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Plan of the Talk

• Introduction of the problem, basic properties and nonlinear scat-

tering.

• Classical result on small data scattering (following C. Kenig-

G.Ponce-L.Vega ’93).

• Large data scattering by combining C. Kenig-F. Merle concentration-

compactness/rigidity plus a basic calculus inequality by T.

Tao.
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Introduction to the Problem

Let us consider the following Cauchy problems:

(gKdV)k

∂tu+ ∂3
xu = ∂x(uk+1), k ≥ 1 k even integer, (t, x) ∈ R× R

u(0, x) = ϕ(x) ∈ H1(R)

where u(t, x) : R× R→ R.
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• For k = 1 this is the usual KdV (Kortweg and de Vries equation).

It is completely integrable, solitons, multisolitons, exactly solv-

able by inverse scattering..... It is related to the mathematical

description of one dimensional waves on shallow water surfaces

(for instance waves in a channel);

• For k = 2 it is the modified KdV (mKdV);

• There is a connection between KdV and mKdV via the Miura

map;

• We are interested in the (non integrable) case k ≥ 4.
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Conserved Quantities

We assume the nonlinearity defocusing, namely the following posi-

tive energy, is preserved along the flow:

E(u(t, x)) = E(u(0, x))

where

E(u) =
1

2

∫
R
|∂xu|2dx+

1

k + 2

∫
R
uk+2dx

as well as the mass∫
R
|u(t, x)|2dx =

∫
R
|u(0, x)|2dx.

• Notice that it makes no sense to speak about defocusing non-

linearity for k odd.
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We have the following relations:

∂tρ+ ∂xxxρ = ∂xj

∂te+ ∂xxxe = ∂xk

where

ρ(t, x) = ρ(u(t, x)) = u2

e(t, x) = e(u(t, x)) =
1

2
(∂xu)2 +

1

k + 2
uk+2

j(t, x) = j(u(t, x)) = 3(∂xu)2 +
2(k + 1)

k + 2
uk+2

k(t, x) = k(u(t, x)) =
3

2
(∂xxu)2 + 2(∂xu)2uk +

1

2
u2k+2
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Local and Global Existence Results

• Based on the classical work by Kenig-Ponce-Vega one can show

the following Local Existence Result

∀k ≥ 1∃!u(t, x) ∈ XT sol. to (gKdV )k, where T = T (‖ϕ‖H1
x
) > 0

and XT ⊂ C([−T, T ];H1
x);

• As a consequence of the Local Existence Result, in conjunction

with the defocusing character of the nonlinearity (for k even) one

can show the existence of an Unique Global Solution.
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Nonlinear Scattering

Question: how the solutions to (gKdV )k look like as t→ ±∞?

Nonlinear scattering: for large times the nonlinear solutions look

like linear solutions. Namely:

∀ϕ ∈ H1
x∃ϕ± ∈ H1

x s.t. ‖u(t, x)− U(t)ϕ±‖H1
x
→ 0 as t→ ±∞

where U(t) = e−t∂
3
x is the group associated with the (linear) Airy

equation, namely v±(t, x) = U(t)ϕ± solve:

(Airy)

∂tu+ ∂3
xu = 0, (t, x) ∈ R× R

u(0, x) = ϕ±
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Small Data Scattering

Based on the work by Kenig-Ponce-Vega one can prove

Theorem 1

Let k ≥ 4, then ∃ε = ε(k) > 0 such that u(t, x) solution to (gKdV )k
and ‖u(0, x)‖H1

x
< ε then u(t, x) scatters as t→ ±∞

• What about small data scattering for k < 4?

Unknown for small data in the energy space H1
x . Moreover for

k = 2 it has been proved the modified scattering in weighted

Sobolev spaces (see Hayashi-Naumkin).

• What about large data scattering for k ≥ 4?

It has been established by Dodson for k = 4 and by Farah-Linares-

Pastor-V. for k > 4 even (for k odd there are problems with global

well posedness since energy is not positive definite).
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Idea to prove Small Data Scattering

The following estimates are available for the linear propagator

‖U(t)ϕ‖L5
xL

10
t
≤ C‖ϕ‖L2

x
(Strichartz)

‖∂xU(t)ϕ‖L∞x L2
t
≤ C‖ϕ‖L2

x
(Smoothing)

‖U(t)ϕ‖
L

5k
4
x L

5k
2
t

≤ C‖Dskϕ‖L2
x

where sk =
k − 4

2k
(Strichartz with loss)

along with the corresponding versions for the Duhamel operator:∫ t
0
U(t− s)F (s, x)ds
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Next we notice that the integral formulation of (gKdV )k is the fol-

lowing one:

u(t, x) = U(t)ϕ+
∫ t

0
U(t− s)∂x(uk+1(s, x))ds = Tϕ(u(t, x))

then one can perform a fixed point argument in the space

‖u(t, x)‖X = sup
t
‖u(t, x)‖H1

x
+ ‖Dsku(t, x)‖L5

xL
10
t

+ ‖∂xu(t, x)‖L5
xL

10
t

+‖u(t, x)‖L5
xL

10
t

+ ‖u‖
L

5k
4
x L

5k
2
t

One can prove

‖Tϕv‖X ≤ C‖ϕ‖H1
x

+ ‖v‖k+1
X

and hence for ‖ϕ‖H1
x
<< 1 we have Tϕ : BX(0, R) → BX(0, R) and

moreover it is a contration where R = R(‖ϕ‖H1
x
) > 0.
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By the Duhamel formulation we get

U(−t)u(t, x) = ϕ+
∫ t

0
U(−s)∂x(uk+1(s, x))ds

and hence we conclude scattering (by Cauchy criterion) once we show

‖
∫ t2
t1
U(−s)∂x(uk+1(s, x))ds‖H1

x
→ 0 as t1, t2 →∞

By using the dual version of smoothing and Strichartz estimates we

get

‖
∫ t2
t1
U(−s)∂x(uk+1(s, x))ds‖H1

x

≤ C‖uk+1(s, x)‖L1
xL

2
(t1,t2)

+ C‖∂x(uk+1(s, x))‖L1
xL

2
(t1,t2)

≤ C‖u‖L5
t L

10
x
‖u‖k

L
5k
4
x L

5k
2

(t1,t2)

+ C‖∂xu‖L5
xL

10
(t1,t2)

‖u‖k
L

5k
4
x L

5k
2

(t1,t2)
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Strategy to prove large data scattering for k > 4 even

Two fundamental ingredients:

C.Kenig-F.Merle conc./comp.-rigidity

(to get a minimal object)

Extinction of the minimal object

via a functional inequality due to T.Tao
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The Kenig-Merle technique

Consider

α0 = sup{α > 0|u(t, x) scatter provide that E(u(0, x)) ≤ α}

• By small data scattering α0 > 0.

• Aim: to show that α0 =∞.

Step 1 Assume by the absurd α0 ∈ (0,∞) then there exists ϕ ∈ H1(R)
such that:

E(ϕ) = α0

and the corresponding non-linear solution u(t, x) does not scatters.
Moreover the ”minimal” solution u(t, x) is such that

{u(t, x− x(t))|t ∈ R} is compact in H1(R)

for a suitable selection of translations x(t) ∈ R (this property is due
to the minimality of α0!)
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Key tool is the Profile Decomposition

Theorem 2

Let {φn}n∈N be a bounded sequence in H1. There exists (up to

subsequence) {ψj}j∈N ⊂ H1, {W j
n}j,n∈N ⊂ H1, {tjn}j,n∈N ⊂ R and

{xjn}j,n∈N ⊂ R, such that for every l ≥ 1,

φn =
l∑

j=1

U(tjn)ψj(· − xjn) +W l
n

‖φn‖2Ḣλ −
l∑

j=1

‖ψj‖2
Ḣλ − ‖W l

n‖2Ḣλ → 0, as n→∞, for all 0 ≤ λ ≤ 1,

Furthermore, the time and space sequence have a pairwise divergence
property: for 1 ≤ i 6= j ≤ l, we have

lim
n→∞ |t

i
n − tjn|+ |xin − xjn| =∞.

Finally, the reminder sequence has the following asymptotic smallness
property

lim sup
n→∞

‖U(t)W l
n‖L5k/4

x L
5k/2
t

= 0, as l→∞.
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Step 2 To prove the extinction of the minimal element: namely

the unique solution to (gKdV )k which is compact (up to space

translations) is the trivial one.

Basic tool is the following inequality (due to T. Tao)( ∫
ρ(x)dx

)
·
( ∫

k(x)dx
)
>

( ∫
e(x)dx

)
·
( ∫

j(x)dx
)

for every u ∈ H2(R) not identically zero.
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Introduction of a suitable functional

We introduce the quantity∫ ∫
Q(x− y)ρ(t, x)e(t, y)dxdy

and then we get

d

dt

∫ ∫
Q(x− y)ρ(t, x)e(t, y)dxdy

=
∫ ∫

Q(x− y)∂tρ(t, x)e(t, y)dxdy +
∫ ∫

Q(x− y)ρ(t, x)∂te(t, y)dxdy

= −
∫ ∫

Q(x−y)∂xxxρ(t, x)e(t, y)dxdy−
∫ ∫

Q(x−y)ρ(t, x)∂yyye(t, y)dxdy

+
∫ ∫

Q(x− y)∂xj(t, x)e(t, y)dxdy +
∫ ∫

Q(x− y)ρ(t, x)∂yk(t, y)dxdy

and, by integration by parts,
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d

dt

∫ ∫
Q(x− y)ρ(t, x)e(t, y)dxdy

= −
∫ ∫

Q
′
(x− y)j(t, x)e(t, y)dxdy +

∫ ∫
Q
′
(x− y)ρ(t, x)k(t, y)dxdy.

and it implies

[
∫ ∫

Q(x− y)ρ(t, x)e(t, y)dxdy]T−T

= −
∫ T
−T

∫ ∫
Q
′
(x−y)j(t, x)e(t, y)dxdydt+

∫ T
−T

∫ ∫
Q
′
(x−y)ρ(t, x)k(t, y)dxdydt

Notice that by conservation laws

sup
T

∣∣∣[∫ ∫
Q(x− y)ρ(t, x)e(t, y)dxdy]T−T

∣∣∣ <∞
provided that Q ∈ L∞



We introduce a function Φ ∈ C∞(R) such that:

• Φ(x) = x ∀ |x| < 1;

• Φ′(x) ≥ 0;

• |Φ′(x)| = 0 for |x| > 2.

Next, we consider for R > 0 the rescaled functions QR(x) = 2RΦ( x
2R)
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By combining compactness with the T. Tao inequality we get

−
∫ ∫

QR(x(t),x(t))
j(t, x)e(t, y)dxdy+

∫ ∫
QR(x(t),x(t))

ρ(t, x)k(t, y)dxdy ≥ ε0 > 0

where

QR(x(t), x(t)) = {(x, y) ∈ (−R+x(t), R+x(t))×(−R+x(t), R+x(t))}

and hence

−
∫ ∫

Q
′
R(x−y)j(t, x)e(t, y)dxdy+

∫ ∫
Q
′
R(x−y)ρ(t, x)k(t, y)dxdy ≥ η0 > 0

In particular

−
∫ T
−T

∫ ∫
Q
′
R(x− y)j(t, x)e(t, y)dxdydt

+
∫ T
−T

∫ ∫
Q
′
R(x− y)ρ(t, x)k(t, y)dxdydt→∞ as T →∞

hence we get an absurd.
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Thank you for your attention!
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