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From harmonic functions to wave maps

@ Laplace’s equation

d az
Za( = dU(x) =0

J=1

for U:RY = R, x = (x',x%,...,x%), plays fundamental role
in mathematics, physics, ...
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@ Laplace’s equation
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for U:RY = R, x = (x',x%,...,x%), plays fundamental role
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@ Solutions are called harmonic functions
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From harmonic functions to wave maps

@ Laplace’s equation

d az
Za( = dU(x) =0

j=1
for U:RY = R, x = (x',x%,...,x%), plays fundamental role
in mathematics, physics, . ..
@ Solutions are called harmonic functions
@ Variational formulation via action functional

S(U)= | dUyU
Rd
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From harmonic functions to wave maps

@ Laplace’s equation

d az
=> = dU(x) =0
I(¥)

j=1
for U:RY = R, x = (x',x%,...,x%), plays fundamental role
in mathematics, physics, ...

@ Solutions are called harmonic functions
@ Variational formulation via action functional
S(U)= | dUyU
Rd

@ Laplace’s equation is Euler-Lagrange equation associated
to S, i.e., formally follows from requirement
LS(U + ep)|e=o = 0 for all test functions ¢
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From harmonic functions to wave maps

@ Simple generalization to vector-valued U : R? — R" by
using action

S(U)= | dU“9U,
R4
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From harmonic functions to wave maps

@ Simple generalization to vector-valued U : R? — R" by
using action

S(U)= | dU“9U,
R4

@ More geometric interpretation:

S(W) = | FGU QU S,
Rd

where § is natural Riemannian metric of Euclidean space
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From harmonic functions to wave maps

@ Simple generalization to vector-valued U : R? — R" by
using action

S(U)= | dU“9U,
R4

@ More geometric interpretation:
S(U) = [ F*0,U 0 U6y,
R4
where § is natural Riemannian metric of Euclidean space

@ Natural generalization for maps U : (M, g) — (N, h)
between Riemannian manifolds:

S(U) = / §O,U 0 U hpy o U
M
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From harmonic functions to wave maps

@ Simple generalization to vector-valued U : R? — R" by
using action

S(U)= | dU“9U,
R4

@ More geometric interpretation:
S(U) = [ F*0,U 0 U6y,
R4
where § is natural Riemannian metric of Euclidean space

@ Natural generalization for maps U : (M, g) — (N, h)
between Riemannian manifolds:

S(U) = / §O,U 0 U hpy o U
M

@ Solutions of associated Euler-Lagrange equation
(nonlinear!) are called harmonic maps
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From harmonic maps to wave maps

@ Lorentzian base manifold, e.g. Minkowski space R4 with
metric n = diag(—1,1,...,1), U : R — R, action

S(U):/ n“”aﬂUayU:/ o"Uo,U
RLd Rl.d
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From harmonic maps to wave maps

@ Lorentzian base manifold, e.g. Minkowski space R4 with
metric n = diag(—1,1,...,1), U : R — R, action

S(U):/ n“”aﬂUayU:/ o"Uo,U
RLd Rl.d

@ Euler-Lagrange equation
M0, U = -[5U+ U =0

is the wave equation
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From harmonic maps to wave maps

@ Lorentzian base manifold, e.g. Minkowski space R4 with
metric n = diag(—1,1,...,1), U : R — R, action

S(U) = / N 9,U0,U = o"Uo,U
RLd Rl.d
@ Euler-Lagrange equation
M0, U = -[5U+ U =0

is the wave equation

@ Generalization to manifold-valued maps U : R — (M, g)
yields wave maps action

S(U) = / " 9,00, Ul gy 0 U
RLd
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From harmonic maps to wave maps

@ Lorentzian base manifold, e.g. Minkowski space R4 with
metric n = diag(—1,1,...,1), U : R — R, action

S(U) = / N 9,U0,U = o"Uo,U
RLd Rl.d
@ Euler-Lagrange equation
M0, U = -[5U+ U =0

is the wave equation
@ Generalization to manifold-valued maps U : R — (M, g)
yields wave maps action

S(U) = / " 9,00, Ul gy 0 U
RLd

@ Solutions of associated Euler-Lagrange equation
(nonlinear wave equation) are called wave maps
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Why do we care?

@ Wave maps action is rich source for nonlinear geometric
relativistic field theories
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@ Wave maps action is rich source for nonlinear geometric
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e Finite speed of propagation
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Why do we care?

@ Wave maps action is rich source for nonlinear geometric
relativistic field theories
@ Typical features:
e Finite speed of propagation
e Lorentz covariance
e Dispersion
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Why do we care?

@ Wave maps action is rich source for nonlinear geometric
relativistic field theories

@ Typical features:

Finite speed of propagation

Lorentz covariance

Dispersion

Null structure
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Why do we care?

@ Wave maps action is rich source for nonlinear geometric
relativistic field theories
@ Typical features:
Finite speed of propagation
e Lorentz covariance
o Dispersion
o Null structure
@ Wave maps occur in physics e.g. as models for
ferromagnetism, sigma models in particle physics, toy
models for Einstein’s equation, etc.
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Why do we care?

@ Wave maps action is rich source for nonlinear geometric
relativistic field theories
@ Typical features:
e Finite speed of propagation
e Lorentz covariance
o Dispersion
o Null structure
@ Wave maps occur in physics e.g. as models for
ferromagnetism, sigma models in particle physics, toy
models for Einstein’s equation, etc.

@ Wave maps establish link between differential geometry
and dispersive PDEs
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Why do we care?

@ Wave maps action is rich source for nonlinear geometric
relativistic field theories
@ Typical features:
e Finite speed of propagation
e Lorentz covariance
o Dispersion
o Null structure
@ Wave maps occur in physics e.g. as models for
ferromagnetism, sigma models in particle physics, toy
models for Einstein’s equation, etc.

@ Wave maps establish link between differential geometry
and dispersive PDEs

@ We are mathematicians, we don’t have to justify our
interest in an interesting mathematical object

Roland Donninger (Universitat Wien) Self-similar blowup for supercritical wave maps



@ The wave maps equation is complicated!
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@ The wave maps equation is complicated!

@ Fixd =3 and M = S?, choose hyperspherical coordinates
(1,0,®)on S%, ie., S = {x € R*: |x| = 1} is parametrized

by
. sin v sin © sin ®
sin 1) sin © cos ¢
© .
> sin 1) cos ©
cos Y

where ¢, 0 € [0,7) and ® € [0, 27)
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@ The wave maps equation is complicated!

@ Fixd =3 and M = S?, choose hyperspherical coordinates
(1,0,®)on S%, ie., S = {x € R*: |x| = 1} is parametrized

by
. sin v sin © sin ®
sin 1) sin © cos ¢
© .
> sin 1) cos ©
cos Y

where ¢, 0 € [0,7) and ® € [0, 27)
@ Choose spherical coordinates (z,r, 6, ¢) on Minkowski

space, i.e.,
x0 t
_ x! | rsinfsing
S rsin 6 cos ¢
x? rcosf
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Corotational wave maps

@ Map U : R!? — S? can be expressed as

’llz)(t7 r7 9? 80)
— [ O(t,r,0,p)
(b(t7 r7 9? (p)

T > 5 =
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Corotational wave maps

@ Map U : R!? — S? can be expressed as
t
r ’llz)(t7 r? 9? <p)
N B O(t,r,0,p)
(p (b(t7 r? 97 (70)

@ Corotational map U : R} — S3 has the form

(wa, r))
— 0
¥

T 5 =
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Corotational wave maps

@ Map U : R!? — S? can be expressed as
t
r ’llz)(t7 r? 9? <p)
N B O(t,r,0,p)
(p (b(t7 r? 97 (70)

@ Corotational map U : R} — S3 has the form

' (w@w)
o | 0
¢

¥
@ Wave maps equation for corotational maps reads
in(2
(o -2 =20 ) uten + 5D o 1)
r r
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The Cauchy problem

@ Eq. (1) is a semilinear wave equation, i.e., study the
Cauchy problem

(07 = 07 = 300 (1) + EEED =0
$(0,r) =f(r),  Bot(0,r) = g(r)

for prescribed initial data (f, g)
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The Cauchy problem

@ Eq. (1) is a semilinear wave equation, i.e., study the
Cauchy problem

(07 = 07 = 300 (1) + EEED =0
$(0,r) =f(r),  Bot(0,r) = g(r)

for prescribed initial data (f, g)
@ Questions:
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The Cauchy problem

@ Eq. (1) is a semilinear wave equation, i.e., study the
Cauchy problem

Ib(oﬂ”) :f(r)a 3o¢(0,”)=g(r)

for prescribed initial data (f, g)
@ Questions:

e Existence, uniqueness, continuous dependence for small
times (local well-posedness, LWP) for smooth data

{@? = 0F = 20 (e, r) + D = 0
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The Cauchy problem

@ Eq. (1) is a semilinear wave equation, i.e., study the
Cauchy problem

Ib(oﬂ”) :f(r)a 3o¢(0,”)=g(r)

for prescribed initial data (f, g)
@ Questions:

e Existence, uniqueness, continuous dependence for small
times (local well-posedness, LWP) for smooth data
e LWP for rough data

{@? = 0F = 20 (e, r) + D = 0
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The Cauchy problem

@ Eq. (1) is a semilinear wave equation, i.e., study the
Cauchy problem

(07 = 07 = 300 (1) + EEED =0
$(0,r) =f(r),  Bot(0,r) = g(r)

for prescribed initial data (f, g)
@ Questions:
e Existence, uniqueness, continuous dependence for small

times (local well-posedness, LWP) for smooth data
e LWP for rough data

e Existence for all times (global well-posedness, GWP),
singularity formation
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Finite-time blowup

@ Observation: Smooth data do not necessarily lead to
smooth solutions for all times:

Yr(t,r) = 2arctan <Tr>

is an explicit self-similar solution [Shatah 1988,
Turok-Spergel 1990]
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Finite-time blowup

@ Observation: Smooth data do not necessarily lead to
smooth solutions for all times:

Yr(t,r) = 2arctan <Tr>

is an explicit self-similar solution [Shatah 1988,
Turok-Spergel 1990]

@ Eq. (1) has many self-similar solutions «(t,r) = f,(7=)
[Bizon 2000]
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Finite-time blowup

@ Observation: Smooth data do not necessarily lead to
smooth solutions for all times:

Yr(t,r) = 2arctan <Tr>

is an explicit self-similar solution [Shatah 1988,
Turok-Spergel 1990]

@ Eq. (1) has many self-similar solutions «(t,r) = f,(7=)
[Bizon 2000]

@ How typical is this? Are these examples just accidents?
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Finite-time blowup

@ Observation: Smooth data do not necessarily lead to
smooth solutions for all times:

Yr(t,r) = 2arctan (T r_ t>

is an explicit self-similar solution [Shatah 1988,
Turok-Spergel 1990]

@ Eq. (1) has many self-similar solutions «(t,r) = f,(7=)
[Bizon 2000]

@ How typical is this? Are these examples just accidents?

@ No! Solution 7 is conjectured to provide the generic
blowup profile [Bizon-Chmaj-Tabor 2000]
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Finite-time blowup

@ Observation: Smooth data do not necessarily lead to
smooth solutions for all times:

Yr(t,r) = 2arctan <Tr>

is an explicit self-similar solution [Shatah 1988,
Turok-Spergel 1990]

@ Eq. (1) has many self-similar solutions «(t,r) = f,(7=)
[Bizon 2000]
@ How typical is this? Are these examples just accidents?

@ No! Solution 7 is conjectured to provide the generic
blowup profile [Bizon-Chmaj-Tabor 2000]

@ Goal: Develop mathematical understanding of this
phenomenon
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Stability of blowup

@ If o7 plays a role in generic evolutions, it better be stable
against perturbations
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Stability of blowup

@ If o7 plays a role in generic evolutions, it better be stable
against perturbations

@ What does stability of a blowup solution mean?
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Stability of blowup

@ If o7 plays a role in generic evolutions, it better be stable
against perturbations

@ What does stability of a blowup solution mean?
@ First attempt: 7 is stable if perturbed initial data

¢(07 ) = wT(Ov ) +f7 60¢(07 ) = 80wT(07 ) +8

with (f, g) small lead to solution of the form
W(t,r) = Yr(t,r)[1 + p(t,r)], where p(t,r) - 0ast— T—in
a suitable sense
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Stability of blowup

@ If o7 plays a role in generic evolutions, it better be stable
against perturbations

@ What does stability of a blowup solution mean?
@ First attempt: 7 is stable if perturbed initial data

¢(07 ) = wT(Ov ) +f7 60¢(07 ) = 80wT(07 ) +8

with (f, g) small lead to solution of the form
W(t,r) = Yr(t,r)[1 + p(t,r)], where p(t,r) - 0ast— T—in
a suitable sense

@ Too naive, perturbation will in general change blowup time
T!
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Stability of blowup

@ If o7 plays a role in generic evolutions, it better be stable
against perturbations

@ What does stability of a blowup solution mean?
@ First attempt: 7 is stable if perturbed initial data

¢(07 ) = wT(Ov ) +f7 60¢(07 ) = 80wT(07 ) +8

with (f, g) small lead to solution of the form
W(t,r) = Yr(t,r)[1 + p(t,r)], where p(t,r) - 0ast— T—in
a suitable sense

@ Too naive, perturbation will in general change blowup time
T!

@ Thus, v stable if solution is of the form ¢ (¢, r)[1 + ¢(z,7)]
forsome 7'~ T
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Stability of blowup

@ Further question: Where (in spacetime) do we expect
stability?
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Stability of blowup

@ Further question: Where (in spacetime) do we expect
stability?
@ Blowup takes place at the single point (¢,r) = (T,0)
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Stability of blowup

@ Further question: Where (in spacetime) do we expect
stability?

@ Blowup takes place at the single point (¢,r) = (T,0)

@ Finite speed of propagation: Only events in the backward
lightcone Cr := {(t,r) : r < T — t} can influence this point
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Stability of blowup

@ Further question: Where (in spacetime) do we expect
stability?

@ Blowup takes place at the single point (¢,r) = (T,0)

@ Finite speed of propagation: Only events in the backward
lightcone Cr := {(t,r) : r < T — t} can influence this point

@ To begin with, study stability in C7!
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Formulation as a standard semilinear wave equation

@ What are the right function spaces to study stability of
blowup?
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Formulation as a standard semilinear wave equation

@ What are the right function spaces to study stability of
blowup?

@ Singularity at r =0in

<a,2 o 23,) o)+ SRREED)
r r

enforces boundary condition v (z,0) = 0 for all ¢
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Formulation as a standard semilinear wave equation

@ What are the right function spaces to study stability of
blowup?

@ Singularity at r =0in

<a,2 o 23,) o)+ SRREED)
r r

enforces boundary condition v (z,0) = 0 for all ¢
o Natural to switch to %(z, r) = L% which satisfies

<8t2 o jar) e r) + sin(2ru(t, r)) — 2ru(t, r) _0

r3
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Formulation as a standard semilinear wave equation

@ What are the right function spaces to study stability of
blowup?

@ Singularity at r =0in

<a,2 o 23,) o)+ SRREED)
r r

enforces boundary condition v (z,0) = 0 for all ¢
o Natural to switch to %(z, r) = L% which satisfies

<8t2 o jar) e r) + sin(2ru(t, r)) — 2ru(t, r) _0

/3
@ u(t,x) = u(t, |x|) satisfies
(07 — Ay)u(t,x) = F(u(t, x),x)

in 5 spatial dimensions and with smooth nonlinearity F
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Function spaces

@ Blowup solution given by

(t,x) zacta l
ur(t,x) = — arctan
o x| T—1t
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Function spaces

@ Blowup solution given by

(t,x) zacta l
ur(t,x) = — arctan
o x| T—1t

@ Solution does not blow up in energy space:

S_
ez (2, Mgy = (T —1)272
( T 1)
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Function spaces

@ Blowup solution given by

(t,x) zacta l
ur(t,x) = — arctan
o x| T—1t

@ Solution does not blow up in energy space:

S_
ez (2, Mgy = (T —1)272
( T 1)

@ Problem is energy-supercritical! Need stronger topology to
detect blowup.
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Stability of blowup in backward lightcone

Theorem (D. 2011, D.-Schérkhuber-Aichelburg 2012,

Costin-D.-Xia 2016, Costin-D.-Glogi¢ 2017)

(f,g) small in H*> x H' (B3

3 /2) Then the Cauchy problem

{(83 — A)u(t,x) = F(u(t,x),x)
u(0,x) = u1(0,x) + f(x), Aou(0,x) = douy (0,x) + g(x)

has solution u in Cy that blows up at (t,x) = (T,0) for some
T ~ 1 and

lee(, ) — wr (e, )l ey <(T—1F, ke{0,1,2)

~

[|ur (2, )HHk(]ES )
100a(t, -) — Bruar (8, ) | e ss_
HatMT( )”HZ(B5 )

S(T—of, e{0,1}
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Elements of proof

@ Proof consists of perturbative construction around uy

Roland Donninger (Universitat Wien) Self-similar blowup for supercritical wave maps



Elements of proof

@ Proof consists of perturbative construction around uy
@ Naive ansatz u = ur + ¢ leads to equation for ¢ with
time-dependent coefficients
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Elements of proof

@ Proof consists of perturbative construction around uy

@ Naive ansatz u = ur + ¢ leads to equation for ¢ with
time-dependent coefficients

@ Avoid this by introducing £ = 5= as a new spatial
coordinate. With 7 = —log(T — 1) as new time coordinate
the resulting equation has 7-independent coefficients.
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Elements of proof

@ Proof consists of perturbative construction around uy

@ Naive ansatz u = ur + ¢ leads to equation for ¢ with
time-dependent coefficients

@ Avoid this by introducing £ = 5= as a new spatial
coordinate. With 7 = —log(T — 1) as new time coordinate
the resulting equation has 7-independent coefficients.

@ Withv(1,§) = e "u(T — e 7,e7 7€), the wave maps
equation reads

o (o) =1 (o) (i)

with a spatial differential operator Ly
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Elements of proof

@ Proof consists of perturbative construction around uy

@ Naive ansatz u = ur + ¢ leads to equation for ¢ with
time-dependent coefficients

@ Avoid this by introducing £ = 5= as a new spatial
coordinate. With 7 = —log(T — 1) as new time coordinate
the resulting equation has 7-independent coefficients.

@ Withv(1,§) = e "u(T — e 7,e7 7€), the wave maps
equation reads

o (o) =1 () (0 )
with a spatial differential operator Ly

@ Blowup solution ur becomes

vr(1,8) = e Tur(T —e 7,e77¢) = mafc'ﬁan(\ﬂ)

Roland Donninger (Universitat Wien) Self-similar blowup for supercritical wave maps



The linearized operator

@ Plug in perturbative ansatz

(o55) = (o) + ()
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The linearized operator

@ Plug in perturbative ansatz

87—‘)(7_7 5) 8TVT(T7 é) 8T¢(T7 5)
@ Expand nonlinearity, get evolution equation for perturbation

O(7)(&) = (¢(7,€), 0 (7, €)):
07 0(r) = (Lo + L)) (1) + N(2(7))
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The linearized operator

@ Plug in perturbative ansatz

87—‘)(7_7 5) 8TVT(T7 é) 8T¢(T7 5)
@ Expand nonlinearity, get evolution equation for perturbation

O(7)(&) = (¢(7,€), 0 (7, €)):
07 0(r) = (Lo + L)) (1) + N(2(7))

@ Spectral properties of L := L + L’ are crucial for behavior
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Analysis of the linearized operator

@ L generates semigroup S(7) on H := H*(B%) x H'(B), i.e.,
®(7) = S(7)®(0) is solution of linearized equation

0-®(1) = LO&(71)
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Analysis of the linearized operator

@ L generates semigroup S(7) on H := H*(B%) x H'(B), i.e.,
®(7) = S(7)®(0) is solution of linearized equation
0-®(1) = LO&(71)
@ L is nonself-adjoint, spectral analysis requires

sophisticated ODE tools and asymptotic resolvent
estimates. Result:

o(L)={z€C:Rez< —€e}U{l}
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Analysis of the linearized operator

@ L generates semigroup S(7) on H := H*(B%) x H'(B), i.e.,
®(7) = S(7)®(0) is solution of linearized equation

0-®(1) = LO&(71)

@ L is nonself-adjoint, spectral analysis requires
sophisticated ODE tools and asymptotic resolvent
estimates. Result:

o(L)={z€C:Rez< —€e}U{l}

@ Eigenvalue 1 € o(L) comes from freedom in choosing
parameter T (blowup time). Define corresponding Riesz
projection

= 2%” Ry (z)dz
and show rank(P) = 1 (spectral decomposition, stability of
essential spectrum under compact perturbation, ODE

analysis)
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End of proof

@ Decomposition of linearized evolution by Gearhart-Priss:

S(7)Pf = " Pf
IS(T) (X = P)ff|3¢ < e™7||(L = P)ff|
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End of proof

@ Decomposition of linearized evolution by Gearhart-Priss:

S(7)Pf = " Pf
IS(T)X = P)ffl3 S e[| (T - P)ff|
@ Nonlinearity N is locally Lipschitz, use Lyapunov-Perron

method to construct co-dimension 1 manifold of data that
lead to decaying evolution

Roland Donninger (Universitat Wien) Self-similar blowup for supercritical wave maps



End of proof

@ Decomposition of linearized evolution by Gearhart-Priss:

S(7)Pf = " Pf
IS(T) (X = P)ff|3¢ < e™7||(L = P)ff|

@ Nonlinearity N is locally Lipschitz, use Lyapunov-Perron
method to construct co-dimension 1 manifold of data that
lead to decaying evolution

@ Show that for any small data (f, g) there exists a T such
that image of initial data under coordinate transform
(t,x) — (7,&) lies on stable manifold (topological fixed point
argument)
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End of proof

@ Decomposition of linearized evolution by Gearhart-Priss:

S(7)Pf = " Pf
IS(T) (X = P)ff|3¢ < e™7||(L = P)ff|

@ Nonlinearity N is locally Lipschitz, use Lyapunov-Perron
method to construct co-dimension 1 manifold of data that
lead to decaying evolution

@ Show that for any small data (f, g) there exists a T such
that image of initial data under coordinate transform
(t,x) — (7,&) lies on stable manifold (topological fixed point
argument)

@ Translation back to Cartesian coordinates (z,x) gives the
result
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Two natural questions

@ What happens outside the backward lightcone Cr?
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Two natural questions

@ What happens outside the backward lightcone Cr?
@ What happens after blowup?
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Continuation beyond blowup

@ Blowup solution can be smoothly extended beyond ¢t = T

,
7(t,x) = 4 arctan
Vi) <T—t+ (T—t)2+r2>

solves

sin(24(t,r))

72

(e -a2-20) wisn + 0
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Continuation beyond blowup

@ Blowup solution can be smoothly extended beyond ¢t = T

,
7(t,x) = 4 arctan
Vi) <T—t+ (T—t)2+r2>

solves

sin(24(t,r))

72

(e -a2-20) wisn + 0

@ Yi(t,r) = r(t,r)fort < T
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Continuation beyond blowup

@ Blowup solution can be smoothly extended beyond ¢t = T

,
7(t,x) = 4 arctan
Vi) <T—t+ (T—t)2+r2>

solves

sin(24(t,r))

72

(e -a2-20) wisn + 0

@ Yi(t,r) = r(t,r)fort < T

@ lim, o4+ ¥5(t,r) = 2m if t > T (change of topological charge
due to blowup)
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Continuation beyond blowup

@ Blowup solution can be smoothly extended beyond ¢t = T

,
7(t,x) = 4 arctan
Vi) <T—t+ (T—t)2+r2>

solves

sin(24(t,r))

72

(e -a2-20) wisn + 0

@ Yi(t,r) = r(t,r)fort < T

@ lim, o4+ ¥5(t,r) = 2m if t > T (change of topological charge
due to blowup)

@ lim, oo ¢5(t,r) =27
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Snapshots of evolution

6 6
5 5
4 4
3 3
2 2
1 1
02 0.4 06 08 1.0 2 4 06 08 1.0
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Hyperboloidal similarity coordinates

@ Instead of similarity coordinates

_ —T _ —T
T=T—-¢e", x=e¢e "¢,

use hyperboloidal similarity coordinates (s,y) given by

t=T+e h(y), x=e"y, h(y)=1/2+] -2
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Hyperboloidal similarity coordinates

@ Instead of similarity coordinates

_ —T _ —T
T=T—-¢e", x=e¢e "¢,

use hyperboloidal similarity coordinates (s,y) given by

t=T+e h(y), x=e"y, h(y)=1/2+] -2

@ Still compatible with self-similarity: 7~ = —ﬁ
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Hyperboloidal similarity coordinates

@ Instead of similarity coordinates
T=T—-e¢", x=e¢e "¢,

use hyperboloidal similarity coordinates (s,y) given by

t=T+e h(y), x=e"y, h(y)=1/2+] -2

@ Still compatible with self-similarity: 7~ = —ﬁ
@ Slices s = const are curved and asymptotic to forward
lightcones
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Hyperboloidal similarity coordinates

@ Instead of similarity coordinates
T

T=T—-e¢", x=e¢e "¢,

use hyperboloidal similarity coordinates (s,y) given by

t=T+e h(y), x=e"y, h(y)=1/2+] -2

@ Still compatible with self-similarity: 7~ = —ﬁ
@ Slices s = const are curved and asymptotic to forward
lightcones

@ Coordinates (s,y) cover a large portion of spacetime
almost up to the forward lightcone (Cauchy horizon) of the
singularity
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Hyperboloidal similarity coordinates

@ Instead of similarity coordinates
T=T—-e¢", x=e¢e "¢,

use hyperboloidal similarity coordinates (s,y) given by

t=T+e h(y), x=e"y, h(y)=1/2+] -2

@ Still compatible with self-similarity: 7~ = —ﬁ
@ Slices s = const are curved and asymptotic to forward
lightcones

@ Coordinates (s,y) cover a large portion of spacetime
almost up to the forward lightcone (Cauchy horizon) of the
singularity

@ Similar perturbative construction as in (7, &) possible
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Geometry of HSC
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Global stability of blowup

Theorem (Biernat, D., Schérkhuber 2017)

(f,g) smooth, radial, small in H™(R>) x H"~'(R?),

supp(f,g) C B} = 3 T ~ 1 and a unique smooth solution u with
data u(0,x) = u;(0,x) + f(x), Oou(0,x) = dou;(0,x) + g(x) in the
domain Qr,

.08

J]
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Global stability of blowup

Theorem (continued)
Solution u converges to uj in the sense that

e womr)(s, ) — (i onr)(s, ) lymosagy < €
e 10w mr) (s, ) — Br(up 0 mr) (5, sy S €™

where u;(t,x) = Y‘M) and nr(s,y) = (T + e *h(y),e"*y)
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|ldea of proof

4e
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Last slide

Thank you very much for your attention!
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