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Plan of the talk

@ The 1-D cubic NLS with rough data
@ The 1-D cubic NLS with several Dirac data

(existence result and Talbot effect)
@ About the binormal flow and vortex filament dynamics

@ The results transferred to the binormal flow
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Results for 1-D cubic NLS with rough data

The 1-D cubic NLS
iUy + Uy £ \u|2u =0

is well-posed in H®, s > 0 (Ginibre-Velo 79, Cazenave-Weissler 90).
If s <0 itis ill-posed (Kenig-Ponce-Vega 01, Christ-Colliander-Tao 03).

Well-posedness holds for data with Fourier transform in LP spaces
(Vargas-Vega 01, Griinrock 05, Christ 07).

Methods of proving existence : fixed points arguments relying on
Strichartz type spaces.
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Results for 1-D cubic NLS with Dirac data

For adg as initial data, the 1-D cubic NLS is ill-posed: when looking for a

, 2
(unique) solution, by using Galilean invariance, one obtains el '°gt%e’ﬂ
which has no limit at t = 0 (Kenig-Ponce-Vega 01).

A natural change to do is to consider the perturbed cubic 1IDNLS
. , @
’wt"f'wxx:t <|¢| —t>¢:07

2 .
and get as an explicit solution %e’ﬁ = a2e*25p(x).

The problem is however ill-posed, as smooth perturbations of the solution

%e"% at time t = 1 behave near t = 0 as ™ logtf(x) (B.-Vega 09).
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Some notations

For a sequence {a} and s > 0 we denote
Heudls =D (14 kD> lawl®,  [{ek} I = sup(1 + |k[)?*]aul?.
Py kez

We consider distributions

u= Zakék.

kEZ

Their Fourier transform on R writes

ﬁ(é) = Z akeiikga

keZ

and in particular 7 is 2r—periodic.
Imposing {ay} € >° translates into 0 € H*(0,27).
We denote
ori={ue S'(R), d(x + 27) = d(x), 0 € H*(0,27)}.
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Result for 1-D cubic NLS with several Dirac data

Theorem (B.-Vega '17)

Let T>O,s>%,s—%<§§s,0<7<land {ak} € 1?5,
We consider the 1-D cubic NLS equation:

27t

{ iOru+ Au+ (Ju? — M )u=0,
Ujt=0 = D_kez %Ok,

with M =3, |ax]?.

There exists €9 = €o( T) > 0 such that if ||[{ax}||2s < € then we have a
local solution u € C([0, T]; Hyg).

Moreover, this solution is unique of the form

u(t, x) = (ou + Ri(t))e™di(x),

kEZ

with {Ry} satisfying the decay

t 7 {Re(8) I s + {0 Re(t) }H] /o5 < C.
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Result for 1-D cubic NLS with several Dirac data

Remarks:

@ the theorem is a generalization of a result of Kita 2006 valid for
subcubic nonlinearities.

@ the proof goes as follows:
o plugging the ansatz u(t,x) = 3, ., Ax(t)e™dk(x) into the equation
leads to a discrete system on {Ak(t)},

o we solve this discrete system by a fixed point argument, in which we
treat separately the nonresonant and the resonant part.

@ the resonant part is related to the system

0a(t) = 5 (D)X 5D — M),

J
which has only the constant in time solutions for M = 3. 12;(0)%.
(without the extra-factor M in the initial equation, that is treating

directly the cubic equation, one ends up with the resonant system
%) 13;(0)12

above without M, so we get ax(t) = '~ 2= '°€%3,(0) which has

no limit at t = 0).
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The proof: the nonlinearity action on the ansatz

We denote NV (u) = |u?u. Plugging u(t) = 3,7 Ak(t)e™d into the
equation we get

ZiatAk( ltA(Sk :I:N ZA ItA(S):F ZAk ItAék

keZ jez keZ

As Kita we can rewrite the nonlinear term:

N(Z Aj( 'tA(S N(ZA VG = e’ ZA el 4t 2Xt)

JEL JEL JEL
2
and use the 2w —periodicity of >, , Aj(t)el el
iz 1
e 7!’( < 7lk9N ijo I
— % Aj(t)e? do

tVt kz: 2T Z
€L JEZ

- 27 i
_ e / —:kaN ZAk ’J‘ge’4t do (eltA(Sk)(X)'

keZ JEZ
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The proof: the discrete system

. (x k)
The family e®28,(x) = % is an orthogonal basis of L2(0,27t), so
e it M
i9.A -4 t —Ik0 A IJ9 i t — A
9. A(t) m/o NS Arye ey do = M a, (o)

JEZL

Now we develop the cubic power and get

. 1 L/ .|
i0cA(t) = £o— d>oe AL ()AL (D)AL(E) F 5 Aw(t).
k—ji+j2—j3=0

We split the summation indices into the following two sets:
NRe = {(j1,j2,J3) € Z* k — ji +jo = j3 = 0, K> = T + j5 — j3 # 0},
Resi = {(j1,J2,J3) € Z° k — j1 +jo — js = 0,k* = ji + j5 — j5 = O}.

As we are in one dimension, the second set is simply
Resk = {(kv./a./)a (_ja.j7 k)v./ € Z}
720



The proof: the fixed point framework

Finally the system writes
K223
= 4t

> T AOADA ).

(J1 J2:J3) ENRK

IatAk t) =

We want to obtain the existence of Ax(t) = ax + Rk(t), with
{Ri} € X7 = {{fi} € C([0, T} ) n C1(J0, T; 1%°%), [ {i}l|x» < oo},
where [[{fi}|x+ := supo<ec 7t [{f(t) s + T [I{Oefic(£) H] o5

We shall prove that the operator ® : {Rc} = {®«({R;})} defined as
P + Rk
CHCEy e Zl 0 + R ~laj) dr

[ z : e ir -
- (i + Ry (7)) (e, + Ri(7))(ey + Ry (7)) d7
O (j1.joja)ENR

is a contraction in X7 on a small ball of radius 9, to be chosen later.
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The proof: the resonant part

The resonant part <Df we perform Cauchy-Schwarz in the summation in
J, and then in time:

of((R (o) < ¢ [ [ R (Sl f o)+ IR0 o

t
< C/ ‘ak|+‘Rk(7—)‘(605TV+52T2’Y)d7—
T

t R 2 L
| k(1)| (636272'y + 647-47) dr)zt?.

< Clawl(eodt" + 52627 + C(/
0

Then
[OFERD(O)IRs =D (1 + [K)*[OR({ R}

k
(L+ [k [Re(7)?

252 2y | <4 _4
i (0“7 4+ ™) drt”

t
< Ced(e25%t7 +6%t*)+-C / 2
0

5227
< COt%7(ef + 302t + 5*t*) < Co% 1P (g + 9% t)? < ——

The [|[0:®R({Rc}(t))||? s is treated similarly, by using /> C [>5 C [>*.
o 20



The proof: the non-resonant part

On the non-resonant part operator ®"F we shall perform an integration
by parts to get advantage of the non-resonant phase (without the phase
gain we have an issue for the discrete summations ; this is the only

reason of adding the derivative in time in the definition of the space X7)

For instance the boundary term <DLVR’B({RJ-})(t) for the IBP is
L

e 4t N —
t Y @ R RO+ R(0)
(jl)j2)j3)eNRk

On the non-resonant set 1 < |k? — j2 + j2 — j2| = 2|j1 — jo||k — j1

, SO

e o (a5, + Ra(0) (@, + Ry (6)) (0, + Ra(0))
ORI D T T N A kA

J1.2€Z

o



The proof: example of term in the non-resonant part

By Cauchy-Schwarz in the summation in ji, jo» we get

@Y E{R(D)? < €t Z (L+Lial)?* (L+Li2l)?*] (i + Ry, (1)) (e + R (1)) 2

X Z |lok—jy+)jp + Ri J1+Jz(t)|2

25 2s . R
i, )P+ 1Rf)?(1 + i 221+ [k —Al)

Therefore we control
[OME{ R ()17 < CE(eg + 82177)3,

provided that the following sum is finite

Z (14 |k[)*
e (L + [aD®@ + L)1+ [k —jo + )21 + L1 — )21+ |k = 4l)?
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Example of summation estimation

For 0 <s— % < § the following sum is finite:

(1+ kD)
21+ i = 20+ [k = Al)?(A+ [k =+ j2])>

2 (T + a1+ 2

K. j1,2€Z ‘

We split the summation in k into nine regions, in terms of the
comparison of k with j; and with j; — j». We denote, for ji, j» fixed, the
two series of three exhaustive regions on Z:

1. . 1,. . 3,. . 3. .
B = {lk| < §|Jl—Jz|}7 B, = {§|Jl—12\ < |k| < §|11—J2\}7 B; = {§|J1—J2| < |k|},

1,. 1. 3. 3.
G ={k <5l G={Glal< Ik <5l G={3lil <k}

We split the sum as follows:
Dkjriez = 2jipez(Dokeiuss T 2keBna T 2keBnc T 2keuBna,)-
1220



Example of summation estimation

On B; U B; we have { (L+]k])*

Ariiaps < €s0,as2s > 1,

3 (1+ kD)
(T4 LD+ 20>+ L = 22T+ [k =4l (T + [k =+ 2l)*

J1:2€ZL,k€B1UB3

1 1
<c Yy N o
J1.2€L (1+‘J2|) (1+|11*J2‘) keB1UB3 (1+|k*J1|)

On C; we have |k| < 1|ji| so, as 2s > 1 and 25 +2 — 25 > 1,

3 (1+ k)
(T DA+ 20>+ L = 2D (1 + [k = a1+ [k =+ 52l)*

J12€ZkEBNG

<cy (1+ LA™ 3 1
— i )25+2 i |)2s . — ir])2 _ ir|)2s
e, O PP+ DA+ T — 2D, o= A+ k=i + )

1 1
<C — o8 — < o00.
= Z (1 + [ja]) 22 Z (1+ | — fo|)? o0

JEZL P€EZL
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Example of summation estimation

On B> N G we have |k‘ < %|_j1| and |_j1| < 3|j1 —j2| SO

Z _ (1+[k])*
(T4 (DR + 12D + L — 2021+ [k =411+ [k =+ )%

1. 2€L,kEBNG

1+ i) 1
(T4 L)1+ [21)>(1 + [ — j])? (1 + |k —hl)?

J1:2€Z keBNGy

1
<C — - < 0.
<€ 2 (1 + [A])*52725(1 + |2])*

1 €L

On B, N Cs we have 3|ji| < |k| < 2| — jo| < 3(la] + Li2]):

3 (1+ k)
(T D>+ 20?4 L = 2D+ [k = a1+ [k =+ 52l)*

J1:2€ZL,k€BNC3

<c Z (L4 [aD)* + @+ Lp)* Z
(1 +|J1 VER(L 4 [2])% (1 + [ — j2l)? (14 [k—h +Jz|)

J1:2€L keBNC3

1 1
<C +C —5z - - < o0.
Z 1+ )= 25(1+|J2D25 Z (T+ [IDZE2(1 + [ — )2

J1,2€Z J1,2€L

2o



A Talbot effect

The linear and nonlinear Schrodinger evolution on the torus of functions
with bounded variation was proved to present Talbot effect features
(Berry, Klein; Oskolkov; Kapitanski, Rodnianski; Taylor ; Erdogan,
Tzirakis '96-'13).

Here we place ourselves in a more singular setting on R.

A consequence of the Theorem is that the solution u(t) of the modified

cubic NLS with initial data up = ., adk such that [[{ax}[[ps < €0

behaves for small times like the linear evolution 2 uy.

We compute first the linear evolution e ug which display a Talbot effect.

15/



A Talbot effect for linear evolutions of several Diracs

Proposition

Let t = ig with g odd. Let ug be such that dg is 2m—periodic and g
located modulo 27 only in a neighborhood of zero of radius less than %.
For a given x € R we denote Iy € Z and 0 < my, < g the unique numbers

such that

and we define

Then for some 8, € R

. 1 . . .
e’tAuo(x) _ = ﬁo(fx) e*ltngrIXEX‘Hemx.

Va

The data up = >, ., x enters the above setting of the 2m—periodicity in
Fourier and localization in Fourier, as g = ug = ZkeZ Ok. Therefore
e™ug(x) = 0 for x ¢ Z + £, and is a Dirac mass otherwise, which is a
Talbot effect. This kind of data does not enter our nonlinear framework.

o D




A Talbot effect for nonlinear evolutions of several Diracs

If moreover iy is located modulo 27 only in a neighborhood of zero of
radius less than n% with 0 < 1 < 1, then the previous linear evolution

vanishes for x at distance larger than g from Z + %.

Proposition

Let up such that dg is a 2w—periodic, located modulo 27 only in a
neighborhood of zero of radius less than 77% with 0 < 7 < 1 and having
Fourier coefficients {a} satisfying |[{a}|2s < €.

Let u(t, x) be the local in time solution obtained in the Theorem.

Then for t = 5= 2 with g odd and for all x at distance larger than g from

2w q
Z+ % the function u(t, x) almost vanish for small times, in the sense:

u(t,x) = Z Ri(t)e™ 6, (x),

k€EZ

with {Rx} satisfying the decay

t 7 [{Re(8) ] 25 + [ {OeRe(t) }H] /o5 < C.
72




A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a
vortex tube with infinitesimal cross section: the vorticity is a singular
measure supported along a curve in R3 that moves with the flow.
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A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a
vortex tube with infinitesimal cross section: the vorticity is a singular
measure supported along a curve in R3 that moves with the flow.

The binormal flow is the oldest, simpler and richer model for one vortex
filament dynamics (Da Rios 1906, Arms-Hama 1965 using a truncated
Biot-Savart’s law). It imposes the evolution in time of a R3-curve x(t) by

Xt = Xs A\ Xss = Cb.
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A model for one vortex filament dynamics

In a 3D homogeneous incompressible inviscid fluid a vortex filament is a a
vortex tube with infinitesimal cross section: the vorticity is a singular
measure supported along a curve in R3 that moves with the flow.

The binormal flow is the oldest, simpler and richer model for one vortex
filament dynamics (Da Rios 1906, Arms-Hama 1965 using a truncated
Biot-Savart’s law). It imposes the evolution in time of a R3-curve x(t) by

Xt = Xs A\ Xss = Cb.

Hasimoto 72
(...Madelung™)

Frenet's system
(direct computations)

|
|
|
1
The filament function u(t, s) = c(t, s)e' Jo 7(t:5)% satisfies the 1D NLS
. 1
iuy + Uss + 5 (|u|2 —A(t)) u=0,

with A(t) in terms of curvature and torsion (c,7)(t,0).

5



Binormal flow results

Conversely, for A(t) and u s.t. ius + uss + 5 (Ju[?> — A(t)) u = 0, one can
construct a solution of the binormal flow.
Examples:

Lines: u(t,s) =0, A(t) =0.

Circles: u(t,s) =1, A(t) = —1.

Helices: u(t,s) = e ™ eNs A(t) = —1.

Travelling waves: u(t,s) = e_"f"’ze”"sﬁ oo Al) = —1,
(Hasimoto 72, Hopfinger-Browand 81).

2
Self-similar solutions u(t,s) = aei/‘% for A(t) = @ and
perturbations (physicists 70-80, Guttierez-Rivas-Vega 03,
Guttierez-Vega 04, Banica-Vega 08-15).

x(0) admits a corner at x = 0 ~» ug presents a Dirac mass at x = 0.
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x(0) admits a corner at x = 0 ~» ug presents a Dirac mass at x = 0.

Local well-posedness for (¢, 7) in Sobolev spaces (Hasimoto 72,
Nishiyama-Tani 94-97, Koiso 97-08), for currents for a weak formulation,
with analysis at the level of the frame (Jerrard-Smets 11), for curves with
a corner and curvature in weighted space (B.-Vega 15).
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Corners interaction through the binormal flow

e A non-closed curve with one corner and curvature in weighted space
smoothens instantaneously is an oscillating way (B.-Vega 15).
This is in link with the Kelvin waves observed in vortex reconnections.

e A planar regular polygon with M sides is expected to evolve through
the binormal flow to skew polygons with Mg sides at times of type g
(numerical simulations Grinstein-De Vore 96, Jerrard-Smets 15 and
integration of the Frenet frame at rational times De la Hoz-Vega 15).

At infinitesimal times evidence is given for the evolution to be the
superposition of the evolutions of each initial corner (De la Hoz-Vega 17).

e Here the framework is of a broken line, for instance with two corners.

The Theorem says that the curve gets through the binormal flow
instantaneously smooth. Moreover, for infinitesimal times the evolution is
as a superposition of the evolutions of each initial corner.

The smoothening is in an oscillating way: the Proposition insures that at
times of type g the curvature of x(t) displays concentrations near the
locations x such that xq € Z, and almost straight segments are between.
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