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Lie algebroids

X : a differentiable manifold, or complex manifold, or a smooth
noetherian separated scheme over an algebraically closed field k of
characteristic zero.

Lie algebroid: a vector bundle/coherent sheaf C with a morphism
of OX -modules a : C → ΘX and a k-linear Lie bracket on the
sections of C satisfying

[s, ft] = f [s, t] + a(s)(f ) t

for all sections s, t of C and f of OX .

a is a morphism of sheaves of Lie k-algebras

ker a is a bundle of Lie OX -algebras
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Examples

A sheaf of Lie algebras, with a = 0

ΘX , with a = id

More generally, foliations, i.e., a is injective

Poisson structures Ω1
X

π−→ ΘX ,

Poisson-Nijenhuis bracket

{ω, τ} = Lieπ(ω)τ − Lieπ(τ)ω − dπ(ω, τ)

Jacobi identity ⇔ [[π, π]] = 0
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Atiyah algebroid of a vector bundle/coherent sheaf E

0 // End (E ) // DE
σ // ΘX

// 0

DE : sheaf of 1-st order differential operators on E with scalar
symbol. If E is locally free:

D(s)α =
∑
i ,β

A(z)αiβ
∂sβ

∂z i
+
∑
β

B(z)αβ s
β

D has scalar symbol if

A(z)αiβ = δαβ v
i (z)

σ(D) = v or σξ(D) = ξ(v)
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Lie algebroid morphisms

f : C → C ′ a morphism of OX -modules & sheaves of Lie k-algebras

C
f //

a   

C ′

a′

��
ΘX

⇒ ker f is a bundle of Lie algebras
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Lie-Rinehart algebras

A a finitely generated commutative, associative unital algebra over
a field k

Lie-Rinehart algebra over (k,A): a pair (L, a) where

L is an A-module equipped with a k-linear Lie algebra bracket
{ , }
a : L→ Derk(A) is a representation of L in Derk(A) (the
anchor) that satisfies the Leibniz rule

{s, ft} = f {s, t}+ a(s)(f ) t

where s, t ∈ L and f ∈ A.
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Derived functors

A an abelian category, A ∈ Ob(A)

Hom(−,A) : →Ab

is a (contravariant) left exact functor, i.e., if

0→ B ′ → B → B ′′ → 0

is exact, then

0→ Hom(B ′′,A)→ Hom(B,A)→ Hom(B ′,A)

is exact

Definition

I ∈ Ob(A) is injective if Hom(−, I ) is exact, i.e., if

0→ Hom(B ′′, I )→ Hom(B, I )→ Hom(B ′, I )→ 0

is exact
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Definition

The category A has enough injectives if every object in A has an
injective resolution

0→ A→ I 0 → I 1 → I 2 → . . .

A abelian category with enough injectives

F : A→ B left exact functor

Derived functors R iF : A→ B

R iF (A) = H i (F (I •))

Example: Sheaf cohomology. X topological space, A = ShX ,
B = Ab, F = Γ (global sections functor)

R iΓ(F ) = H i (X ,F )

Volodya Rubtsov Cohomology of Lie algebroids 8/33



Hyperfunctors

A category with enough injectives, F : A→ B left exact functor

K • complex of objects in A, I • quasi-isomorphic injective
complex

(i.e. there is a morphism K • → I • which is an isomorphism in
cohomology)

RiF (K •) = H i (F (I •))

Example (Hypercohomology): A = ShX , B = Ab, F = Γ (global
sections functor)

K • ∈ K+(ShX )

Hi (X ,K •) = H i (Γ(I •))
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(Hyper)cohomology of a Lie algebroid

C Lie algebroid over a scheme, (ρ,M ) a representation

Ω(C ,M )• = M ⊗OX
Λ•OX

C ∗, ∂C ,M : Ω(C ,M )• → Ω(C ,M )•+1

(∂C ,M ξ)(s1, . . . , sp+1) =

p+1∑
i=1

(−1)i−1ρ(si )(ξ(s1, . . . , ŝi , . . . , sp+1))

+
∑
i<j

(−1)i+jξ([si , sj ], . . . , ŝi , . . . , ŝj , . . . , sp+1)

for s1, . . . , sp+1 sections of C , and ξ a section of Ωp
C

⇒ hypercohomology H•(Ω•E , ∂C ,M ) =: H•(C ; M )
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In the previous examples this reduces to

Cartain-Eilenberg Lie algebra cohomology

de Rham cohomology

foliated de Rham cohomology

Lichnerowicz-Poisson cohomology

The Lie algebroid cohomology of the Atiyah algebroid of a vector
bundle was studied in our joint paper (U. Bruzzo, V. R, Cent. Eur.
J. Math. 10 (2012) 1442–1454.)
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The category Rep(C )

From now on, X will be a scheme (with the previous hypotheses)

Given a Lie algebroid C there is a notion of enveloping algebra
U(C )

It is a sheaf of associative OX -algebras with a k-linear
augmentation U(C )→ OX

Rep(C ) ' U(C )-mod

⇒ Rep(C ) has enough injectives
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Universal enveloping algebra U(L) of a (k,A)-Lie-Rinehart algebra L

A k-algebra with an algebra monomorphism ı : A→ U(L) and a
k-module morphism  : L→ U(L), such that

[(s), (t)]− ([s, t])= 0 , s, t ∈ L ,

[(s), ı(f )]− ı(a(s)(f ))= 0 , s ∈ L, f ∈ A (∗)

Construction: standard enveloping algebra U(Ao L) of the
semi-direct product k-Lie algebra Ao L

U(L) = U(Ao L)/V , V = 〈f (g , s)− (fg , fs)〉

U(L) is an A-module via the morphism ı

due to (*) the left and right A-module structures are different

morphism ε : U(L)→ U(L)/I = A (the augmentation
morphism) where I is the ideal generated by (L). Note that ε
is a morphism of U(L)-modules but not of A-modules, as
ε(fs) = a(s)(f ) when f ∈ A, s ∈ L.
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Lie alg. cohomology as derived functor

Given a representation (ρ,M ) of M define

M C (U) = {m ∈M (U) | ρ(C )(m) = 0}

and a left exact functor

IC : Rep(C ) → k-mod

M 7→ Γ(X ,M C )

Theorem (Ugo Bruzzo 20161)

If C is locally free

H•(C ; M ) ' R•IC (M )

(1) J. of Algebra 483 (2017) 245–261
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Proof

A δ-functor is a collection of functors {S i : A→ B} such that for
every exact sequence 0→ A→ B → C → 0 in A there are
morphisms σi : S i (C )→ S i+1(A) giving rise to a long exact
sequence

0→ S0(A)→ S0(B)→ S0(C )
σ0

−→ S1(A)

→ S1(B)→ S1(C )
σ1

−→ S1(A)→ . . .

functorial w.r.t. morphisms of exact sequences

Theorem

If {S•}, {T •} are δ-functors A→ B such that

S i (I ) = T i (I ) = 0 for all i > 0 when I is an injective object

S0 ' T 0

then S i ' T i for all i ≥ 0.
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We apply this to the functors IC and

Hi (C ;−) : Rep(C )→ k-mod

When C is not locally free this method only provides morphisms

R i IC (M )→ H i (C ; M )
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Grothendieck’s thm about composition of derived functors

A
F−→ B

G−→ C

A, B, C, abelian categories

A, B with enough injectives

F and G left exact, F sends injectives to G -acyclics (i.e.,
R iG (F (I )) = 0 for i > 0 when I is injective)

Theorem

For every object A in A there is a spectral sequence abutting to
R•(G ◦ F )(A) whose second page is

Epq
2 = RpF (RqG (A))
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Local to global

Rep(C )
(−)C

//

IC &&

kX -mod

Γ
��

k-mod

Grothendieck’s theorem on the derived functors of a composition
of functors implies:

Theorem (Local to global spectral sequence)

There is a spectral sequence, converging to H•(C ; M ), whose
second term is

Epq
2 = Hp(X ,H q(C ; M ))
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Hochschild-Serre

Extension of Lie algebroids

0→ K → E → Q → 0

K is a sheaf of Lie OX -algebras

Rep(E )
(−)K

//

IE %%

Rep(Q)

IQ

��
k-mod

Moreover, the sheaves
H q(K ; M ) are repre-
sentations of Q

Theorem (Hochschild-Serre type spectral sequence)

For every representation M of E there is a spectral sequence E
converging to H•(E ; M ), whose second page is

Epq
2 = Hp(Q; H q(K ; M )).
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The extension problem

An extension
0→ K → E

π−→ Q → 0 (1)

defines a morphims

α : Q → Out(Z (K )) (2)

α(x)(y) = {y , x ′} where π(x ′) = x

The extension problem is the following:

Given a Lie algebroid Q, a coherent sheaf of Lie OX -algebras K ,
and a morphism α as in (2), does there exist an extension as in (1)
which induces the given α?

We assume Q is locally free
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Abelian extensions

If K is abelian, (K , α) is a representation of Q on K , and one
can form the semidirect product

E = K oα Q,

E = K ⊕Q as OX -modules,

{(`, x), (`′, x ′)} = (α(x)(`′)− α(x ′)(`), {x , x ′})

Theorem (2)

If K is abelian, the extension problem
is unobstructed; extensions are classified
up to equivalence by the

hypercohomology group H2(Q; K )
(1)
α

E1

��

��

0 //K

BB

��

Q // 0

E2

CC

(2) U.Bruzzo, I. Mencattini, V. R. and P. Tortella, Nonabelian holomorphic Lie
algebroid extensions, Internat. J. Math. 26 (2015) 1550040
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M a representation of a Lie algebroid C . Sharp truncation of the
Chevalley-Eilenberg complex σ≥1Λ•C ∗ ⊗M defined by

0 // C ∗ ⊗M // Λ2C ∗ ⊗M // · · ·

We denote Hi (C ; M )(1) := Hi (X , σ≥1Λ•C ∗ ⊗M )

Derivation of C in M : morphism d : C →M such that

d({x , y}) = x(d(y))− y(d(x))

Proposition

The functors Hi (C ;−)(1) are, up to a shift, the derived functors of

Der(C ;−) : Rep(C ) → k-mod

M 7→ Der(C ,M )

i.e.,
R i Der(C ;−) ' Hi+1(C ;−)(1)
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Realize the hypercohomology using Čech cochains: if U is an
affine cover of X , and F • a complex of sheaves on X , then
H•(X ,F •) is isom. to the cohomology of the total complex T of

Kp,q = Čp(U ,F q)

0 //K|Ui
// E|Ui

π // Q|Ui
//

si
kk 0 (3)

If Ui ∈ U , Hom(Q|Ui
,E|Ui

)→ Hom(Q|Ui
,Q|Ui

) is surjective, so
that one has splittings si

{φij = si − sj} ∈ Č 1(U ,K ⊗Q∗)

This is a 1-cocycle, which describes the extension as an extension
of OX -modules
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0→ K (Ui )→ E (Ui )→ Q(Ui )→ 0

is an exact sequence of Lie-Rinehart algebras (over (k,OX (Ui )))

which is described by a 2-cocycle ψi in the Chevalley-Eilenberg
(-Rinehart) cohomology of Q(Ui ) with coefficients in K (Ui )

(φ, ψ) ∈ Č 1(U ,K ⊗Q∗)⊕ Č 0(U ,K ⊗ Λ2Q∗) = T 2

δφ = 0, dφ+ δψ = 0, dψ = 0

⇒ cohomology class in H2(Q; K )
(1)
α
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The nonabelian case

Theorem (2,3)

If K is nonabelian, the extension problem is obstructed by a class

ob(α) in H3(Q;Z (K ))
(1)
α .

If ob(α) = 0, the space of equivalence classes of extensions is a

torsor on H2(Q;Z (K ))
(1)
α .

Proof

Q can be written as a quotient

of a free Lie algebroid F

(3) E. Aldrovandi, U.Bruzzo, V. R., Lie
algebroid cohomology and Lie algebroid
extensions, J. of Algebra 2018

0

��
J

��
0 // N // U(F ) //

��

U(Q) // 0

OX

��
0
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Ñ i = N i/N i+1, J̃ i = N iJ /N i+1J , for i = 0, . . .

Locally free resolution

· · · → Ñ 2 → J̃ 1 → Ñ 1 → J̃ 0 →J → 0

As HomU(Q)(J ,Z (K )) ' Der(Q,Z (K )), applying the functor

HomU(Q)(−,Z (K )) we obtain

0→ Der(Q,Z (K ))→ HomU(Q)(J̃ 0,Z (K ))
d1−→

HomU(Q)(K̃ 1,Z (K ))
d2−→ HomU(Q)(J̃ 1,Z (K ))

d3−→

HomU(Q)(K̃ 2,Z (K ))→ . . .

The cohomology of this complex is isomorphic to H•+1(Q;Z (K )).
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Pick a lift α̃ : F → Der(K ) of α and get commutative diagram

0 // T //

β
��

F //

α̃
��

Q //

α
��

0

0 // Z (K ) //K //ad // Der(K ) // Out(K ) // 0

where β is the induced morphism.

Define a morphism
o : J̃ 1 → Z (K ) (4)

It is enough to define o on an element of the type yx , where x is a
generator of F , and y is a generator of T

o(yx) = β({x , y})− α̃(x)(β(y)).

Note that o ∈ HomU(Q)(J̃ 1,Z (K )).
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Lemma

d3(o) = 0. Moreover, the cohomology class of
[o] ∈ H3(Q;Z (K ))(1) only depends on α.

Part I of the proof: if an extension exists consider the diagram

0 // T //

β
��

F //

γ
��

Q // 0

0 //K // E // Q // 0

Define
α̃ : F → Der(K ,K ), α̃ = − ad ◦ γ

Then α̃ is a lift of α, and for all sections t of T and x of F

β({x , t})− α̃(x)(β(t)) = 0 (5)

so that the obstruction class ob(α) vanishes.
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Conversely, assume that ob(α) = 0, and take a lift
α̃ : F → Der(K ,K ). The corresponding cocycle lies in the
image of the morphism d2, so it defines a morphism β : T → K ,
which satisfies the equation (5). Again, we consider the extension

0→ T → F → Q → 0.

Note that K is an F -module via F → Q. The semidirect
product K o F contains the sheaf of Lie algebras

H = {(`, x) | x ∈ T , ` = β(x)}.

The quotient E = K o F/H provides the desired extension
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Part II of the proof: reduction to the abelian case

Proposition

Once a reference extension E0 has been fixed, the equivalence
classes of extensions of Q by K inducing α are in a one-to-one
correspondence with equivalence classes of extensions of Q by
Z (K ) inducing α, and are therefore in a one-to-one
correspondence with the elements of the group H2(Q;Z (K ))(1)

Volodya Rubtsov Cohomology of Lie algebroids 30/33



C1, C2 Lie algebroids with surjective morphisms fi : Ci → Q.
Assuming Z (ker f1) ' Z (ker f2) = Z define

C1 ? C2 = C1 ×Q C2/Z ,

where Z → C1 ×Q C2 by z 7→ (z ,−z)

Fix a reference extension E0 of Q by K

Lemma

(1) Any extension E of Q by K is equivalent to a product E0 ?D
where D is an extension of Q by Z (K )

(2) Given two extensions D1, D2 of Q by Z (K ), the extensions
E1 = E0 ?D1 and E2 = E0 ?D2 are equivalent if and only if D1 and
D2 are equivalent
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Open question (Work in progress ( E. Aldrovandi and U. Bruzzo)):

Extend all this to the non-locally free case using free simplicial
resolutions

Volodya Rubtsov Cohomology of Lie algebroids 32/33



Thank you!!
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