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component production.
A world full of geometrical and modeling challenges!!
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Introduction

[
o AM - 3DP: technologies, materials, advantages, open problems

e Design for additive

o Phase-field topology optimization: gradient material
o Adaptive isogeometric analysis

® Process simulations
o Immersed boundary approach

Melt pool: high fidelity simulations
Part-scale: low fidelity simulations

o Two-level method

e Product simulations
o Lattice components
o Industrial components
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e Future activities & directions
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e Conclusion
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» Additive manufacturing (AM) also known as 3D printing (3DP)
» Different from traditional subtractive (machining / milling) or Some AM key-words !! ‘
molding manufacturing

¢ Native digital technology

= @ v’ Technology which was born digital

+* Democratic technology
v' Wide machine cost range
v' Democratic manufacturing & production

Virtual :> I Slicing I :> T\;Iin;e? ¢ Material-dependent technology
Model ode v" many different technologies & materials

v’ 7 classes of processes (ASTM/ISO)
o Material extrusion

Vat Photo Polymerization

Material jetting

Powder bed fusion

Directed energy deposition

Binder jetting process

Sheet lamination

O O O O O O

Createn =P
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Material extrusion
FDM (Fused Deposition Modeling)

o Material: thermoplastic filaments (PLA, ABS,
HIPS,TPU, TPE, PETG, Nylon, reinforced materials)

o Curing: temperature gradient

Vat Photo Polymerization
SLA (stereolithography)

Material: photo-polymeric resins
o Curing: UV laser

Material Jetting ‘

Heater Material spool

Nozzle

Support material

Build platform

Y platform

Vat ‘

Nozzles

o Material: photo-polymeric resins
o Curing: UV lamp

o Possible debinding and sintering step

Ferdinando Auricchio

Material spool

Support material

Build platform

niPV AM — 3DP: 7 classes of processes (ASTM/ISO)
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beam

‘ Directed energy deposition (DED) Electron

Nuzzle

o Material: metal alloys (Ni, Co, Fe, Al, steel) (metal supplier)

o Curing: laser, electron beam, arc Metal wire

Build platform

Laser

| Galvo
Power bed fusion |
Roller
>

o Material: metal alloys (Ni, Co, Fe, Al,
steel), ceramics

Powder bed

o Curing: CO, laser, electron beam

Powder
delivery
chamber

Build platform

Courtesy of Renishaw Inc.
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Advantages

Disadvantages

AM: advantages / disadvantages / impact

UNIVERSITA
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Produce complex geometries: close to free-form flexibility

Produce single device made of multiple components (assembling

more parts into a single one)

Combine different devices and geometries in a single printing batch

Green technology: reduced waste

Accelerate design-testing-production process chain (even in our labs)

Need of support materials (technology dependent)
Very localized physics (multi-scale problem, technology dependent)

Low speed (still a limitation)
High cost (still a limitation)
Interaction with further production steps (subtractive or finishing)

Economics (Impact)

Still production on low volumes: from prototypes to small batches (10.000 components)

Entire supply chain will be radically changed
Expected reduction of energy consumption from 5% up to 27% in many sectors

Ferdinando Auricchio January, 2021 [6]
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Design for additive: challenges
» Close-to-freeform flexibility requiring novel

design approaches
» Topology and shape optimization as tools

for design, focusing on product

e Design for additive
o Phase-field topology optimization: gradient material
functionality and production constraints

o Adaptive isogeometric analysis

[7]
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Phase-field topology optimization (PF top-opt)
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Topology optimization: goal
« Optimal distribution of given amount of material

o Minimize structure compliance (i.e., maximize stiffness)
b

&

¥

Phase-field Method:
« No filtering methods required (cfr. SIMP approaches)

Limit discussion to for linear elastic problems
Introduce standard elastic problem in a domain Q
Objective

div[Ce(u)]=b in Q
u=20 on I} Minimize structure compliance:
Ce(uw)] =t on [
€ etw] N fb-udﬂ+]t-ud[‘
Q Y

Introduce description of meso-structure (variable density, lattice): coperlv distributing material in O
o Obtain a graded design, i.e., structure with varying density property &

Acknowledgments: M.Carraturo, E.Rocca, A.Reali (UniPV & IMATI-CNR), E.Bonetti (Universita di Milano & IMATI-CNR), D.H6mberg (WIAS Institute Berlin)
[8]

Publications:

* Carraturo, Rocca, Bonetti, Homberg, Reali, FA. Graded-material design based on phase-field and topology optimization. Computational Mechanics, Vol. 64, 1589-1600 (2019)

* FA, Bonetti, Carraturo, Homberg, Reali, Rocca. A phase-field based graded-material topology optimization with stress constraint. M3AS, Vol. 30 (08), 1461-1483 (2020)
Ferdinando Auricchio January, 2021
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. o iy
e Messerschmitt-Bélkow-Blohm (MBB) beam o
= Applied force =25 N vy F i
= Material: RGD851 rigid polymer from Stratasys L
(E=2.3 GPa and v=0.3) or®) o0
= 3D printer machine: Stratasys Objet 260 Connex 3 DL 3L 3L | D4

Volume fraction = 0.6 Messerschmitt-Bolkow-Blohm

Mass fraction = 0.4 GmbH;Paytenet al.1998; Bulmanet al.2001

X

X
PY ReSultS 1.0e-04 02 03 04 05 06 07 08 1.0e+00

! Do | oo
1. Black-and-white structure indicates material
2. Density continuously re-distributed within
material region QY

¢
1.0e-04 02 03 04 05 06 07 08 1.0e+00

| L e —
Acknowledgments: G.Alaimo, M.Carraturo, E.Rocca, A.Reali (UniPV & IMATI-CNR)

Publications: Alaimo, Carraturo, Rocca, Reali, FA. Functionally graded material design for plane stress structures using phase field method, Il International Conference on Simulation for Additive
Manufacturing - Sim-AM 2019

Ferdinando Auricchio January, 2021 [9]




\I@UmPV Phase-field gradient top-opt: numerics, 3D printing &

experiments UNvErsTA
Objective: evaluate optimized versus uniform (same weight) specimen in terms of max. displacements

( : N N\ N\ (.
1.0e-0401 02 03 04 05 06 07 08 091.0e
| | | |

\

AN
Discrete map of field variables Generate 3D virtual model

— graded speciment (1

—uniform speciment 2
200 —uniform speciment (4
ol graded speciment (5)

50

0

0123456738
max displacement [mm)|

I Results: for the same load, we observe a reduction of 50% as max. displacement I
Special thanks to: G.Alaimo (ProtoLab) & S.Marconi (3D4Med)
Acknowledgments: G.Alaimo, M.Carraturo, E.Rocca, A.Reali (UniPV & IMATI-CNR)

Publications: Alaimo, Carraturo, Rocca, Reali, FA Functionally graded material design for plane stress structures using phase field method, Il Int.Conf. Simulation for AM - Sim-AM 2019

Ferdinando Auricchio January, 2021 [10]
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3D cantilever
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Phase-field single material top-opt:
adaptive isogeometric analysis UMV
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* Idea: Approximate mechanical and phase-field solution space using IGA, since higher continuity of

IGA basis functions very effective for phase-field methods
» Adaptive Isogeometric Analysis as presented in Henning et al. 2016 allows to locally concentrate

the computational effort at the material interface without any loss of accuracy Work in progres...
e Single material

[
00e+00 02 04 06 08  10e+00
| | | |

e Ei * 60% reduction in terms of DOFs
m e * 40% less CPU time TECHNISCHE
F + Higheri i D AT
Higher improvement are likely expected for the 3D case... DRESDEN

Acknowledgments: Markus Kastner, Paul Henning, Leonhard Heindel (TU Dresden), M.Carraturo, A.Reali (UniPV & IMATI-CNR)
Publications: Henning, Heindel, Carraturo, Reali, FA, Kastner. Projection Methods in Adaptive Isogeometric Analysis and its Application to Topology Optimization, Proceedings in Applied Mathematics
and Mechanics (accepted).

Ferdinando Auricchio
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Process simulations: challenges
» Large scale range both in space and time
» Complex physical phenomena to be modeled

» Predict defects due to process

® Process simulations
o Immersed boundary approach
=  Melt pool: high fidelity simulations
= Part-scale: low fidelity simulations

o Two-level method

January, 2021 [13]
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LPBF-AM process simulations

Focus on the most industrially relevant technology: laser powder bed fusion for metal components (LPBF)
AM-design-through-analysis

L ™
B P

— —
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| Standard AM-design process
3D virtual model is developed

* Thermo-mechanical analyses

can be performed directly on

within a CAD environment
Geometry to be repaired

Conform mesh generated
Finite element analysis of the

CAD models

e STL repair step required only
once the final design ready to

be printed
Remarkable computational

process
e To update the geometry, need
to go back to CAD software speed-up for multi-layer
and start procedure once high-fidelity analyses of
complex geometrical features x

again ...

Acknowledgments: Ernst Rank, Stefan Kollmannsberger, John Jomo, Ali Ozcan, Nils Zander (TUM), M.Carraturo, A.Reali (UniPV & IMATI-CNR)
January, 2021 [14 ]

Kollmannsberger, Ozcan, Carraturo, Zander, Rank. A hierarchical computational model for moving thermal loads and phase changes with applications to selective laser melting. CAMWA, Vol. 75 (5), 1483-1497 (2018)
Carraturo, Jomo, Kollmannsberger, Reali, FA, Rank. Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for laser powder bed fusion processes. Additive Manufacturing, Vol. 36, 101498

Publications:

(2020)
Ferdinando Auricchio
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The Finite Cell Method (FCM) DIPAVIA
e |nitial domain discretization
X X X X X\
= - X x A
- e \ X X | X X Xe afoN
N . X X |X X X X|[X x
d e - X X x x|x x| Ix x/x x
a(x) a(u,v) =1 (v)
1: VX€ENynys
with  a(x) = Py
() 0: VX€&Qpnys D cell
Integration
tn—|—1 sub-grid
powder

» Weak form modified using a parameter a evaluated at Gauss points
» Integration points distributed on sub-cells to accurately integrate over

discontinuities at boundaries
tn—l

air/l* |

powder
Ferdinando Auricchio

e Application to growing domains
» LPBF is a layer-by-layer process
» Physical domain grows during the process
» Distinguish among cell-layers (where shape N
functions are defined) and powder-layers \
(where Gauss points are activated) .
X X X X
X X1 X
The cell-layerisnot A first powder-layer is added to
ive the physical domain and the
cell-layer is activated

The powder entirely fills
the cell

January, 2021
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Immersed boundary approach for growing domain:
different scale approaches U}

Melt-pool analysis Objective

High-fidelity simulation * Predict temperature and stress state at the melt-pool
length-scale (element size ~ 10um)

e Evaluate melt-pool shape and cooling rate

Model features
* Few laser strokes can be simulated (10+100 mm length)
* Powder isincluded in the model

— —
Virtual Modeling and Additive Manufacturing for Advanced Materials

e Due to problem complexity, need to
choose a-priori solution scale
e Choose quantities of interested

RENISHAW

* Phase-change has to be taken into account

Input parameters Range values

- Laser power 100+1000 [W] Part-scale analysis
Laser speed 0.2+1.5 [m/s] Low-fidelity simulation Objective
Laser spot radius ~ 25+100 [pm]  Predict part deflection after base plate removal
[600 * Evaluate residual stresses in the final component
:;‘;g Model features
20 » Complete process is simulated (including post-processing
[%0: steps, e.g. part removal)

* Powder modeled as conduction BC, not included in the
domain

* Latent heat usually neglected

Ferdinando Auricchio January, 2021 [16]
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ocT + pLfy. — V(KVT) =0 in Q] V-6+b=0

~ Meann(s-—2 (T TS+Tl) +1
foe = 5 |t@nh| S 2

g =g+ o 4 gP!
g = aATI

e Initial conditions 5 o ePl — ]-,a_q)
Tx,t)=T, at t=0 Jdo
® =0,y -0, T)<0

e Boundary conditions
kVT(x,t) -n=q°+q* on Ty

1 1 " — 2 2 2 2 Temperature [°C]
Radlatlon heat ﬂuX. qs — O-E(T + Te )(Te I T ) 2.0e+02 400 600 800 1000 12‘00 14100 146e|+03
., 20n Y—Yo A X~ Xg
Laser heat source: g~ = ——exp|—2 — +——
o T T

Obtained fitting measured
data with a gaussian

distribution
‘ Thermal problem Mechanical problem
Ferdinando Auricchio CompMech Group January, 2021 [17 ]




IB melt pool: experimental validation of thermal model
(AMBench2018) )i

* Ex-situ measurements of the melt-pool cross
section s ;

—
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e Material: INCONEL 625

* No powder involved

~

* Adjacent, independent laser scans using 3 different
combinations of power and speed

Numerical
result

2482 mm

* [n-situ measurements of the melt-pool length.

view of the NIR camera so that the \ ) Equiv. Signal [DL]
camera observes only the steady Measured Thermographic Image Optical Blur, Motion Blur, Spatial Digitization (3.3 umipixel)

state melt pool. o 4000
Measured Modeled
3000 3000
2500 2500
2000 2000
1500 1500
1000 1000
500 500

0

20 40 60 80 100 120 140 160 1

80 200 220 20 40 60 80 100 120 140 160 180 200 220

I 3.18 mm 10

Source: https://www.nist.gov/ambench/amb2018-02-description

90

Acknowledgments: Brandon Lane, Ho Yeung (NIST), Kollmannsberger (TU Munich), M.Carraturo, A.Reali (UniPV & IMATI-CNR)
Publications: Kollmannsberger, Carraturo, Reali, FA. Accurate Prediction of Melt Pool Shapes in Laser Powder Bed Fusion by the Non-Linear Temperature Equation Including Phase Changes Integrating
Materials and Manufacturing Innovation, 8, 167-177 (2019)

Ferdinando Auricchio

CompMech Group January, 2021 [18]




ﬁf@UﬂIPV IB thermo-mechanical part-scale model

Virtual Modoling and Additive Manufacturing for AGvanced Matorials

e Heat transfer equation UBT\QE&S/LTA
ch —V(kVT) =Q in Q
Q = W (heating)
Q = 0 (cooling) Import .stl file
e Thermal problem Initial conditions ¥
Tx,t)=T, at t=0 Activate m
e Thermal problem boundary conditions powder-
kKVT(x,t) -m=¢q°+qP on Ty EL Solve Thermal Problem
q°® conduction through the upper layer (cooling)
gP conduction through the powder Apply equivalent _ !
thermal load on | Solve Mechanical
e Mechanical equation the heat affected Problem (cooling)
Vo = 0 ¢ volume (HAV) =
= 0
— oth el pl 7'y
€= gl + f::h T & Base
e = a"ATI Create a new plate
ol 6_(1) cell-layers removal
4 do

Publications Carraturo, Jomo, Kollmannsberger, Reali, FA, Rank, Modeling and experimental validation of an immersed thermo-mech. part-scale analysis for LP-BFP. Additive Manuf. 36 (2020)
Ferdinando Auricchio January, 2021 [19]
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B) Parts 2 and 3 are
separated for residual
strain and distortion

A) Parts on the
build plate after

* Problem setup:

ridges

measurements

e Part height: 12.5 mm
* # total powder layers: 625
e Layer thickness: 20 um

» Experimental setup:

e 4 cantilever beams are printed on a build plate
using Inconel 625 using an EOS M270.

* Part deflection after support removal is
measured at the eleven ridges

Upward deflection [mm)]

 Simulation setup:
e 2 FCM discretization with agglomerated layers of

2.5 mm and 0.5 mm thickness, respectively 125 e —— —

and 25 powder layers / agglomerated layer

* Numerical results:
* Max. deflection relative error < 5%

» Almost perfect correlation with experimental
measurements (~99%)

niPV Experimental Validation

UNIVERSITA
DI PAVIA

N —e— AMB2018-01-625-CBM-B1-P3
N - - Numerical results m = 125

- - - Numerical results const. m = 25

0 10 20 30 40 50 60 70
X [mm)]

Publications: Carraturo, Jomo, Kollmannsberger, Reali, FA, Rank, Modeling and experimental validation of an immersed thermo-mechanical part-scale analysis for LP-BFP. Additive Manuf., 36 (2020)

CompMech Group

Ferdinando Auricchio

January, 2021 [20]
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Physical
domains

Computational

grids

Ferdinando Auricchio

AM: toward a two-level method

Final physical domain Q Physical domainQ @ t
Green: component to be Gray: active domain

printed Yellow: dormant domain
Global coarse mesh: Global coarse mesh @ t
* resolves coarse scale * fixed throughout simulation
* covers entire domain » dormant region: numerically

as an artificial domain
CompMech Group

UNIVERSITA
DI PAVIA

Different scales @ t:
Cyan: coarse-scale region Qt+
Magenta: fine-scale region Qt-.

Full discrete problem @ t

* fine local mesh covers fine-scale region

* coarse global mesh covers entire
domain

January, 2021 [21]
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AM: toward a two-level method

UNIVERSITA
DI PAVIA

— —
Virtual Modeling and Additive Manufacturing for Advanced Materials

» GOAL: approach problems with small portion featuring a significantly more complex physics
o Additive manufacturing / Fluid flow with immersed membranes

> IDEA: avoid adaptivity, computationally attractive, difficult to generate, possibly with preconditioning issues
o DIFFICULTIES: problems with time-dependent evolution of region requiring fine mesh

» ORIGINAL TOY PROBLEM: steady thermal problem
» Two regions, Q4 and Qg with different thermal properties As in Fat Boundary Method, split original problem into two

V-(kVT) =f in Qu&Qp subproblems ( Global & Local )

T=Tp on Ip L'y .
oT Global problem in Q. ‘ Local problem in Q_
Ka— =q on Iy
n
O, =0, U Qg O_=Q0p
= {KA in Qg r, Qa K, =Ky In K_=Kg In (_
|k in 0
B B Y
= continuity condition on y / initial condition
= piecewise heat conductivity B
=  Extension to transient & phase transition problems
Acknowledgments: A.Viguerie, S.Bertoluzza, FA (UniPV & IMATI-CNR),
Publications:
* Viguerie, Bertoluzza, FA. A Fat boundary-type method for localized nonhomogeneous material problems Computer Methods in Applied Mechanics and Engineering, 364, 2020
* Viguerie, FA. Numerical solution of additive manufacturing problems using a two-level method, International Journal for Numerical Methods in Engineering, 2020 (accepted)
Ferdinando Auricchio January, 2021 [22]
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v’ Solve iteratively until convergence is reached

v' Use two-level formulations to derive a two-level iterative method

Step k (iterate until convergence)
k.1 Obtain temperature distribution Ty, by
solving on subdomain Q_
k.2 Obtain temperature distribution Ty, by
solving on the entire domain Q ,
k.3 Perform relaxation step to obtain a
temperature distribution T}, ¢
v" Under-relaxation needed, as iterative algorithm may suffer instability ( k. >> K, )
v' Convert in weak form and discretize in the FE spirit (P2 piecewise quadratic FE)

January, 2021

: AM: toward a two-level method (Cé‘%’)

UNIVERSITA

» Since Q. c Q,, in Q_ we have two distinct functions at the same time, a local one and a global one DI PAVIA
» Theorem: Two level formulation (Q. & Q.) is equivalent original formulation (Qs & Q)

V. (VT ) =f in Q_
Te, =T¢ ony
- 0T} 11
-V (K+VTI:_+1) =f a0\ + (ke — K-) on Q4
_ oT,F
T,:Zrl =Ty on Ip & Ki el q on Ip
on
Ta., =0T + (1 —0)T, with 6 € (0,1]

[23]
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Linear steady thermal problem with Q unit square and Qg top rectangle

Two-level method: linear steady thermal problem

| Global problem: 1,

Local problem: h_

AY
X I I I qu=0,q,,¢0
i Qe Q.
|
|
|
Yy _ I'=T, QA X »X I >

H=10,L=10, H_ = .05, k = 1.0, k- = 20.0, Tp = 20
(1 —x)?
.0004

q = 2000 exp (

GOAL: investigate error in terms of global mesh size h, vs local mesh size h_
IDEA: for different levels of h,, observe error when refining h_

Compute solutions for three global uniform meshes: h,.=1/20, 1/40, 1/80
Plot error wrt reference solution ( uyef on a single fine uniform mesh with

h = 1/500)

Ferdinando Auricchio

) H_/H=5% r,/k_=5%

L? Error

® For each curve the rightmost point

UNIVERSITA
DI PAVIA

corresponds to the solution obtained
without using the two-level algorithm

® Refinement of local mesh h_ reduces error
for each level of h,

e Refine the local mesh to gain accuracy

® Accuracy improvements are not less
pronounced as we refine global mesh

2 ;
10 =%
g T
s —O—’
10 e _a
I o’ 1
107+ —_—— E
[ /,o
- ,o’/ |
10° - o=~ oh, —1/20]
’ ah, =1/40
L 'eh_|_:1/80
-6 o : R
10
103 102 107"
h_ level
Jaliualy, zuc.i |_L'+]



AM: toward a two-level method
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Unsteady non linear thermal problem with moving heating source (heating/cooling)
Evolving domain, i.e. domain changes in time

Temperature profile Material profile
Black: powder
Yellow: solid

Temperature (C) Phase

20,00 76500 151000 225500  3000.00 0.0 1.67 3.33 2.0

|||||||\H|||||||m1|||||||ww H"""”|""“”'li“

Ferdinando Auricchio January, 2021 [25]
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® Product simulations
o Lattice components

o Industrial components

Ferdinando Auricchio

Product simulation challenges

» Quality control of the final parts

» Material characterization

» Mechanical properties of the printed

part

-

January, 2021

UNIVERSITA
DI PAVIA
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MOTIVATION: e lattice structure very appealing in terms of lightness
® AM lattice structures with long/expensive mechanical characterization procedure

[_2 1400
1200
1000
800
600
400
200

force [N]

0 10 20 30 40 50
displacement [um]

3D printed lattice Experimental campaign Lattice mechanical properties

25

y 20
Joe 5
>3 f o . Aalto University

. [MPa]

Numerical characterization
of lattice structures as an
effective and reliable
alternative

0 | |
0 0.05 0.1 0.15
(7]

Numerical analysis Numerical
characterization

Acknowledgments: N. Korshunova, S. Kollmannsberger, E. Rank (TUM) J. Niiranen, S.B. Hosseini (Aalto Uni) G.Alaimo, M.Carraturo, A.Reali (UniPV & IMATI-CNR)
Publications: Korshunova, Alaimo, Hosseini, Carraturo, Reali, Niiranen, FA, Rank, Kollmannsberger, Tensile and bending behavior of additively manufactured octet-truss structures (in preparation)

January, 2021 [27 ]
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LPBF product simulations: lattice components
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e As-manufactured vs as-designed components

= LPBF processes: introduces defects on the geometry, e.g., geometric
defects due to lack of fusion defects

= Influence of defects on 3D printed mechanical properties cannot be
neglected (Maconachie 2019)

= As-manufactured geometrical model of the part should be used for
a reliable numerical analysis of the product

= Computed tomography (CT): optima choice for acquisition of as-
manufactured geometry of 3D printed parts

Signed distances,(mm)

0.473
[ 0.3
— 0.2
— 0.1

0
-0.1
-0.2

-0.3
-0.390

e Immersed Numerical Analysis of CT-scan

= CT-scan images: very large and usually unaffordable high
computational cost to generate a conforming mesh

= As-designed (CAD) models: not reliable for numerical analyses

= Finite Cell Method: possible solution to compute directly on CT-scan

images obtaining reliable numerical results with a reasonable
computational cost

Ferdinando Auricchio

January, 2021 [ 28]



i‘f@UanV LPBF lattice components: (¢#))

T three-point bending test validation U;‘Z,E@fﬂ’*

Objective: compare experimental vs predicted
response

Experimental settings

e Uniaxial test

* Three-point bending test

* Four octet-truss structures with varying thickness

Comparison

» CAD-based model (commercial codes)
* CT-based model (using FCM)

* Experiments

m Experimental values
m Numerical as-build
m Numerical as-designed

Results:

* CT-based model: well capture experimental data

* CAD-model: also for bending rigidity - values
approx. 45% lower than experimental data

Bending rigidity N/mm
171

278
I 1124
" 1170
. 612

NN
o
n

<t n

8 9

- ll-

2X32X1 2X32X2 2X32X3 2X32X4

Ferdinando Auricchio January, 2021 [29 ]
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Step 1: evaluation of residual distortion
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Step 2: compensation

Z Twin-cantilever beam compensated specimen
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~ USB = 0.06 mm

Ferdinando Auricchio January, 2021 [30]



D@UNPV

—
Virtual Modeling and Additive Manufacturing for Advanced Materials

UNIVERSITA
DI PAVIA

e Future activities & directions

Ferdinando Auricchio January, 2021 [31]



)

T

(Gl

A
%

DI PAVIA

—4

HP JET FUSION 580 COLOR

* Technology: Multi Jet Fusion

e Chamber: 332 x 190 x 248 mm
* Materials: PA12 — PA12HR

* Precision: Up to 10 um

RENISHAW AM400

Ni718, Ti64AIV
* Precision: Up to 50 um

UNIVERSITA UniPV — Additive Manufacturing Laboratories

DMG MORI CMX 600V

* Technology: Selective Laser Melting
e Chamber: 250 x 250 x 300 mm
* Materials: SS316L, Al12Mg10, Ni625,

Technology: CNC
Chamber: 600 x 500 x 900 mm
Materials: metals, plastics
Precision: Up to 2 um

COMPMECH

Computational Mechanics & Advanced Materials

CONNEX OBJECT 260

* Technology: PolyJet

e Chamber: 255 x 252 x 200 mm

* Materials: Rigid opaque, Vero
series, Tango series, Bio-
compatible materials

* Precision: Up to 20 um
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Grasping :
Printed with \
HP Jet Fusion

Printed with
Renishaw

AM400 I

CNC operations
a4 realized with DMG

Final Assembling
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Computational Mechanics & Advanced Materials
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UNIVERSITA UniPV — AM redesign and optimize CO M PM EC H

DI PAVIA Computational Mechanics & Advanced Materials
Original Optimization Simulation & Additively manufactured
design of new design validation & experimental validation

Original

Model parameter fitting
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January, 2021

* industrial research: combination additive-subtractive / component simulation & production

Ferdinando Auricchio
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e Conclusion
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Massimo Carraturo, Stefania Marconi, Gianluca Alaimo,
Alessandro Reali, Michele Conti, Simone Morganti, ....
... and all the members of Pavia team !!
3D printing ... a real breakthrough technology
CompMech Group January, 2021 [38]




