maxµ∈P train ∆(V ,µ)> ε do

µ∗ := argmaxµ∈Ptrain
∆(V ,µ)

Solve the full dimensional ARE for the low rank factor Z(µ∗)
Set Z⊥ := (In −VV T )Z(µ∗)
Ẑ = POD(Z⊥,toli)
Extend the current basis matrix V = (V , Ẑ)

Return V .

∆(W ,µ) := ‖R(P̂(µ))‖F
‖C(µ)T Q(µ)C(µ)‖F

POD(X ,toli) returns first l SVs, such that:∑l
i=1σ

2
i∑rank(X)

i=1 σ2
i

≥ toli(> 0.99)
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What is the overall idea?
The observer equation

The state estimation involves an n-dimensional ODE:

•xK (t;µ)= (A(µ)−B(µ)K(µ))xK (t;µ)+L(µ)[y(t)−Cy(µ)xK (t;µ)].

Apply POD by calculating snapshots for some µ ∈P and inputs y(t):

X := [xK (t1;µ1),xK (t2;µ1), . . . ,xK (tl ;µP)]

Figure: Some bases for an advection di�usion equation.

S. Volkwein. Lecture Notes: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. 2013.
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The Reduced Controller
Or: Why is now everything faster?

Build three di�erent bases VP ,VQ and VxK (independently, o�line). See[S.,
Haasdonk 2016].

Definition 2 (Reduced controller)

Let PNP and QNQ be the solutions of the reduced AREs and define the
reduced gainsK̂ := (DT

zuDzu)
−1BT

u P̂ , L̂ := Q̂CT
y (DywDT

yw)
−1, where

P̂ =VP PNP V T
P , Q̂ =VQQNQ V T

Q ,

and the control signal
û(t) :=−K̂ x̃(t),

where x̃(t) ∈RNx̂ satisfies the reduced observer equation

•

x̃=V T
xK
(A−BK̂ − L̂Cy)VxK x̃+V T

xK
L̂y

A. Schmidt and B. Haasdonk. ‘Reduced basis method for H2 optimal feedback control problems’. IFAC-PapersOnLine (2016). 2nd IFAC Workshop
on Control of Systems Governed by Partial Di�erential Equations CPDE 2016.
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Numerical Results
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Distributed Control of Damped 2D Wave

Consider for Ω := [0,1]2 the following damped wave-equation with
parameters µ1,µ2 ∈ [0.1,2]× [1,100].

f� −0.1∆f +µ1ft = 10 ·1Ωu u+3 ·1Ωw w1, t > 0,

f (0,ξ;µ)= sin(ξ1π)sin(ξ2π), ξ ∈Ω
ft(0,ξ;µ)= 0, ξ ∈Ω,

s(t;µ)= 1
|Ωy |

∫
Ωy

f (t,ξ;µ)dξ+0.05w2(t).

Consider two performance outputs:

o1(t)= 1
|Ωy |

∫
Ωy

µ2f (t,ξ;µ)dξ, o2(t)= 0.1u(t)

Ωu
Ωy

Ωw

0 2 4

−0.5

0

0.5

Time t

O
ut

pu
t

o 1
(t
) Uncontrolled

Controlled
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Distributed Control of Damped 2D Wave
Basis generation results

The equations are discretized in space by using FD: n= 800.
We construct the three bases: VP ,VQ and Vx̂. The observer system was
simulated with y(t)= sin(t2) with t ∈ [0,2π].

tfull[s] tred[s] Basis size
Feedback ARE P 15.2 0.002 17
Observer ARE Q 14.3 0.004 30

State Estimation ODE x̂ 4.1 ·10−4 2.0 ·10−5 25

Table: Basis generation results.

Overall RB approximation

Overall controller is ODE of dimension 25 instead of 800 and the speed up
for the AREs is in the magnitude of 5.000 (using care). By using parameter
separability, e.g. A(µ)=∑QA

i=1θi(µ)Ai the online simulation can be
implemented independent of n.
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Distributed Control of Damped 2D Wave
Approximation of control signal

Se�ing: Full basis for observer gain basis and state estimation basis x̂ .
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Distributed Control of Damped 2D Wave
Approximation of control signal

Se�ing: Full basis for feedback and observer gain basis.
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Distributed Control of Damped 2D Wave
Approximation of the H2-norm

Relative maximum error over test set P test with |P test| = 50.

max
µ∈Ptest

‖G(·;µ)− Ĝ(·;µ)‖2

‖G(·;µ)‖2
. (5)

Table: Relative error in the transfer functions from w to z in the closed loop systems.

NP

5 10 12 17

NQ

5 2.78e-02 2.63e-02 2.66e-02 2.88e-02
10 6.63e-03 7.20e-03 6.49e-03 5.23e-03
15 1.44e-03 1.94e-03 1.40e-03 8.29e-04
30 1.31e-03 1.83e-03 1.27e-03 6.34e-04

Surprise: No instabilities occured! See famous one-page article[Doyle ’78].

J. Doyle. ‘Guaranteed margins for LQG regulators’. Automatic Control, IEEE Transactions on (Aug. 1978).
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Conclusion and Outlook

We have seen: Model order reduction for H2 optimal control
problems.

• Full parametric and realistic control setup
• Expensive due to two AREs and state estimation
• ⇒ Model reduction for AREs and the state estimation
• ⇒ Large speed-up

What next?
• Stability considerations and error estimation
• Robustification?
• Same approach for H∞-control problems
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Thank you for your a�ention!
�estions? Comments?
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The Control Problem
Mathematical model of the controller

Consider the open-loop system

•x=Ax+Buu+Bww
z=Czx+Dzuu
y=Cyx+Dyww

Ansatz for controller

•xK =AK xK +BK y
u=CK xK

System z(t)w(t)

Controller

y(t)u(t)

The interconnection (i.e. the closed-loop system) for hT = (x,xK ) can be
wri�en as

•

h=A h+Bw,

z=C h.
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