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Introduction

Weyl Asymptotics



Let us consider the problem
=iz )r= Dulz), u(0) = u(w) = 0.

Clearly for any £k =1,2,3,... we find

ug(x) = sin kx, D =
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Dirichlet boundary value problem.

Consider a bounded domain Q C R¢
with piecewise smooth boundary 0f).

Dirichlet boundary value problem for
the Laplace operator in L?(Q)

—Au(x) = Au(x), x € (),
90 (%) (%) e

U =1tk
1Y)

The Dirichlet Laplacian has a discrete spectrum of infinitely many positive
eigenvalues with no finite accumulation point ( F. Pockels - 1892)

O<)\1<)\2§)\3§...,

AL — 00 as k — oo.



Weyl’s asymptotic formula for eigenvalues
of a Dirichlet Laplacian.

H.Weyl: ”"Das asymptotische Verteilungsgesetz der Eigenwerte linearer
partieller Differentialgleichungen” Math. Ann. , 71 (1911) pp. 441-479.

Theorem.
Ar2k2/d

Dy emieiomosonso
k C,|Q2/4

I:

Hermann Weyl
1885-1955 where |Q| and Cy = 7%/2/T'(d/2 + 1) are respectively

+ o(k*/4),

My work always tried to unite
the Truth with the Beautiful,
but when I had to choose

one or the other, Lusually 14 4 1gefy] to rewrite Weyl’s asymptotic formula in term of the
choose the Beautiful. i :
counting function of the spectrum as A — oo

the Lebesgue measure of ) and of the unit ball in R%.

N =4k A < A} = 2n) 2 0%2|Q dE+ o XY %)
gl<1

|
Ll A d/2
(2m) /Q /mm d do + o(\Y/?),

phase volume asymptotics.
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In the case d = 1, Q2 = (0,7), |Q2] = w, Weyl’s asymptotic formula in term of
the counting function could be written in a more precise way

AT A le—= B sy o Beans o= B B ey N0 de + o(AY?)
gl<1

= (20) " 'VAT24+40(1) =VA+0(1), as \— .



of)

(0,0)

(0,a)

In this case Dirichlet and Neumann boundary value problems

—Au(z,y) = du(z,y),

ulon =0

have solutions

1 1

Unm (2, y) = sinma™ "nx - sinma™ " my,

e e o = )| o, = 1 2,

ND(A):#{nvm:1727

—Av(z,y) = pv(z,y)
ov ‘

8_’]’), _O

Ly
1 1

Unm(T,y) = cosma™ "nz - cosma™ - my,

ITm—— 71_201—2(712 i m2),

| T P an M EMARE S, A e T

NN(:“) = #{n7m =3 07 1727 tte Bam = n2 +m2 = :u} = (47-‘-)_1(12:u

7 = B B/



Proof.

£ o Weyl used a version of the max-min principle.

/\\

) Dirichlet-Neumann bracketing:

D N
N / NP()) < N\ < NV ().

\\ /

\_/

For each square with side a we find that the eigenvalues are equal to

I (a) =w%a2(n?+m?): n,m=1,2,3,...} for the Dirichlet problem
and

(Y (a) = m2a=2(n’+m?) : n,m =0,1,2,3,...} for the Neumann problem.

Counting

#{(n,m) : Ay (a) < A}

and
#{(n,m) : ppm(a) <A},

summing them up and letting a — 0 we proof the result.



Weyl’s conjecture.

In 1911 H.Weyl also conjectured that
N() = (2r) T4 Ca A%2|Q| = ca—y1 A97172|189| + o(W41)12),
where cq_1 > 0 is a standard term depending only on dimension d.

Under certain conditions on classical billiards in 7€) V. Ivrii proved
this result in 1980.



Inverse spectral problems
Can one hear the shape of a drum 7



Isospectral domains.

In 1965 Mark Kac asked: ‘Can one hear the shape of a drum?’
(question goes back to H.Weyl)

T. Sunada 1985 found two different domains in R which have the same
”Dirichlet” spectrum.

Gordon, Webb, and Wolpert 1992, found planar isospectral domains.

Mark Kac
1914-1984

Peter Buser, John Conway, Peter Doyle, and Klaus-Dieter Semmler, 1994.









Spectral inequalities for Dirichlet Laplacians



Weyl’s type inequalities. Polya’s conjecture.

In 1961 Pélya proved that if Q C R? is a tiling domain then
=t

or equivalently

N =#{k: M <A} <@2m) 2729

— (2m) 2 /Q /|s|29 dé dz,

phase volume inequality.

George Poélya
1887 - 1985

Pélya’s Conjecture

Prove that the latter inequality holds for arbitrary domains.

Pélya’s conjecture is still open for Q = {z € R : |z| < 1}.



Easier question:

Is there a constant C' > 1 such that

N <C@2r) 27 )9

e If €} is bounded, then it was proved for bounded domains by
Birman & Solomyak 70 and Ciesielski 70 with some constant C' > 1.

e For domains of finite measure and with some C > 1, (3) was proved by
Rosenblum '71 and Lieb ’80.

e Some progress was made in my paper JFA ’97.
Example: Pélya conjecture holds true for

=0 X QQ, where ; C Rdl, di > 2, 18 tlhng

and Qy C R% is an arbitrary domain of finite measure.



Another easier question:
Is it true that for some v > 0 the following phase volume estimate holds?

= a0 = @maea (e Tde

R4

where (z)1 = (|z| 4+ x)/2 is the positive part of x.

Theorem. (Berezin, Li-Yau)
If v > 1 then the above Weyl inequality holds true.

Proof.(see AL, JFA 1997.)

Let v = 1 and let ¢}, be the orthonormal basis in L?(Q) consisting of eigenfunc-
tions of the Dirichlet Laplacian which is denoted by A. Let ¢ be the Fourier
transform of . Then by using Parceval formula we find

> =2 =3 (- (e ), = (@m0 | (- leP)onPde),

2 2 k R4
@t 3 [ - I ol d
:<2w>—d; / d( ~ leP)e | / )i (o) do| dg =

@n) [ OcleP)e SN0 o0 de = (20 / -leP)+ de OO,

=[]



Corollary.

N()) < (1 o g)d/z (2717)0" /Q/K%\ déd.

Proof.




Remark.

d/2
Nobody knows if there is a constant 1 < R < (1 + %) such that

R
N()\)g(%)d /Q/W<A dédz.




The Laplace operator in R™ can be written in polar coordinates

O ip=1.0 1
or?2 r §+T_2(_Agn_l)'

The spectrum of —Agn-1 consists of eigenvalues
[(l4+n—2), IrerN
whose multiplicity is given by
[+n—1 l+n—3
nta e Catsd)
This leads us to the Dirichlet eigenvalues of the problem

0? n—1 0 Il +Hn =2
S ( )

Its solution is

w(r) — r(2_n)/2 Jl+(n_2)/2(\/Xr), JH_(n_Q)/Q(\/X?‘) T — Dt
Let j,.r be the k-zero of the Bessel function J,(z). The following inequalities
might be useful (obtained by Ifantis and Siafarikas, see also Elbert)

T 1 1
i 3Tl STy S, S S SN o TR PR
Jv.k vV + KT 2—|—2 v 5



Spectrum of Schrodinger operators



Lieb-Thirring inequalities.

Let H = —A + V be a Schrédinger operator in L?(R%), V — 0, as £ — oo.

Spectrum:
0
e X
—A1—=A2 —AN

ZA} = ZA}(V) < gi’)”d // (1€ + V() dzdé =L, 4 /V(x)7+d/2da:.

Compare with Weyl’s asymptotic formula:

S V) i I / (V. Y+ dg = (27)4 / / o
J

which implies L&) < L. ;.

W. Thirring



Lieb-Thirring inequalities

ZXY Zm e // = (x))idﬁdasz%d/Vfdm(x) di.

Applications.

Weyl’s asymptotics.
Stability of matter.

Study of properties of Continuous spectrum of Schrodinger
operators.

Estimate of dimensions of attractors in theory of
Navier-Stokes equations.

Bounds on the maximum ionization of atoms.



Example.

Ifin H=-A+7V,

= Q
Vi) = EEEcent: Q € R,
+00, x &),

then the spectrum of H coincides with the spectrum of the Dirichlet Laplacian

in €.

Therefore Pdlya inequalities are special cases of L-Th inequalities.



(—A + V)u = Au.
S Lvad/v(fﬁ)z+d/2 dz.
3

Theorem.
e constanti Ly g i< ooiifid =11 v > 1/2; d =2, v > B-and d >34 =10:

E.Lieb, W.Thirring, T.Weidl, M.Cwikel, G.Rozenblum.

Theorem.
It is known that L5, = 1/2 (Lfl/2 , =1/4) and

Loa=L20 ity >38/2,d> 1.
In other cases the sharp constants are unknown.

E.Lieb, W.Thirring, M.Aizenmann, D.Hundertmark, L. Thomas, AL & T.Weidl.



Buslaev-Faddeev-Zakharov trace formula, d = 1.

Let 1 solves the equation

611{::}:7

d2
—SP VY =k, dak) = {

Fundamental property:

if k € R then W1, ] = 1)’ — ¢’y = const.
This implies 1 = |a]? — |b]? < |a| > 1.

Let
)\j — (i/{j)z, Kj > 0.

Theorem. (BFZ trace formula.)
If V <0, then

IE:

Corollary. (L-Th inequality.)

3
32t 3 2
Ej |)\j‘/ = Ej K §—16/V dx.

af b bR e el

asTr — 0

8-S+

3 2 2 i 2 =3} 2 3/2
— [ k“In]a| dk—l—;lﬁjj :1_6/V do=1(2r) WA Y it



Soliton’s approach (Lieb & Thirring, Lax, Kruskal).

Let us consider the KdV equation
Ut == 6UUZC o U:mc:na U‘tzO =V.

Then

Ut:[—%JrU,M], s M:4dd—;—3<U%+%U).

e Discrete spectrum is independent of :
d? d?
it A
o a(k,t) = e® tq(k,0).
s (@ tidn = [V (z)d:

Therefore terms in the trace formula

3 2 2 3/2_3 2
- | K lnal dk+zj:uj| = [ Ulds

are independent of time.



U, 1)~ Y51 Usle —42t) + Uss, A

¢ [|[Ux|loo < e(t) »t—oo 0 and U; are solitons
U;(x) = —2X; cosh™ £(1 /X %)
o (—% i Uj> cosh™ ' (\/X;z) = —X;lcoshTH( /).

Finally, since 4 [ cosh™* z dz = 16/3, we obtain

2 E 2 g i 2: 392
j=1

f=rt



Theorem. Assume that V' € L?(R), V > 0. Then for the negative eigenvalues
{=A\;} of the Schrodinger operator H

d2

I
4 dx?

(z) = V(2)y()

we have

N : 3

3/9 2
E Y BBER W ,
j:1)\] 16/V dx



Proof by using the Darboux transform (Benguria & Loss)

Let us consider the equation

Hy(z) = —¢"(z) — V(z)(z) = — g (x),

with V' > 0 and decaying rapidly, so that the negative spectrum of H is finite
and equals {—A1, — Ao, ..., —An}.

Let (—A1,%1(x)) be the lowest negative eigenvalue and eigenfunction respec-
tively.

It is well know that the function v; could be chosen such that 17 > 0

(prove it).



Consider now

e as i () 1(x) (%(flf))z_

P1(x) axd f{(@:%(l‘) ¢1—(ﬂ?)

Therefore -
1

e e
fl fl wl 1

Denote by ()1 the differential operator

d ey
Q1:%—f1 & Q1——%—f1.

Then

d d d?
Q1Q1 = (—% —f1> <% _fl) = —@Jrf{Jrflz

:—@—V—F)\L

The negative spectrum of the operator ()7} consists of points

{020 M= A - At = dd H A e AN R AR



Clearly
e_m"”, T — 00,

QiQ1¢Y1 =0, and ()= {6\/7156

, T — —O00.

Thus

fi(z) =

(@) _ [—VA1, 7 oo,
¢1($) \/)\_1, YPR=S R=S0OR

Consider the operator

d d d?
Q1071 = (% —f1> (—%—fl) Z—@—f{Jrff
d2



The operators Q1 Q1 and Q17 Have the same eigenvalues apart from the point
0. Indeed,

Qi1 = - Y = Q1Q7Q1¥=-AQ1¢¥ = Q:1Q7p,
with o= Q4.
Besides, assume that there is 1 € L?(R) such that Q;Q3} = 0. Then
0=(Q1Q1¥,¥) = IQ1Y| = —Y'—-fiy=0.

Since fi(z) ~ —vA1, as & — oo, we conclude that ¥(z) ~ eV ? as z — oo,
and thus ¢ € L?(R).
This implies that the discrete spectrum of operators H and H; = H — 2f{ equal

—d?
oa(H) = 04 (@ ) V) =H A Ao e B R A
and
—d? )
O'd(Hl):O'd W—V—Qfl :{_>\2,—)\3,...,—)\N}.

The operator H; is the Schrodinger operator whose potential equals

V1:V—|—f{.



The lowest eigenvalue of H; is now —\o and its respective eigenfunction (that
is equal Q112) is positive.

Repeating this process we eliminate all negative eigenvalues after N-steps and
obtain the Schrodinger operator whose potential equals —V}, where

Vn=Vn_1+fn=V+fi+fs -+ Iy

and where
v+ I =2v — Vo1

Finally we find
0< /VJ\Qfdaj:/(VN—1-|—2f]’V)2dx
=3 / (VR_1 +4fN (Vo1 + f)) do = / (Vo1 +4fn (v = f7)) do
sl /Vj%ldx+4)\NfN‘iooo + %f?v‘io

4 1
= /V]%_lda:—S)\%Q—l— §A§’V/2 = /V]%_ldaz— £A%2

g 1y
e DI
j=1

©.@)



Multidimensional Lieb-Thirring inequalities.

The main argument is based on 1D matrix Lieb-Thirring inequality.

Theorem. (AL & T.Weidl)
Let () > 0 be a Hermitian m x m matrix-function and let H = —A — Q.

Then
vl < [n@w

Lifting argument with respect to dimension.
Let for simplicity d =2, V € CP(R?), V > 0, x = (x1,%2). Then

k= SR = (@2 V).

11 T2T2

Ve

H (1)

Spectrum o (H T) of H(x;) has a finite number of positive eigenvalues s (z1).
Thus H (z1) has a finite rank. Let, for instance, v = 3/2

SN <Y NP8z, — Hy)
1 J

< %/Trl:[i(xl)dzcl < %LQJ // V32 (1) dx

l
L§/2 2



1/2 moments of the eigenvalues (y = 1/2)



Theorem.

Let Q > 0 be a Hermitian M x M matrix-function defined on R, such that Tr () €
L'(R), @ > 0. Then for the negative eigenvalues {—\;} of the Schrodinger
operator H

d2
T da?

Hip(x) () = Q(x)i(z)

we have

1
Z )\}/2(H) < 3 /Tr Qdzx. (Hundertmark, Lapt & Weidl).
J

The scalar version of this result was first proved by D. Hundertmark, E. Lieb
and L.Thomas.



Proof - scalar version (D. Hundertmark, E. Lieb and L.Thomas)

Let A > 0 be a compact operator in a Hilbert space H whose eigenvalues
p;i(A) = 0, as j — 0 such that

Vi (A9)pi(4) 2 vV ua(A)ua(4) 2 v ps(Aus(4) = ... .

It is well known that the functionals

Al = 37 /s (A)pn (4)

are norms (see, for example, Gohberg I.C. and Krein M.G.: Introduction to the
theory of linear non-self-adjoint operators. Trans. Math. Monographs vol 18.
AMS 1969, Lemma 4.2).

Thus for any unitary operator U we have

1T AU = [[Alln



Definition. Let A and B be two compact operators in H. We say that A
majorizes B or B < A, iff

IBlln < |Alln, forall n€N.

Proposition. Let A be a nonnegative compact operator in H, {U(w)},ecq be a
family of unitary operators in on H and let g be a probability measure on 2.
Then the operator

B:/WWMW@WM
Q
is majorized by A.

Proof. This is a simple consequence of the triangle inequality

1Bl < || | V")) gld)

n

< / |U* (@) AU (@)l 9(dw) = | All 9(2) = | All.
Q

The proof is complete.



We now consider the spectral problem

d2
—@u(x) V(z) = —Au(x), where V >0,

and introduce the operator

9
e
dx2+€2

where W = +/V. The kernel M (x — y) of the operator —% + &2 equals

1 ei(x_y)g 1
Mz —y) = — dé = —e~cle7Yl,
Z 1) 21 /R £2 4 ¢2 S % ©

Therefore, if ¢ — 0 we have

o / W (2)e == 9W (y)op(y) dy —

where the latter is the operator of rank one.

y) dy,



One of the main technical results is

Lemma. (Monotonicity)
The operator L. is majorized by L.,. Namely

y @l eRs AR IR8 BBk e veya | Basl s cgasle s odos



Proof.

Let us introduce

g&_(dé’) +H W df, ifieit O,
5(‘5) dg, 1 to U

and difine
U€)b(z) = 57p(z),  E€R.
Then
e / U* LoUge(d£).
R

In particular, applying Proposition we find that L. < Ly. Moreover, Note that

Cicummn 3 RanL s 20

which follows from the fact e—¢lzl = e—¢'lzlg—(e—=€)|z]



Then

- /1. «eﬂ*’ﬂfvvwc>W(y)e—iyﬁW(gf+ ) e
= [ W e o s e e e
//R it (/ o) i(e’)Q) i ) i w((n)28+_(j— oyay 19 ) dy
- / /R o w((n)fzi_(j_ 7y ) dy

The statement £, < L./ follows now from the Proposition.




Proof of Theorem.

Let us introduce the operator

d2 B
K TeepREEST 7 A
i 2f VRLH (d:c2 . )

The operator K, is compact that due to Birman Schwinger principle we have

1= p;(Ky,),

where —); is the eigenvalue of the Schrodinger operator H. Therefore by using
the Monotonicity Lemma and since A > Ay, we have

2v A = I xllh < 1Ll

The inequality Ao > A3 also implies
2/ A1 + 2/ A2 < |I£ x5l < 1L x5 lle-
Repeating this n times we finally obtain
2/ A1+ 2/ X2+ + 24/ 20 S|IL x|ln

STer:/Wz(x)daz:/V(:c)d:c.
R R

The proof is complete.



1-moments estimates (v = 1).



Let H be a Schrodinger operator in L?(R%)

H:_A—Qa

Theorem. ((jointly with J.Dolbeault & M.Loss)
Let @ > 0 be a Hermitian M x M matrix-function defined on R and let {—\,}
be negative eigenvalues of the operator H. Then

Corollary. For any dimension d > 1, the negative eigenvalues of the operator H
satisfy inequalities

> % <Lus [ T[@ ()] do.

R4

where
1

o O e

R SIREAS L =T

andR:%:1.8138....



Scalar case

For simplicity we consider a scalar version of this theorem based on a 1D gen-
eralised Sobolev inequality due to Eden and Foias.

Let {4;}7_; be in orthonormal system of function in L*(R) and let

Generalised Sobolev inequality in 1D case:

Theorem.



Proof:

We first derive a so-called Agmon inequality

2 1/2
9] Lo < I3 N0 1322
Indeed

oF = 3| [ wrae- [T wrra < [ il < ol

Let now & = (£1,&2,...,&,) € R™. Then by Agmon inequality

\ifij)\ < (Z &8l v)) (Z &8 W)
gl j.k=1 j.k=1

/4

E (if?) (3 agwe)

7,k=1

If we set &; = ¢, (x) then the latter inequality becomes

2 =Y @)l < @) 3 BEB@)

7,k=1
Thus -
pP(z) < D (@) k(@) (@), ¥)-

Integrating both sides we arrive at

En:\wj(w)lz 3dx§§n: [9}|? da.
[(Gr) <y f



Spectrum of Schrodinger operators

Let {1;}52, be the orthonormal system of eigenfunctions corresponding to the
negative eigenvalues of the Schrodinger operator

d2
BT e R

where we assume that () > 0. Then by using the latter result and Holder’s
inequality we obtain

[(Cw@r) a- ([ @) [(Twi@r) )"
<3 [ (w2 - Qi) de=- 3",

J



(@) s ([ @)™ [(Sw@r) )" <~ T,

J

Denote 2 1 e
—([(Zw@r) @),

then the latter inequality can be written as
2/3
s (/V3/2d:c) e N
J

1/3
Maximizing the left hand side we find X 7 ( ) Q32 dw) . This implies

Eaaaak bR r b R ia i W R IV AC TP R paRBRR R REARSS e 2l o |
w3 @ e [t e= g @ 2N

and we finally obtain Zj A < 3% [ Q3/2 dx.

This is the best known constant in the v = 1 L-Th inequality.



Weyl Operators



Harmonic Oscillator

Let us begin with the operator of Harmonic Oscillator

— 2
H——@—Fx, z € R.

The spectrum of this operator is discrete and equals {2k + 1}, k = 0,1,2,....

In particular,
[EiRas e s n s == —i—kaj i—kx >0
dx dx

which implies H > 1.
Note that the values of the symbol of the Harmonic oscillator £2 + 22 > 0 fills
the semiaxis [0, c0) but the operator H > 1. The latter inequality is sharp and

the eigenfunction corresponding to the eigenvalue one is e~ /2,



One has to be careful with factorizations of operators. Indeed, let us consider

4 d 1IN/ d 1
BB — (_%H_;) (@H_E)

d? L 1 1 d? >

This implies
2

d 2

Question: Where is a mistake?

Remark : ;
Note that after Fourier transform the operator —Cf? + 22 becomes £2 — j—@.



Coherent state transform

Let us consider the map ® : L?(R) — L*(R?) and defined by

& @)

B, 8) = (B 9) (2| &) = / =2 ) dy,

— OO

where .
gl —(l )l ce e /2,

Note that [~ g?(z)dz =1 and

O*®yh(z) = / e?™ 2 g(x — 2)e " Vg(z — y)(y) dEdydz

R3

= [ 8w =)ot = 2)a(: — ) vly) dyd:

Theorem.

The map ® : L?(R) — L?*(R?) is an isometry, such that ®*® = I and P = ¢®*
is an orthogonal projection in L?(R?).



Action of the coherent state transform on the Harmonic oscillator

Let us compute ®*£2P

(P2 Peh,9) = /R g (z = 2) € e (2 — y)ih(y))(z) dEdydzda

L Wéé@%%ﬂg@—ng«f%@om — ) () 9) dedydzda
B ﬁ # ezmsu—y)% (Q(x SR2a ) ( ) dedydzds
i W(@%w—@fwmwﬁ+f@wnwwwwﬁdam
— o7 [ @@+ IR
Corollary.

o ~ 1
W1 = [ (nye1ite o) dudt - SIvIE:



Similarly computing ®*2?® we obtain

<¢*z2¢¢a¢ozzu/‘eﬁﬂﬁngx——z)zQe—Qfﬁygﬂz—-ywﬁgoﬂiiﬁdfdydzdx

— [ 206 2@ ddz = [ (o - tPP@()P dado
R2 R2
— [ Pw@Pd+ [ eewa [ P

Corollary
T ~ 1
lowlg = [ 210 &) dad - 313

— OO

Proposition. There is the following representation of the quadratic form of the
Harmonic oscillator H

o

(Eb) / (2m)2€2 1 22) [ (=, €)  dzdé — 2.

— 0



Further properties of the coherent state transform

Let us introduce the convolution
prv@) = [ plo—pul)dy.
and let F be the Fourier transform

B(e) = (Fy)(€) = /_ T

Lemma.
(©9)(z,€) = P(x, €) = e~ / P G = dy  (+)
and

| 1w erds = [ 13- nPgmPa =198 5PE). ()

=G

[ waora= [ e Al et e o oy e



Proof. Let us first show (x)

casEdas / P (n) e27MG(n — €) dn
un e—27ria:£ / e—27ri77zw(z)e%rina:e%ri(n—f)tg(t) dtdZd?]
R3
e / 5(t +x — 2)p(2)e 2™t g(t) dtdz [t =2z — x]
R2

o /oo 6_27Ti52¢(2)g(x L Z) S e — ’(Z(ﬂj, )

500
In order to obtain (*x) we write by using (x)

/ 9, )Pdz= | 9(p) e 0"G(p — ) 9n) G~ €) dudpd

— OO

= " ) Plgm - ) dn.

— OO0

Exercise. Prove (* * ).



Weyl operators

We now consider a class of functional discrete operators that have some analogy
with Harmonic oscillators, but whose spectrum is more complicated.

Let
Up(z) = (+i) and  Vip(x) = ™).

Then
UVi(z) = e*Tp(z + 1) = e’ VUP(x).

The respective domains of these operators are

D(U) = {9 € L*(R) : e (€) € L*(R) |

and

D(WV)={yp e L’(R) : 2™ y(z) € L*(R)} .



Equivalently, D(U) consists of those functions ¢ (x) which admit an analytic
continuation to the strip

=iy e Chilr<iy <l
such that ¢ (x + 1y) € L*(R) for all 0 < y < 1 and there is a limit

Y(r+1i—10) = lim ¢(x +1i— ic)

e

in the sense of convergence in L?(R), which we will denote by v (x + 7).
Question: Prove it.

The domains of U~! and V~!can be characterised similarly and obviously

Ulp() =@ —i) and  V 'g(a) = e 2(a).



Our main object of study is the operator H
H=U+U"'+V+Vv!

whose symbol is
2 cosh & + 2 cosh x.



Remark.

It was discovered by M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, and
C. Vafa, that the functional-difference operators built from the Weyl operators
U and V, appear in the study of local mirror symmetry as a quantisation of
an algebraic curve, the mirror to a toric Calabi-Yau threefold. The spectral
properties of these operators were considered in A. Grassi, Y. Hatsuda, and M.
Marino.



Remark.

The operator
Hip(x) = (U+ U+ V() = Pz +14) + ¥z — i) + e2™(x)

first appeared in the study of the quantum Liouville model on the lattice and
plays an important role in the representation theory of the non-compact quan-
tum group SL,(2;R). In the momentum representation it becomes the Dehn
twist operator in quantum Teichmuller theory.

In particular, R. Kashaev obtained the eigenfunction expansion theorem for
this operator in the momentum representation. It was stated as formal com-
pleteness and orthogonality relations in the sense of distributions. The spectral
analysis of the functional-difference operator H was done in the recent paper
of L. D. Faddeev and L. A. Takhtajan. The operator H was shown to be self-
adjoint with a simple absolutely continuous spectrum [2,00), and the authors
proved eigenfunction expansion theorem for H, by generalizing the classical
Kontorovich-Lebedev transform.



Action of the coherent state transform on functional discrete operators

We aim to find representations of (Uw,) and (V,v) in terms of coherent
states.
It follows from (xx) that

// 2 cosh(ZHE) (&) dt do = / / 2 cosh(2n€) (€ — m)P[G(m)|P dé dn,

and using
cosh(z + y) = cosh x cosh y + sinh x sinh y

we obtain

//R2 2 COSh(ZWf)\{pV(x, 5)’2 d¢ dy
5 // 2cosh (27(& — ) |9 (€ — )| cosh(2mn)[(n)|* d& dn
I //RQ 2sinh (2m(€ — ) [ (€ — n)|? sinh(2mn)[g(n)|? d€ dn .

The first integral on the right-hand side can be computed to be

(U+U N, )V +V7H5,9).



//RQ 2 cosh (27(& — 0)) [ (€ — n)|? cosh(2mn)[G(n) > dEdn ()
I //RQ 2sinh (2m(€ — ) [(€ — n)|? sinh(27n)[G(n)|? d€ dn .

Indeed, note that

2mixé 2 h 271' d 27mm§ HEE A 2mEN
J[ = 2commizng) by ae = [ e + 7)€ d
— // e27m(:1c—|—z)§ b 627rz(a;—z)§> ¢(€> dg
R2
=9(z+1i) —p(z—i) = U+ U )(@).

Therefore the first integral (x) equals

(U +U" N, 9) /R<308h(27ﬁ7)!§(?7)|2 dn=(U+U", ) (V+V~1)5,9)/2.



//R2 2 cosh(27r§)]{bv(gj7 5)‘2 d¢ dy
B //R2 2 cosh (zﬁ(f £ 77)) @(5 —n)|? cosh(27n)|g(n)|? d¢ dn
+_/yg22$nh(2WQf—7ﬂN&K§—-UNQQHhChmnEKHHngdn. B

Since g(z) = g(—z), it holds that g({) = g(—¢) and consequently the integral
()
//RQ 2 sinh (2’7I g 77)) I{b\(g wa 77)|2 sinh(27rn)‘§(n)|2 de dn

vanishes.

Thus for ¢ € D(U) we obtain the representation

W+ 6) =di [[ 2coshient)lie, o dsdo

where

9
dii= —— = Yt <.
T (V+V)3,9)




Similarly, we can use (x % %) to compute that

// 2 cosh(2mz) | (z, €)|? d€ dx = // 2 cosh(2mz) v (x — 2)|?|g(2)|? dx dz,

which with the help of the same trigonometric identity as above can be simplified
to

//R2 2 cosh(2mx) |1Z(x,§)|2 d¢ dz = (V + V_1)¢,¢) (V + V_l)g,g)/Q.

Thus for ¢ € D(V') we have the representation

<ﬂf+Wf—U¢aw>=:¢3/]i2coﬂﬂ2wwﬂ&%x¢aﬁd§dm,
RQ

where 5
do = - 6_”2 22 32
T (V+V-lyg,g)




Summary: Coherent state representation for H

Summarising, we obtain a remarkable identity

(He,9p) = (U +U )9, 9) + (V +V He, )
— //R2 2(dy cosh(27E) + d2 COSh(27mj))|zZ(3;7 §)|2 d¢ de.



Deriving an Upper Bound

Let {)\;}32; be the eigenvalues of H and let {1;}72; be the corresponding
orthonormal eigenfunctions which form a complete set. We first observe that

the coherent state representation of H yields

Z()\ = )\j)_|_ — Z ()\ mE (ijawj))_|_

321 g2

i ()\ i / /R 2(dh cosh(2n€) + dy cosh(2m)) 4z, €)? e dy>

j>1 13

Note
[[ 136w, dade = ;1 =1



Therefore

> (A=X)4

j>1

- Z ( / /]R (A= 2d; cosh(2m) — 2dy cosh(27w)) [, (z, €)[? de d:v)

_|_

< / /R 2 (A — 2d; cosh(2r¢) — 2dp cosh(2mz)) , Y~ |¢h;(w,£)|* df da.

324

Denote e, ¢(y) = e2™¥Yg(z — y). Since the eigenfunctions 1); form an orthonor-
mal basis in L*(R)

ZWJ z,€)|? Z| enes i)’ = |lese|? =1 forall z,£ €R,

we arrive at the upper bound

> (A=) / / A — 2d; cosh(2m€) — 2dj, cosh(2rz)) , d€ da .
R2

Jed



> (A=) / / A — 2d; cosh(278) — 2d; cosh(27z)) , dE da.
R2

iy

To investigate the behaviour of the integral on the right-hand side as
A — 00, we first note that

> (A= X4 <4 / - / i (A — 2dy cosh(2m€) — 2dp cosh(27z)) , dé dz
0 0

gzl
§4/ / (Sshrsri R R
0 0

where we used that 2coshz > e* for x > 0.

Changing the variables u; = d;e?™¢, us = dye®™ we arrive at

1 ©.@) o )\ I D
ZO‘ T _2/ / 8 seClees 1F0ES dug duy
70 dq do Uq1U2

gzl
A— d2 A— uq )\ ul —'UQ
— dU,Q du1 :
ds

Uuiuz




A—d A—u
z " A—u; —u
d (A= Xj)4 < / < e
do

uiu
j21 A

Here A\ > di + do since A > 2 and dy,ds < 1/2. Now we immediately obtain

A—ds  pA—uq N = g 1=da /A pl=w; T e s
dUQ du1 =\ d’UQ d’Ul
da U2 di /) WY V1V2

= Aog* A+ O(Alog \)

as A — 00, so that

Alog? \
SRR e g o)

. 2
-zl



Deriving a Lower Bound

To obtain a lower bound, we use a different argument. Since ||¢;||2 = ||@Zy ==t
we start from the identity

S O=A) =X =Xy [[ 10w O dude,

g1 g1

and observe that, if as before e, ¢(y) = 2™ ¥4g(x — y), we have
&

Jj (aj7 g) - e %‘ (y)ew,ﬁ(y) dy e (’(pj? 633,5)'

This implies

S0 =[] O A) 5,0 e dele

A=1

//R Z G ) 6$’57¢j)¢j>€x,g) dédzx .

7>1

7>



Denoting by dE,, the projection-valued spectral measure for H on [2,00), we
conclude that

>\ ) +_/ ZA M)t ((eg, Vi)j, €0 ¢ ) déda
i R

7>1
//R?/ )+ (dEyeq e, eq¢) déd .

/z (dEen s, o e = ot eae)i= ol =11

j>

Since by the spectral theorem

we can apply Jensen’s inequality with the convex function x — (A — z); and

obtain the lower bound
// ( / pldil e ex,g)) dédx .
R2 H



Computing
/ Lld ez es e dede.
2

It follows from the spectral theorem that

/2 v (dEu ex,g, ex,g) = (Hex’g, ew,g)
=((U+U Nege,ene) + (V+V Dese, ene) -

The two terms on the right-hand side can be computed explicitly.
We first note that

sl g = e R e e R s O

whence
(U 4+ U Dewgreae) = / (e77™g(x —y + 1)+ e g(z — y —9))g(z — y) dy
— el/2 (e_%g / g(z)2e_iz dz he?ss / g(z)2eiz dz>
1
= —2cosh(27¢).

dy



For the second term, ((V 4+ V™ 1)e, ¢, €2¢), we get

(V + V_l)ex,g, e /_OO 2 cosh(2my)g(z — y)* dy
= /_OO 2 cosh (27 (z — y)) cosh(27my)g(z — y)* dy

ai 1
=R / 2sinh (27 (z — y)) sinh(27by)g(z — y)* dy = d_2 cosh(27x) .

S 2

Therefore we finally arrive at

// ()\ — — cosh(27¢€) — " Cosh(27m:)> dédx
R2 d2 H:

= 4/0 /0 ()\ ERiee cosh(27§) — 5 Cosh(27rx)> ; dédx .

1 z



Note that 2 coshx < 2¢* for x > 0 and thus
i TF 2 2mE 2 ATE
d (A=X)e >4 e T dédx .
i1 0-H0 4 d> i

The integral on the right-hand side is computed in the same way as previously.
The only difference is that the numbers d;, ds have been replaced by 2/dy,2/ds.
These coeflicients have no influence on the leading term for large A\ as long as
A >2/dy +2/ds, and we conclude

1
> (A=Xj)s > SAlog? A+ O(AlogA) as A — .
j>1 i
Thus we have the following result

Theorem. For the Riesz mean of the eigenvalues of the operator H we have

1
> (A= X))y = p)\logQ A+ O(Alog)) as X — oo.

Jj=1



Theorem. For the number N(A) = #{j € N : \; < A} of eigenvalues of the
operator H below A we have

N(A
lim <2 ) — 72,
A— 00 log A

Proof. To derive an upper bound on N(A), we let u > p > 0 and note that
S e RS e AR RS (N NS T e
gj=1 Aj<p Aj<p—p

We can now use the asymptotic behaviour of the Riesz mean to conclude that
there exists a C' > 0 such that

2
plog=p  C
b B OBITE
pT p

N(p—p) <
With 7 > 0 we now choose y = (1 + 7)\ and p = 7 such that uy — p = X\ and

N\ < (1 + %) (log?(X + A7) + Clog(A + A7) .

1
157



N < % (1 + %) (log?(A + A7) + Clog(A + A7) .

It remains to optimise this upper bound with respect to 7 > 0. The minimum
is attained at 7¢ defined by the equation

27’0 = log()\ i )\To) 5

Since 27 — log(1 + 7) is bijective as a function from [0, 00) to [0, c0), a unique
solution 7y exists for every A. It clearly holds that 79 — oo as A — oo and thus
7o < log A for sufficiently large A\. We can conclude that

N(A) 1

lim sup < :
T T d D T2

To find an analogous lower bound we note that by using the lower bound for
the Riesz mean for A > 2 we have

As 1 log? A
N(M) ZZ (1—7‘7>+ == XZ()\_Aj)_i_ > 2 + C'log A

G | g=1

with some constant C' > 0. The proof is complete.



Remark.

Similar results could be obtained for the operators
HO=U+U"'+V 4V, (>0,

and
i e U S A SR bt bR T s o/ &m0k =

where now U and V are self-adjoint Weyl operators satisfying

e A raEan R RRRRET P ROIAS R AR L



Open Problems.
The spectrum of the problem

Bz (U e e Ve Vo (o)
= h(z + 1) + ¢z — i) + 2 cosh(z)ip(z) = Ap(x)
is discrete.
e Find the first eigenvalue \;.

o As for Harmonic oscillator the operator U + U1 +V + V! maps by Fourier
transform to V 4+ V-1 4+ U+ UL,

Is there a suitable factorisation of H as a product of creation and annihilation
operators?

e Find the sharp constant C' in the inequality

Z()\ — )+ < CAlog® .

J



Remark.

The symbol of the operator U + U1 +V 4+ V1 equals
2 cosh& + 2coshx > 2.

However we can write

2n)

ZCoshﬁ—i—Zcoshw—QZ an

2n Zn)

=2+ (&% + 27 +2Z

Therefore using theft the the first eigenvalue of the harmonic oscillator equals

1 we have
AM(H) > 5.

Question.

Estimate from below the first eigenvalue of the operator

}yﬁ ::(__1)nl)2n.+_x2n.



Many thanks
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