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Introduction

Weyl Asymptotics



sin x, �1 = 1 sin 2x, �2 = 4

sin 3x, �3 = 9 sin 4x, �4 = 16

Let us consider the problem

�u

00
(x) = �u(x), u(0) = u(⇡) = 0.

Clearly for any k = 1, 2, 3, . . . we find

uk(x) = sin kx, �k = k

2
.
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Dirichlet boundary value problem for
the Laplace operator in L2(Ω)

−∆u(x) = λu(x), x ∈ Ω,

u
∣

∣

∣

∂Ω

= 0.

The Dirichlet Laplacian has a discrete spectrum of infinitely many positive
eigenvalues with no finite accumulation point ( F. Pockels - 1892)

0 < λ1 < λ2 ≤ λ3 ≤ . . . ,

λk → ∞ as k → ∞.

Ω

∂Ω

Consider a bounded domain Ω ⊂ Rd

with piecewise smooth boundary ∂Ω.

Dirichlet boundary value problem.



H.Weyl: ”Das asymptotische Verteilungsgesetz der Eigenwerte linearer
partieller Differentialgleichungen” Math. Ann. , 71 (1911) pp. 441–479.

Theorem.

λk =
4π2k2/d

Cd|Ω|2/d
+ o(k2/d),

where |Ω| and Cd = πd/2/Γ(d/2 + 1) are respectively
the Lebesgue measure of Ω and of the unit ball in Rd.

Hermann Weyl

1885-1955
My work always tried to unite
the Truth with the Beautiful,
but when I had to choose
one or the other, I usually
choose the Beautiful. It is useful to rewrite Weyl’s asymptotic formula in term of the

counting function of the spectrum as ��⇥

N(�) = #{k : �k < �} = (2⇤)�d �d/2|�|
�

|⇥|<1
d⇥ + o(�d/2)

= (2⇤)�d

�

�

�

|⇥|2⇥�
d⇥ dx + o(�d/2),

phase volume asymptotics.

Weyl’s asymptotic formula for eigenvalues

of a Dirichlet Laplacian.



In the case d = 1, � = (0, ⇤), |�| = ⇤, Weyl’s asymptotic formula in term of
the counting function could be written in a more precise way

N(�) = #{k : �k = k2 < �} = (2⇤)�d �d/2|�|
�

|�|<1
d⇥ + o(�d/2)

= (2⇤)�1
⌃

� ⇤ 2 + O(1) =
⌃

� + O(1), as ��⇥.

uk(x) = sin kx, �k = k

2



(0,0) (0,a)

(a,0) (a,a)

�

��

In this case Dirichlet and Neumann boundary value problems

��u(x, y) = �u(x, y), ��v(x, y) = µv(x, y)

u|�� = 0
⌅v

⌅n

���
��

= 0

have solutions

unm(x, y) = sin⇥a�1nx · sin⇥a�1my,

�nm = ⇥2a�2(n2 + m2), n,m = 1, 2, . . .

vnm(x, y) = cos ⇥a�1nx · cos ⇥a�1my,

µnm = ⇥2a�2(n2 + m2), n,m = 0, 1, 2, . . .

ND(�) = #{n, m = 1, 2, · · · : �nm = n2 + m2 < �} ⇥ (4⇥)�1a2�

NN (µ) = #{n, m = 0, 1, 2, · · · : µnm = n2 + m2 < µ} ⇥ (4⇥)�1a2µ



Proof.

Weyl used a version of the max-min principle.

Dirichlet-Neumann bracketing:

N
D(λ) ≤ N(λ) ≤ N

N (λ).

For each square with side a we find that the eigenvalues are equal to
{λD

nm
(a) = π2a−2(n2 + m2) : n, m = 1, 2, 3, . . .} for the Dirichlet problem

and
{µN

nm
(a) = π2a−2(n2+m2) : n, m = 0, 1, 2, 3, . . .} for the Neumann problem.

Counting
#{(n, m) : λD

nm
(a) ≤ λ}

and
#{(n, m) : µN

nm
(a) ≤ λ},

summing them up and letting a → 0 we proof the result.



Weyl’s conjecture.

In 1911 H.Weyl also conjectured that

N(λ) = (2π)−d Cd λd/2|Ω|− cd−1 λ(d−1)/2|∂Ω| + o(λ(d−1)/2),

where cd−1 > 0 is a standard term depending only on dimension d.

Under certain conditions on classical billiards in T ∗Ω V. Ivrii proved
this result in 1980.



Inverse spectral problems

Can one hear the shape of a drum ?



Mark Kac

1914-1984

Peter Buser, John Conway, Peter Doyle, and Klaus-Dieter Semmler, 1994.

Isospectral domains.

In 1965 Mark Kac asked: ‘Can one hear the shape of a drum?’
(question goes back to H.Weyl)

T. Sunada 1985 found two di↵erent domains in R16 which have the same
”Dirichlet” spectrum.

Gordon, Webb, and Wolpert 1992, found planar isospectral domains.







Spectral inequalities for Dirichlet Laplacians



George Pólya

1887 - 1985

In 1961 Pólya proved that if Ω ⊂ R2 is a tiling domain then

λk ≥
4πk

|Ω|
, k = 1, 2, 3, . . .

or equivalently

N(λ) = #{k : λk ≤ λ} ≤ (2π)−2
π λ |Ω|

= (2π)−2

∫
Ω

∫
|ξ|2≤λ

dξ dx,

phase volume inequality.

Pólya’s Conjecture

Prove that the latter inequality holds for arbitrary domains.

Pólya’s conjecture is still open for � = {x � Rd : |x| < 1}.

Weyl’s type inequalities. Pólya’s conjecture.



Easier question:

Is there a constant C � 1 such that

N(�)  C (2⇡)�2 ⇡ � |⌦|.

• If ⌦ is bounded, then it was proved for bounded domains by

Birman & Solomyak

0
70 and Ciesielski

0
70 with some constant C > 1.

• For domains of finite measure and with some C > 1, (3) was proved by

Rosenblum

0
71 and Lieb

0
80.

• Some progress was made in my paper JFA

0
97.

Example: Pólya conjecture holds true for

⌦ = ⌦1 ⇥ ⌦2, where ⌦1 ⇢ Rd1
, d1 � 2, is tiling

and ⌦2 ⇢ Rd2
is an arbitrary domain of finite measure.



Another easier question:

Is it true that for some � � 0 the following phase volume estimate holds?

X
(�� �

k

)

�

+  (2⇡)

�d

�

�+d/2|⌦|
Z

Rd

(1� |⇠|2)�+ d⇠,

where (x)+ = (|x|+ x)/2 is the positive part of x.

Theorem. (Berezin, Li-Yau)

If � � 1 then the above Weyl inequality holds true.

Proof.(see AL, JFA 1997.)

Let � = 1 and let '

k

be the orthonormal basis in L

2
(⌦) consisting of eigenfunc-

tions of the Dirichlet Laplacian which is denoted by A. Let '̂ be the Fourier

transform of '. Then by using Parceval formula we find

X

k

(�� �

k

)+ =

X

k

�
�� (A'

k

,'

k

)

�
+
=

X

k

⇣
(2⇡)

�d

Z

Rd

(�� |⇠|2) |'̂
k

|2 d⇠
⌘

+

 (2⇡)

�d

X

k

Z

Rd

(�� |⇠|2)+ |'̂
k

|2 d⇠

= (2⇡)

�d

X

k

Z

Rd

(�� |⇠|2)+
���
Z

⌦
e

i(x,⇠)
'

k

(x) dx

���
2
d⇠ =

(2⇡)

�d

Z

Rd

(��|⇠|2)+
X

k

k(ei(·,⇠),'
k

)k2 d⇠ = (2⇡)

�d

Z

Rd

(��|⇠|2)+ d⇠ kei(·,⇠)k2| {z }
=|⌦|

.



1

�1 �2 �k

� � �

�

. . . � �

�(0,�)(t)

1
� (� � t)+

Corollary.

N(�) �
�
1 +

2
d

⇥d/2 1
(2⇤)d

⇤

�

⇤

|⇥|2<�
d⇥dx.

Proof.



Remark.

Nobody knows if there is a constant 1 � R <
�
1 + 2

d

⇥d/2
such that

N(�) � R

(2⇤)d

⇤

�

⇤

|⇥|2<�
d⇥dx.



The Laplace operator in Rn
can be written in polar coordinates

�� = � @

2

@r

2
� n� 1

r

@

@r

+

1

r

2
(��Sn�1

).

The spectrum of ��Sn�1
consists of eigenvalues

l(l + n� 2), l 2 N

whose multiplicity is given by

✓
l + n� 1

n� 1

◆
+

✓
l + n� 3

n� 1

◆
.

This leads us to the Dirichlet eigenvalues of the problem

� @

2

@r

2
 (r)� n� 1

r

@

@r

 (r) +

l(l + n� 2)

r

2
 (r) = � (r).

Its solution is

 (r) = r

(2�n)/2
Jl+(n�2)/2(

p
�r), Jl+(n�2)/2(

p
�r)

���
r=1

= 0.

Let j⌫,k be the k-zero of the Bessel function J⌫(x). The following inequalities

might be useful (obtained by Ifantis and Siafarikas, see also Elbert)

j⌫,k > ⌫ + k⇡ � ⇡

2

+

1

2

, ⌫ > �1

2

, k = 1, 2, . . . .



Spectrum of Schrödinger operators



× ××

λ1 λ2 λN

0

E.H. Lieb

W. Thirring

Compare with Weyl’s asymptotic formula:

∑
j

λγ
j (αV ) ∼α→∞ Lcl

γ,d

∫
(αV−)γ+1/2 dx = (2π)−d

∫∫
(ξ2 + αV )γ

−
dξdx.

which implies Lcl
γ,1 ≤ Lγ,1.

Lieb-Thirring inequalities.

Let H = ��+ V be a Schrödinger operator in L2
(Rd

), V ! 0, as x ! 1.

Spectrum:

� � �

X

j

�

�
j =

X

j

�

�
j (V )  Cd,�

(2⇡)d

ZZ �
|⇠|2 + V (x)

��
� dxd⇠ = L�,d

Z
V (x)�+d/2

dx.



Applications.

• Weyl’s asymptotics.

• Stability of matter.

• Study of properties of Continuous spectrum of Schrödinger
operators.

• Estimate of dimensions of attractors in theory of
Navier-Stokes equations.

• Bounds on the maximum ionization of atoms.

Lieb-Thirring inequalities

⇤

k

��
k =

⇤

k

��
k(V ) ⇥ C�,d

(2⇤)d

⌅⌅ �
|⇥|2 � V (x)

⇥�

�
d⇥dx = L�,d

⌅
V �+d/2

+ (x) dx.



Example.

If in H = ��+ V ,

V (x) =

(
��, x 2 ⌦,

+1, x 62 ⌦,
⌦ 2 Rd,

then the spectrum of H coincides with the spectrum of the Dirichlet Laplacian

in ⌦.

Therefore Pólya inequalities are special cases of L-Th inequalities.



(��+ V )u = �u.

X

j

|�j |�  L�,d

Z
V (x)

�+d/2
� dx.

Theorem.
The constant L�,d < 1 if d = 1, � � 1/2; d = 2, � > 0 and d � 3, � � 0.

E.Lieb, W.Thirring, T.Weidl, M.Cwikel, G.Rozenblum.

Theorem.
It is known that L1/2,1 = 1/2 (Lcl

1/2,1 = 1/4) and

L�,d = L

cl
�,d if � � 3/2, d � 1.

In other cases the sharp constants are unknown.

E.Lieb, W.Thirring, M.Aizenmann, D.Hundertmark, L.Thomas, AL & T.Weidl.



Buslaev-Faddeev-Zakharov trace formula, d = 1.

Let  solves the equation

� d

2

dx

2
 + V  = k

2
 ,  (x, k) =

(
e

ikx

, asx ! 1
a(k)e

ikx

+ b(k)e

�ikx

, asx ! �1.

Fundamental property:

if k 2 R then W [ ,

¯

 ] =  

¯

 

0 �  

0
¯

 = const.

This implies 1 = |a|2 � |b|2 , |a| � 1.

Let

�j = (ij)
2
, j > 0.

Theorem. (BFZ trace formula.)

If V  0, then

3

2⇡

Z
k

2
ln |a|2 dk +

X

j



3
j =

3

16

Z
V

2
dx = (2⇡)

�1

ZZ
(|⇠|2 + V )

3/2
� d⇠ dx.

Corollary. (L-Th inequality.)

X

j

|�j |3/2 =

X

j



3
j  3

16

Z
V

2
dx.



Soliton’s approach (Lieb & Thirring, Lax, Kruskal).

Let us consider the KdV equation

U

t

= 6UU

x

� U

xxx

, U |
t=0 = V.

Then

U

t

=

h
� d

2

dx

2
+ U,M

i
, where M = 4

d

3

dx

3
� 3

⇣
U

d

dx

+

d

dx

U

⌘
.

• Discrete spectrum is independent of t:

�

j

⇣
� d

2

dx

2
+ U

⌘
= �

j

⇣
� d

2

dx

2
+ V

⌘
.

• a(k, t) = e

i8k3
t

a(k, 0).

•
R
U

2
(x, t) dx =

R
V

2
(x) dx.

Therefore terms in the trace formula

3

2⇡

Z
k

2
ln |a|2 dk +

X

j

|�
j

|3/2 =

3

16

Z
U

2
dx

are independent of time.



• ∥U∞∥∞ ≤ ε(t) →t→∞ 0 and Uj are solitons

Uj(x) = −2λj cosh−2(
√

λjx).

•
(

− d2

dx2 + Uj

)

cosh−1(
√

λjx) = −λj cosh−1(
√

λjx).

Finally, since 4
∫

cosh−4 xdx = 16/3, we obtain

∫

V 2 dx ≥
N

∑

j=1

∫

U2
j dx =

16

3

N
∑

j=1

λ3/2

j .

U(x, t) ∼t→∞

∑N
j=1

Uj(x − 4λjt) + U∞,



Theorem. Assume that V 2 L2
(R), V � 0 . Then for the negative eigenvalues

{��j} of the Schrödinger operator H

H =

d2

dx2
 (x)� V (x) (x)

we have

NX

j=1

�
3/2
j  3

16

Z
V 2 dx.



Proof by using the Darboux transform (Benguria & Loss)

Let us consider the equation

H (x) = � 00
(x)� V (x) (x) = �� (x),

with V � 0 and decaying rapidly, so that the negative spectrum of H is finite

and equals {��1, ��2, . . . ,��N}.
Let (��1, 1(x)) be the lowest negative eigenvalue and eigenfunction respec-

tively.

It is well know that the function  1 could be chosen such that  1 > 0

(prove it).



Consider now

f1(x) =
 

0
1(x)

 1(x)
=) f

0
1(x) =

 

00
1 (x)

 1(x)
�

✓
 

0
1(x)

 1(x)

◆2

.

Therefore

f

0
1 + f

2
1 =

 

00
1

 1
= �1 � V.

Denote by Q1 the di↵erential operator

Q1 =

d

dx

� f1 & Q

⇤
1 = � d

dx

� f1.

Then

Q

⇤
1Q1 =

✓
� d

dx

� f1

◆ ✓
d

dx

� f1

◆
= � d

2

dx

2
+ f

0
1 + f

2
1

= � d

2

dx

2
� V + �1.

The negative spectrum of the operator Q

⇤
1Q1 consists of points

{0,��2 + �1, ��3 + �1, ��4 + �1, . . . ,��N + �1}.



Clearly

Q

⇤
1Q1 1 = 0, and  1(x) =

(
e

�
p
�1x

, x ! 1,

e

p
�1x

, x ! �1.

Thus

f1(x) =
 

0
1(x)

 1(x)
=

(
�
p
�1, x ! 1,p

�1, x ! �1.

Consider the operator

Q1Q
⇤
1 =

✓
d

dx

� f1

◆ ✓
� d

dx

� f1

◆
= � d

2

dx

2
� f

0
1 + f

2
1

= � d

2

dx

2
� 2f

0
1 � V + �1.



The operators Q⇤
1Q1 and Q1Q

⇤
1 Have the same eigenvalues apart from the point

0. Indeed,

Q⇤
1Q1 = �� =) Q1Q

⇤
1Q1 = ��Q1 = Q1Q

⇤
1',

with ' = Q1 .

Besides, assume that there is  2 L2(R) such that Q1Q
⇤
1 = 0. Then

0 = (Q1Q
⇤
1 , ) = kQ⇤

1 k =) � 0 � f1 = 0.

Since f1(x) ⇠ �
p
�1, as x ! 1, we conclude that  (x) ⇠ e

p
�1x, as x ! 1,

and thus  62 L2(R).
This implies that the discrete spectrum of operators H and H1 = H�2f 0

1 equal

�
d

(H) = �
d

✓
�d2

dx2
� V

◆
= {��1,��2,��3, . . . ,��N}

and

�
d

(H1) = �
d

✓
�d2

dx2
� V � 2f 0

1

◆
= {��2,��3, . . . ,��N}.

The operator H1 is the Schrödinger operator whose potential equals

V1 = V + f 0
1.



The lowest eigenvalue of H1 is now ��2 and its respective eigenfunction (that

is equal Q1 2) is positive.

Repeating this process we eliminate all negative eigenvalues after N -steps and

obtain the Schrödinger operator whose potential equals �VN , where

VN = VN�1 + f 0
N = V + f 0

1 + f 0
2 · · ·+ f 0

N

and where

f 0
N + f2

N = �N � VN�1.

Finally we find

0 
Z

V 2
N dx =

Z
(VN�1 + 2f 0

N )

2 dx

=

Z �
V 2
N�1 + 4f 0

N (VN�1 + f 0
N )

�
dx =

Z �
V 2
N�1 + 4f 0

N (�N � f2
N )

�
dx

=

Z
V 2
N�1 dx+ 4�NfN

���
1

�1
� 4

3

f3
N

���
1

�1

=

Z
V 2
N�1 dx� 8�

3/2
N +

4

3

�
3/2
N =

Z
V 2
N�1 dx� 16

3

�
3/2
N

= · · · =
Z

V 2 dx� 16

3

NX

j=1

�
3/2
j .



Multidimensional Lieb-Thirring inequalities.

The main argument is based on 1D matrix Lieb-Thirring inequality.

Theorem. (AL & T.Weidl)
Let Q � 0 be a Hermitian m⇥m matrix-function and let H = ���Q.
Then X

j

�
3/2
j (H)  3

16

Z
TrQ2(x) dx.

Lifting argument with respect to dimension.

Let for simplicity d = 2, V 2 C1
0 (R2

), V � 0, x = (x1, x2). Then

H = ��� V = �@2
x1x1

� (@2
x2x2

+ V )

| {z }
H̃(x1)

.

Spectrum �( ˜H) of

˜H(x1) has a finite number of positive eigenvalues µl(x1).

Thus

˜H+(x1) has a finite rank. Let, for instance, � = 3/2

X

j

�
3/2
j (H) 

X

j

�
3/2
j (�@2

x1x1
� ˜H+)

 3

16

Z
Tr

˜H2
+(x1) dx1  3

16

L2,1

| {z }
Lcl

3/2,2

ZZ
V 3/2+1

(x) dx.



1/2 moments of the eigenvalues (� = 1/2)



Theorem.

LetQ � 0 be a HermitianM⇥M matrix-function defined on R, such that TrQ 2
L1(R), Q � 0. Then for the negative eigenvalues {��j} of the Schrödinger
operator H

H (x) =
d2

dx2
 (x)�Q(x) (x)

we have

X

j

�
1/2
j (H)  1

2

Z
TrQdx. (Hundertmark, Lapt&Weidl).

The scalar version of this result was first proved by D. Hundertmark, E. Lieb
and L.Thomas.



Proof - scalar version (D. Hundertmark, E. Lieb and L.Thomas)

Let A � 0 be a compact operator in a Hilbert space H whose eigenvalues
µj(A) ! 0, as j ! 0 such that

p
µ1(A⇤)µ1(A) �

p
µ2(A⇤)µ2(A) �

p
µ3(A⇤)µ3(A) � . . . .

It is well known that the functionals

kAkn =
nX

j=1

q
µj(A⇤)µ1(A)

are norms (see, for example, Gohberg I.C. and Krein M.G.: Introduction to the
theory of linear non-self-adjoint operators. Trans. Math. Monographs vol 18.
AMS 1969, Lemma 4.2).
Thus for any unitary operator U we have

kU⇤AUkn = kAkn



Definition. Let A and B be two compact operators in H. We say that A
majorizes B or B � A, i↵

kBkn  kAkn, for all n 2 N.

Proposition. Let A be a nonnegative compact operator in H, {U(!)}!2⌦ be a

family of unitary operators in on H and let g be a probability measure on ⌦.

Then the operator

B :=

Z

⌦
U⇤

(!)AU(!) g(d!)

is majorized by A.

Proof. This is a simple consequence of the triangle inequality

kBkn 
���
Z

⌦
U⇤

(!)AU(!) g(d!)
���
n


Z

⌦
kU⇤

(!)AU(!)kn g(d!) = kAkn g(⌦) = kAkn.

The proof is complete.



We now consider the spectral problem

� d

2

dx

2
u(x)� V (x) = ��u(x), where V � 0,

and introduce the operator

L
"

= W

2"

� d

2

dx

2 + "

2
W,

where W =

p
V . The kernel M(x� y) of the operator � d

2

dx

2 + "

2
equals

M(x� y) =

1

2⇡

Z

R

e

i(x�y)⇠

⇠

2
+ "

2
d⇠ =

1

2"

e

�"|x�y|
.

Therefore, if "! 0 we have

L
"

 (x) =

Z

R
W (x)e

�"|x�y|
W (y) (y) dy !

! L0 (x) = W (x)

Z

R
W (y) (y) dy,

where the latter is the operator of rank one.



One of the main technical results is

Lemma. (Monotonicity)
The operator L" is majorized by L"0 . Namely

L" � L"0 for all 0 < "0 < ".



Proof.

Let us introduce

g

"

(d⇠) =

(
"

⇡(⇠2+"

2) d⇠, if " > 0,

�(⇠) d⇠, if " = 0,

and difine

U(⇠) (x) = e

i⇠x

 (x), ⇠ 2 R.

Then

L
"

=

Z

R
U

⇤L0Ug

"

(d⇠).

In particular, applying Proposition we find that L

"

� L0. Moreover, Note that

g

"

= g

"

0 ⇤ g
"�"

0

which follows from the fact e

�"|x|
= e

�"

0|x|
e

�("�"

0)|x|
.



Then

L
"

 (x) =

ZZ

R2

e

ix⇠

W (x)W (y)e

�iy⇠

"

⇡(⇠

2
+ "

2
)

 (y) dyd⇠

=

ZZZ

R3

e

ix⇠

W (x)W (y)e

�iy⇠

"

0

⇡((⇠ � ⌘)

2
+ ("

0
)

2
)

"� "

0

⇡((⌘)

2
+ ("� "

0
)

2
)

d⌘  (y) dyd⇠

=

ZZ

R2

e

ix⌘

✓Z

R
e

ix⇢

W (x)W (y)e

�iy⇢

"

0

⇡(⇢

2
+ ("

0
)

2
)

d⇢

◆
e

�iy⌘

"� "

0

⇡((⌘)

2
+ ("� "

0
)

2
)

d⌘  (y) dy

=

ZZ

R2

e

ix⌘ L
"

0
e

�iy⌘

"� "

0

⇡((⌘)

2
+ ("� "

0
)

2
)

d⌘  (y) dy.

The statement L
"

� L
"

0
follows now from the Proposition.



Proof of Theorem.

Let us introduce the operator

K� =

1

2

p
�
Lp

� = W

✓
�d2

dx2
+ �

◆�1

W

The operator K� is compact that due to Birman Schwinger principle we have

1 = µj(K�j ),

where ��j is the eigenvalue of the Schrödinger operator H. Therefore by using

the Monotonicity Lemma and since �1 > �2, we have

2

p
�1 = kLp

�1
k1  kLp

�2
k1.

The inequality �2 > �3 also implies

2

p
�1 + 2

p
�2  kLp

�2
k2  kLp

�3
k2.

Repeating this n times we finally obtain

2

p
�1 + 2

p
�2 + · · ·+ 2

p
�n  kLp

�n
kn

 TrLp
�n

=

Z

R
W 2

(x) dx =

Z

R
V (x) dx.

The proof is complete.



1-moments estimates (� = 1).



Let H be a Schrödinger operator in L2(Rd)

H = ���Q,

Theorem. ((jointly with J.Dolbeault & M.Loss)
Let Q � 0 be a Hermitian M ⇥M matrix-function defined on R and let {��j}
be negative eigenvalues of the operator H. Then

X
�j 

2

3
p
3

Z

R
Tr

h
Q3/2(x)

i
dx .

Corollary. For any dimension d � 1, the negative eigenvalues of the operator H
satisfy inequalities

X
�j  Ld,1

Z

Rd

Tr
h
Qd/2+1(x)

i
dx ,

where

Ld,1  R⇥ Lcl
d,1 = R⇥ 1

(2⇡)d

Z

Rd

(1� |⇠|)+ d⇠,

and R = ⇡p
3
= 1.8138 . . . .



Scalar case

For simplicity we consider a scalar version of this theorem based on a 1D gen-

eralised Sobolev inequality due to Eden and Foias.

Let { j}nj=1 be in orthonormal system of function in L

2
(R) and let

⇢(x) =

nX

j=1

 

2
j (x).

Generalised Sobolev inequality in 1D case:

Theorem.

Z

R
⇢

3
(x) dx =

Z ⇣ nX

j=1

| j(x)|2
⌘3

dx 
nX

j=1

Z

R
| 0

j(x)|2 dx.



Proof.

We first derive a so-called Agmon inequality

k k
L

1  k k1/2
L

2 k 0k1/2
L

2 .

Indeed

| (x)|2 =

1

2

���
Z

x

�1
| 2|0 dt�

Z 1

x

| 2|0 dt
��� 

Z
| || 0| dt  k k

L

2k 0k
L

2
.

Let now ⇠ = (⇠1, ⇠2, . . . , ⇠n) 2 Rn

. Then by Agmon inequality

���
nX

j=1

⇠

j

 

j

(x)

��� 
⇣ nX

j,k=1

⇠

j

¯

⇠

k

( 

j

, 

k

)

⌘1/4⇣ nX

j,k=1

⇠

j

¯

⇠

k

( 

0
j

, 

0
k

)

⌘1/4


⇣ nX

j=1

⇠

2
j

⌘1/4⇣ nX

j,k=1

⇠

j

¯

⇠

k

( 

0
j

, 

0
k

)

⌘1/4
.

If we set ⇠

j

=  

j

(x) then the latter inequality becomes

⇢(x) =

nX

j=1

| 
j

(x)|2  ⇢

1/4
(x)

⇣ nX

j,k=1

 

j

(x) 

k

(x)( 

0
j

, 

0
k

)

⌘1/4
.

Thus

⇢

3
(x) 

nX

j,k=1

 

j

(x) 

k

(x)( 

0
j

, 

0
k

).

Integrating both sides we arrive at

Z ⇣ nX

j=1

| 
j

(x)|2
⌘3

dx 
nX

j=1

Z
| 0

j

|2 dx.



Spectrum of Schrödinger operators

Let { j}1j=1 be the orthonormal system of eigenfunctions corresponding to the
negative eigenvalues of the Schrödinger operator

� d

2

dx

2
 j �Q j = ��j j ,

where we assume that Q � 0. Then by using the latter result and Hölder’s
inequality we obtain

Z ⇣X

j=1

| j(x)|2
⌘3

dx�
⇣Z

Q

3/2
dx

⌘2/3
Z ⇣X

j=1

| j(x)|2
⌘3

dx

⌘1/3


X

j

Z ⇣
| 0

j |2 �Q| j |2
⌘
dx = �

X

j

�j .



Z ⇣ nX

j=1

| j(x)|2
⌘3

dx�
⇣Z

Q

3/2
dx

⌘2/3
Z ⇣ nX

j=1

| j(x)|2
⌘3

dx

⌘1/3
 �

X

j

�j .

Denote

X =

⇣Z ⇣ nX

j=1

| j(x)|2
⌘3

dx

⌘1/3
,

then the latter inequality can be written as

X

3 �
⇣Z

V

3/2
dx

⌘2/3
X  �

X

j

�j .

Maximizing the left hand side we find X =

1p
3

⇣R
Q

3/2
dx

⌘1/3
. This implies

1

3

p
3

Z
Q

3/2
dx� 1p

3

Z
Q

3/2
dx = � 2

3

p
3

Z
Q

3/2
dx  �

X

j

�j

and we finally obtain

P
j �j 

2
3
p
3

R
Q

3/2
dx.

This is the best known constant in the � = 1 L-Th inequality.



Weyl Operators



Harmonic Oscillator

Let us begin with the operator of Harmonic Oscillator

H = � d2

dx2
+ x2, x 2 R.

The spectrum of this operator is discrete and equals {2k + 1}, k = 0, 1, 2, . . . .
In particular,

H � 1 := A⇤A =

✓
� d

dx
+ x

◆✓
d

dx
+ x

◆
� 0

which implies H � 1.
Note that the values of the symbol of the Harmonic oscillator ⇠2 + x2 � 0 fills
the semiaxis [0,1) but the operator H � 1. The latter inequality is sharp and

the eigenfunction corresponding to the eigenvalue one is e�x

2
/2.



One has to be careful with factorizations of operators. Indeed, let us consider

B⇤B =

✓
� d

dx
+ x� 1

x

◆✓
d

dx
+ x� 1

x

◆

= � d2

dx2
+ x2 � 2 +

1

x2
� 1� 1

x2
= � d2

dx2
+ x2 � 3 � 0.

This implies

H = � d2

dx2
+ x2 � 3.

Question: Where is a mistake?

Remark
Note that after Fourier transform the operator � d

2

dx

2 + x2 becomes ⇠2 � d

2

d⇠

2 .



Coherent state transform

Let us consider the map � : L

2
(R) ! L

2
(R2

) and defined by

e
 (x, ⇠) = (� )(x, ⇠) =

Z 1

�1
e

�2⇡i⇠y
g(x� y) (y) dy,

where

g(x) = (1/⇡)

1/4
e

�x

2
/2
.

Note that

R1
�1 g

2
(x)dx = 1 and

�

⇤
� (x) =

Z

R3

e

2⇡i⇠x
g(x� z)e

�2⇡i⇠y
g(z � y) (y) d⇠dydz

=

Z

R2

�(x� y)g(x� z)g(z � y) (y) dydz

=  (x)

Z 1

�1
g

2
(x� z) dz =  (x).

Theorem.

The map � : L

2
(R) ! L

2
(R2

) is an isometry, such that �

⇤
� = I and P = ��

⇤

is an orthogonal projection in L

2
(R2

).



Action of the coherent state transform on the Harmonic oscillator

Let us compute �⇤
⇠

2�.

(�⇤
⇠

2� , ) =

Z

R4

e

2⇡i⇠x
g(x� z) ⇠2 e�2⇡i⇠y

g(z � y) (y) (x) d⇠dydzdx

=
1

4⇡2

Z

R4

d

dx

�
e

2⇡i⇠x
�
g(x� z)

d

dy

�
e

�2⇡i⇠y
�
g(z � y) (y) (x) d⇠dydzdx

=
1

4⇡2

Z

R4

e

2⇡i⇠(x�y) d

dx

⇣
g(x� z) (x)

⌘
d

dy

⇣
g(z � y) (y)

⌘
d⇠dydzdx

=
1

4⇡2

Z

R2

⇣
(g0(x� z))

2 | (x)|2 + g

2(x� z)| 0(x)|2
⌘
dzdx

=
1

4⇡2

Z 1

�1
(g0(z))2dz k k22 +

1

4⇡2
k 0k22.

Corollary.

k 0k22 =

Z 1

�1
(2⇡)2⇠2| ̃(z, ⇠)|2 dzd⇠ � 1

2
k k22.



Similarly computing �⇤z2� we obtain

(�⇤z2� , ) =

Z

R4

e2⇡i⇠xg(x� z) z2 e�2⇡i⇠yg(z � y) (y) (x) d⇠dydzdx

=

Z

R2

z2g2(x� z)| (x)|2 dzdx =

Z

R2

(x� t)2g2(t)| (x)|2 dzdx

=

Z 1

�1
x2| (x)|2 dx+

Z 1

�1
t2g2(t) dt

Z 1

�1
| (x)|2 dx.

Corollary

kx k22 =

Z 1

�1
z2| e (z, ⇠)|2 dzd⇠ � 1

2
k k22.

Proposition. There is the following representation of the quadratic form of the
Harmonic oscillator H

(H , ) =

Z 1

�1

�
(2⇡)2⇠2 + z2

�
| e (z, ⇠)|2 dzd⇠ � k k22.



Further properties of the coherent state transform

Let us introduce the convolution

' ⇤  (x) =
Z 1

�1
'(x� y) (y) dy.

and let F be the Fourier transform

b
 (⇠) = (F )(⇠) =

Z 1

�1
e

2⇡i⇠x
 (x) dx.

Lemma.

(� )(x, ⇠) =

e
 (x, ⇠) = e

�2⇡ix⇠

Z 1

�1
b
 (⌘) e

2⇡i⌘xbg(⌘ � ⇠) d⌘ (⇤)

and

Z 1

�1
| e (x, ⇠)|2dx =

Z 1

�1
| b (⇠ � ⌘)|2|bg(⌘)|2 d⌘ = | b |2 ⇤ |bg|2(⇠). (⇤⇤)

Z

R
| e (x, ⇠)|2 d⇠ =

Z 1

�1
| |(x� y)|2|g(y)|2 dy = (| |2 ⇤ |g|2)(x) (⇤ ⇤ ⇤)



Proof. Let us first show (⇤)

e

�2⇡ix⇠

Z 1

�1
b
 (⌘) e

2⇡i⌘xbg(⌘ � ⇠) d⌘

= e

�2⇡ix⇠

Z

R3

e

�2⇡i⌘z
 (z)e

2⇡i⌘x
e

2⇡i(⌘�⇠)t
g(t) dtdzd⌘

= e

�2⇡ix⇠

Z

R2

�(t+ x� z) (z)e

�2⇡i⇠t
g(t) dtdz [t = z � x]

=

Z 1

�1
e

�2⇡i⇠z
 (z)g(x� z) dz =

e
 (x, ⇠).

In order to obtain (⇤⇤) we write by using (⇤)
Z 1

�1
| e (x, ⇠)|2dx =

Z

R3

b
 (⇢) e

�2⇡i⇢xbg(⇢� ⇠)

b
 (⌘) e

2⇡i⌘xbg(⌘ � ⇠) dxd⇢d⌘

=

Z 1

�1
| b (⌘)|2|bg(⌘ � ⇠)|2 d⌘.

Exercise. Prove (⇤ ⇤ ⇤).



Weyl operators

We now consider a class of functional discrete operators that have some analogy
with Harmonic oscillators, but whose spectrum is more complicated.

Let
U (x) =  (x+ i) and V  (x) = e

2⇡x
 (x).

Then
UV  (x) = e

x+i

 (x+ i) = e

i

V U (x).

The respective domains of these operators are

D(U) =
n

 2 L

2(R) : e�2⇡⇠
b

 (⇠) 2 L

2(R)
o

and
D(V ) =

�

 2 L

2(R) : e2⇡x  (x) 2 L

2(R)
 

.



Equivalently, D(U) consists of those functions  (x) which admit an analytic

continuation to the strip

{z = x+ iy 2 C : 0 < y < 1}

such that  (x+ iy) 2 L

2
(R) for all 0  y < 1 and there is a limit

 (x+ i� i0) = lim

"!0+
 (x+ i� i")

in the sense of convergence in L

2
(R), which we will denote by  (x+ i).

Question: Prove it.

The domains of U

�1
and V

�1
can be characterised similarly and obviously

U

�1
 (x) =  (x� i) and V

�1
 (x) = e

�2⇡x
 (x).



Our main object of study is the operator H

H = U + U�1 + V + V �1

whose symbol is
2 cosh ⇠ + 2 coshx.



Remark.

It was discovered by M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, and
C. Vafa, that the functional-di↵erence operators built from the Weyl operators
U and V , appear in the study of local mirror symmetry as a quantisation of
an algebraic curve, the mirror to a toric Calabi-Yau threefold. The spectral
properties of these operators were considered in A. Grassi, Y. Hatsuda, and M.
Marino.



Remark.

The operator

H (x) = (U + U

�1
+ V ) (x) =  (x+ i) +  (x� i) + e

2⇡x
 (x)

first appeared in the study of the quantum Liouville model on the lattice and

plays an important role in the representation theory of the non-compact quan-

tum group SL

q

(2;R). In the momentum representation it becomes the Dehn

twist operator in quantum Teichmuller theory.

In particular, R. Kashaev obtained the eigenfunction expansion theorem for

this operator in the momentum representation. It was stated as formal com-

pleteness and orthogonality relations in the sense of distributions. The spectral

analysis of the functional-di↵erence operator H was done in the recent paper

of L. D. Faddeev and L. A. Takhtajan. The operator H was shown to be self-

adjoint with a simple absolutely continuous spectrum [2,1), and the authors

proved eigenfunction expansion theorem for H, by generalizing the classical

Kontorovich-Lebedev transform.



Action of the coherent state transform on functional discrete operators

We aim to find representations of (U , ) and (V  , ) in terms of coherent

states.

It follows from (⇤⇤) that
ZZ

R2

2 cosh(2⇡⇠)| e (x, ⇠)|2 d⇠ dx =

ZZ

R2

2 cosh(2⇡⇠)| b (⇠ � ⌘)|2|bg(⌘)|2 d⇠ d⌘,

and using

cosh(x+ y) = coshx cosh y + sinhx sinh y

we obtain

ZZ

R2

2 cosh(2⇡⇠)| e (x, ⇠)|2 d⇠ dy

=

ZZ

R2

2 cosh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 cosh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘

+

ZZ

R2

2 sinh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 sinh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘ .

The first integral on the right-hand side can be computed to be

((U + U

�1
) , )((V + V

�1
)bg, bg).



ZZ

R2

2 cosh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 cosh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘ (⇤)

+

ZZ

R2

2 sinh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 sinh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘ .

Indeed, note that

ZZ

R2

e

2⇡ix⇠
2 cosh(2⇡⇠)

b
 (⇠) d⇠ =

ZZ

R2

e

2⇡ix⇠
�
e

�2⇡⇠
+ e

2⇡⇠
� b
 (⇠) d⇠

=

ZZ

R2

⇣
e

2⇡i(x+i)⇠
+ e

2⇡i(x�i)⇠
⌘
b
 (⇠) d⇠

=  (x+ i)�  (x� i) = (U + U

�1
) (x).

Therefore the first integral (⇤) equals

((U + U

�1
) , )

Z

R
cosh(2⇡⌘)|bg(⌘)|2 d⌘ = ((U + U

�1
) , ) ((V + V

�1
)bg, bg)/2.



ZZ

R2

2 cosh(2⇡⇠)| e (x, ⇠)|2 d⇠ dy

=

ZZ

R2

2 cosh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 cosh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘

+

ZZ

R2

2 sinh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 sinh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘ . (⇤⇤)

Since g(x) = g(�x), it holds that bg(⇠) = bg(�⇠) and consequently the integral

(⇤⇤) ZZ

R2

2 sinh

�
2⇡(⇠ � ⌘)

�
| b (⇠ � ⌘)|2 sinh(2⇡⌘)|bg(⌘)|2 d⇠ d⌘

vanishes.

Thus for  2 D(U) we obtain the representation

((U + U

�1
) , ) = d1

ZZ

R2

2 cosh(2⇡⇠)| e (x, ⇠)|2 d⇠ dx

where

d1 =

2

((V + V

�1
)bg, bg) = e

�1/4
< 1.



Similarly, we can use (⇤ ⇤ ⇤) to compute that

ZZ

R2

2 cosh(2⇡x) | e (x, ⇠)|2 d⇠ dx =

ZZ

R2

2 cosh(2⇡x) | (x� z)|2|g(z)|2 dx dz,

which with the help of the same trigonometric identity as above can be simplified

to

ZZ

R2

2 cosh(2⇡x) | e (x, ⇠)|2 d⇠ dx = ((V + V

�1
) , ) ((V + V

�1
)g, g)/2.

Thus for  2 D(V ) we have the representation

((V + V

�1
) , ) = d2

ZZ

R2

2 cosh(2⇡x) | e (x, ⇠)|2 d⇠ dx,

where

d2 =

2

((V + V

�1
)g, g)

= e

�⇡2

< 1.



Summary: Coherent state representation for H

Summarising, we obtain a remarkable identity

(H , ) = ((U + U�1
) , ) + ((V + V �1

) , )

=

ZZ

R2

2(d1 cosh(2⇡⇠) + d2 cosh(2⇡x))| e (x, ⇠)|2 d⇠ dx.



Deriving an Upper Bound

Let {�j}1j=1 be the eigenvalues of H and let { j}1j=1 be the corresponding

orthonormal eigenfunctions which form a complete set. We first observe that

the coherent state representation of H yields

X

j�1

(�� �j)+ =

X

j�1

(�� (H j , j))+

=

X

j�1

✓
��

ZZ

R2

2

�
d1 cosh(2⇡⇠) + d2 cosh(2⇡x)

�
| e j(x, ⇠)|2 d⇠ dy

◆

+

.

Note ZZ

R2

| e j(x, ⇠)|2 dxd⇠ = k jk22 = 1.



Therefore

X

j�1

(�� �

j

)+

=

X

j�1

✓ZZ

R2

(�� 2d1 cosh(2⇡⇠)� 2d2 cosh(2⇡x)) | e j

(x, ⇠)|2 d⇠ dx
◆

+


ZZ

R2

�
�� 2d1 cosh(2⇡⇠)� 2d2 cosh(2⇡x)

�
+

X

j�1

| e 
j

(x, ⇠)|2 d⇠ dx .

Denote e

x,⇠

(y) = e

2⇡i⇠y
g(x� y). Since the eigenfunctions  

j

form an orthonor-

mal basis in L

2
(R)

1X

j=1

| e 
j

(x, ⇠)|2 =

1X

j=1

|(e
x,⇠

, 

j

)|2 = ke
x⇠

k2 = 1 for all x, ⇠ 2 R,

we arrive at the upper bound

X

j�1

(�� �

j

)+ 
ZZ

R2

�
�� 2d1 cosh(2⇡⇠)� 2d2 cosh(2⇡x)

�
+
d⇠ dx .



X

j�1

(�� �

j

)+ 
ZZ

R2

�
�� 2d1 cosh(2⇡⇠)� 2d2 cosh(2⇡x)

�
+
d⇠ dx .

To investigate the behaviour of the integral on the right-hand side as

� ! 1, we first note that

X

j�1

(�� �

j

)+  4

Z 1

0

Z 1

0

�
�� 2d1 cosh(2⇡⇠)� 2d2 cosh(2⇡x)

�
+
d⇠ dx

 4

Z 1

0

Z 1

0

�
�� d1e

2⇡⇠ � d2 e
2⇡x

�
+
d⇠ dx ,

where we used that 2 coshx > e

x

for x > 0.

Changing the variables u1 = d1e
2⇡⇠

, u2 = d2e
2⇡x

we arrive at

X

j�1

(�� �

j

)+  1

⇡

2

Z 1

d1

Z 1

d2

(�� u1 � u2)+

u1u2
du2 du1

=

1

⇡

2

Z
��d2

d1

Z
��u1

d2

�� u1 � u2

u1u2
du2 du1 .



X

j�1

(�� �j)+  1

⇡2

Z ��d2

d1

Z ��u1

d2

�� u1 � u2

u1u2
du2 du1 .

Here � � d1 + d2 since � � 2 and d1, d2  1/2. Now we immediately obtain

Z ��d2

d1

Z ��u1

d2

�� u1 � u2

u1u2
du2 du1 = �

Z 1�d2/�

d1/�

Z 1�v1

d2/�

1� v1 � v2
v1v2

dv2 dv1

= � log2 �+O(� log �)

as � ! 1, so that

X

j�1

(�� �j)+  � log2 �

⇡2
+O(� log �).



Deriving a Lower Bound

To obtain a lower bound, we use a di↵erent argument. Since k 
j

k2 = k e 
j

k2 = 1

we start from the identity
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j�1

(�� �

j

)+ =

X

j�1

(�� �

j

)+

ZZ

R2

| e 
j

(x, ⇠)|2 dxd⇠,

and observe that, if as before e

x,⇠

(y) = e

2⇡i y ⇠

g(x� y), we have

e
 

j

(x, ⇠) =

Z

R
 

j

(y)e

x,⇠

(y) dy = ( 

j

, e

x,⇠

).

This implies

X

j�1

(�� �

j

)+ =

ZZ

R2

X
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(�� �

j

)+( j

, e

x,⇠

)( 

j
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x,⇠

) d⇠dx
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ZZ

R2

X

j�1

(�� �

j

)+

�
(e

x,⇠

, 

j

) 

j

, e

x,⇠

�
d⇠dx .



Denoting by dE
µ

the projection-valued spectral measure for H on [2,1), we

conclude that

X

j�1

(�� �
j

)+ =

ZZ

R2

X

j�1

(�� �
j

)+

�
(e

x,⇠

, 
j

) 
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, e
x,⇠

�
d⇠dx

=

ZZ

R2

Z 1

2
(�� µ)+(dEµ

e
x,⇠

, e
x,⇠

) d⇠dx .

Since by the spectral theorem

Z 1

2
(dE

µ

e
x,⇠

, e
x,⇠

) = (e
x,⇠

, e
x,⇠

) = kgk22 = 1,

we can apply Jensen’s inequality with the convex function x 7! (� � x)+ and

obtain the lower bound
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)+ �
ZZ
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��

Z 1

2
µ (dE

µ

e
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d⇠dx .



Computing Z 1

2
µ (dE

µ

e
x,⇠

, e
x,⇠

) d⇠dx.

It follows from the spectral theorem that

Z 1

2
µ (dE

µ

e
x,⇠

, e
x,⇠

) = (He
x,⇠

, e
x,⇠

)

= ((U + U�1
)e

x,⇠

, e
x,⇠

) + ((V + V �1
)e

x,⇠

, e
x,⇠

) .

The two terms on the right-hand side can be computed explicitly.

We first note that

g(x� y ± i) = (1/⇡)1/4 e(x�y±i)2
= e1/2g(x� y)e⌥(x�y)i,

whence

((U + U�1
)e

x,⇠

, e
x,⇠

) =

Z 1

�1

�
e�2⇡⇠g(x� y + i) + e2⇡⇠g(x� y � i)

�
g(x� y) dy

= e1/2
✓
e�2⇡⇠

Z 1

�1
g(z)2e�iz dz + e2⇡⇠

Z 1

�1
g(z)2eiz dz

◆

=

1

d1
2 cosh(2⇡⇠) .



For the second term, ((V + V

�1
)e

x,⇠

, e

x,⇠

), we get

((V + V

�1
)e

x,⇠

, e

x,⇠

) =

Z 1

�1
2 cosh(2⇡y)g(x� y)

2
dy

=

Z 1

�1
2 cosh

�
2⇡(x� y)

�
cosh(2⇡y)g(x� y)

2
dy

+

Z 1

�1
2 sinh

�
2⇡(x� y)

�
sinh(2⇡by)g(x� y)

2
dy =

1

d2
2 cosh(2⇡x) .

Therefore we finally arrive at
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ZZ
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✓
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d1
cosh(2⇡⇠)� 2

d2
cosh(2⇡x)

◆
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d⇠dx

= 4
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0

Z 1
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✓
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d1
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cosh(2⇡x)

◆
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Note that 2 coshx  2ex for x � 0 and thus

X

j�1

(�� �
j

)+ � 4

Z 1

0

Z 1

0

✓
�� 2

d1
e2⇡⇠ � 2

d2
e2⇡x

◆

+

d⇠dx .

The integral on the right-hand side is computed in the same way as previously.

The only di↵erence is that the numbers d1, d2 have been replaced by 2/d1, 2/d2.
These coe�cients have no influence on the leading term for large � as long as

� � 2/d1 + 2/d2, and we conclude

X

j�1

(�� �
j

)+ � 1

⇡2
� log

2 �+O(� log �) as � ! 1.

Thus we have the following result

Theorem. For the Riesz mean of the eigenvalues of the operator H we have

X

j�1

(�� �
j

)+ =

1

⇡2
� log

2 �+O(� log �) as � ! 1.



Theorem. For the number N(�) = #{j 2 N : �j < �} of eigenvalues of the

operator H below � we have

lim

�!1

N(�)

log

2 �
= ⇡�2.

Proof. To derive an upper bound on N(�), we let µ � ⇢ > 0 and note that

X
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(µ� �j)+ =

X

�j<µ

(µ� �j) �
X

�j<µ�⇢

(µ� �j) > ⇢N(µ� ⇢).

We can now use the asymptotic behaviour of the Riesz mean to conclude that

there exists a C > 0 such that

N(µ� ⇢)  µ log

2 µ

⇢ ⇡2
+

C

⇢
µ logµ .

With ⌧ > 0 we now choose µ = (1 + ⌧)� and ⇢ = ⌧� such that µ� ⇢ = � and

N(�)  1

⇡2

✓
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log
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(�+ �⌧) + C log(�+ �⌧)
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.



N(�)  1

⇡2

✓
1 +

1

⌧

◆�
log

2
(�+ �⌧) + C log(�+ �⌧)

�
.

It remains to optimise this upper bound with respect to ⌧ > 0. The minimum

is attained at ⌧0 defined by the equation

2⌧0 = log(�+ �⌧0) .

Since 2⌧ � log(1 + ⌧) is bijective as a function from [0,1) to [0,1), a unique

solution ⌧0 exists for every �. It clearly holds that ⌧0 ! 1 as � ! 1 and thus

⌧0  log � for su�ciently large �. We can conclude that

lim sup

�!1

N(�)

log

2 �
 1

⇡2
.

To find an analogous lower bound we note that by using the lower bound for

the Riesz mean for � � 2 we have

N(�) �
X
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✓
1� �j

�

◆

+

=

1

�

X

j�1

(�� �j)+ � log

2 �

⇡2
+ C log �

with some constant C > 0. The proof is complete.



Remark.

Similar results could be obtained for the operators

H(⇣) = U + U�1
+ V + ⇣V �1, ⇣ > 0,

and

Hm,n = U + V + q�mnU�mV �n, m, n 2 N,

where now U and V are self-adjoint Weyl operators satisfying

UV = q2V U, q = ei⇡b
2

, b > 0.



Open Problems.

The spectrum of the problem

H (x) = (U + U�1 + V + V �1) (x)

=  (x+ i) +  (x� i) + 2 cosh(x) (x) = � (x)

is discrete.

• Find the first eigenvalue �1.

• As for Harmonic oscillator the operator U +U�1+V +V �1 maps by Fourier
transform to V + V �1 + U + U�1.
Is there a suitable factorisation of H as a product of creation and annihilation
operators?

• Find the sharp constant C in the inequality

X

j

(�� �j)+  C� log2 �.



Remark.

The symbol of the operator U + U�1 + V + V �1 equals

2 cosh ⇠ + 2 coshx � 2.

However we can write

2 cosh ⇠ + 2 coshx = 2
1X

n=0

1

(2n)!
(⇠2n + x2n)

= 2 + (⇠2 + x2) + 2

1X

n=2

1

(2n)!
(⇠2n + x2n).

Therefore using theft the the first eigenvalue of the harmonic oscillator equals
1 we have

�1(H) � 5.

Question.

Estimate from below the first eigenvalue of the operator

Hn = (�1)nD2n + x2n.



Many thanks




