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Optical Acquisition

 Numerous technologies exist for optical acquisition
of 3D models: laser scanning, structured light
scanning, structure from motion, time of flight, etc.

e Triangulation is the simple principle underlying
many methods.

e Usually, reconstruction consists of two phases:
» Reconstruction of points from images / '

* Reconstruction of 3D surface from points




Overview

* 3D Reconstruction from point clouds
« Non-rigid registration through smoothing before (or after) reconstruction

e Using graph methods to capture very thin structures



Neighborhood Graph vs 2D Delauny Triangulation

Connect each point to
all neighbours within a
given radius

2D Delaunay
triangulation (trimmed)
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3D Reconstruction
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Basically, this is the problem



Combinatorial 3D Reconstruction

e Connect points to form triangles

e Caveat: we usually require a manifold triangle mesh:
e All edges incident on at most two triangles
» Triangles form a single loop around each vertex

 In practice, many methods start from the Delaunay Tetrahedralization:

« [Cazals and Giesen 2006] provide a nice overview



Volumetric Reconstruction

Find a characteristic function, y : R3—[0,1], such that for a point, x,
e y(x) <tif x1sinside

e y(x)>tif x 1s outside

e %(x) =1 if x 1s on the surface

For some threshold, t

Usually, x is stored in tabulated form in a volume, i.e. voxel grid.

A manifold surface can now be found using iso-surface contouring
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Surface Contour

Iso

e RIS
L O RS K Y
e e
LS
SRR
vz 5t

0
N

/[
2

()
{

ing [Frisken 98, Nielson 04, AB et al. 12] to marching

Dual contouring identifies faces separating inside from outside then
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Poisson Reconstruction

Estimated normals can be construed as a vector field V

We want gradients of yto match Vie. Vy=V :\\,
Applying divergence,V - Vy =V - V, we arrive at _ /
a Poisson problem, Ay =V -V

This insight led to the Poisson Reconstruction method [Kazhdan et al.
2006 ]. Several later improvements by the authors.



Volumetric Reconstruction

« y does not need to be globally defined

 This leads to

( ) Zi Wi(X)¢i(X)
X) =
i Zi Wi(X)

e w;=exp(—||x— pl-||2/02) clamped to limited support,

« Similar to FSSR [Fuhrmann and Goesele 2014]
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Volumetric Reconstruction

Input points and estimate norms (usually by local plane fitting)
Create voxel grid, V, and weight grid, V_w
Execute code below:

for i in range(len(points)):

p,n = points[i], norms[i]

for vx1 in support(dim, world2grid(p)):
x = grid2world(vx1l)
d=na@ (x-p)
w = Gaussian(x-p)
Vivxl] +=d *x w
V wlvxl] += w

Input: 666750 points
Volume dimensions:

522 % 1023 x 751
Output:
1.1 x 106 triangles

for vx1 in np.ndindex(dim):
VIvxl] = V[vxl] / V_wlvx1]

Now, compute the mesh by iso-surface contouring.




Scale Space Meshing

Method due to Digne et al. [2011]

Observation: smoothing point cloud leads to
easier reconstruction problem (more points used)

Reconstruction using Ball Pivot Algorithm
[Bernardini et al. 1999].

After reconstruction, we can put the points back

Input: 666750 points
Output:

1.3 x 106 triangles









Mesh Comparison




Mesh Comparison




Mesh Comparison

10 iterations of Taubin smoothing




The Need for Non-Rigid Registration
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Mesh reconstrcted using oNe
[Boltcheva, D. and Lévy, B. 2017]




Non-Rigid Registration through Smoothing

e Optical scans of the same object usually differ by a slight deformation:
e Our camera lens is not a pinhole: some lens distortion unmodeled
 Many materials are slightly translucent
« Some objects are deformable

* We could remove the noise by smoothing, but that would wash out features

e Our scheme: smooth the reconstructed mesh, but keeping subscans as
rigid as possible



Toy Example

e |deal data
® 1st noisy sample set

® 2nd noisy sample set °
[
o’ Hb
[ ) . .
* Dotted line connects samples ‘e
from two data sets: hence o
the high frequency noise . .
‘e

® o0 ® o O ®.
............



Toy Example

e |deal data
® 1st noisy sample set

® 2nd noisy sample set °
Laplacian Smoothing o
o 77
[ 4 . .
 The Laplacian is a deformation ‘o
vector we can apply to each 7
point . e
le



Toy Example

e |deal data

® 1st noisy sample set

® 2nd noisy sample set °
Laplacian Smoothing

Proposed Method

 Smooth the deformation
before applying it, yields
green curve




Non-Rigid Registration through Smoothing

* We developed a method for Non-Rigid Alignment (NRA) which allows for
different sources of displacement [Gawrilowicz and AB 2014]

e Theenergyis E = ||D — T||? + a||MD||?, where

T are target displacements

D the displacements we seek

M incidence matrix for sub scans

a is a parameter controlling stiffness






Smoothing




NRA







e Original scans,
color coded




 NRA applied with
T = graph Laplacians
computed from Co3Ne
reconstruction




 NRA applied with
T = centroids of k-nearest
neighbours.




* Owl before (left) and after (right)
NRA with graph Laplacian
displacements




Comments and Caveats

* This NRA method assumes a good rigid registration and only limited
deformation

* You can apply NRA even after combinatorial reconstruction, but also using
the neighborhood graph of the combined point cloud.

* The main benefit of graph Laplacians computed from mesh is speed.



Features not handled so far ...

LiDaR scan of a free standing
Oak tree.
Courtesy of Ebba Dellwik,

DTU Wind Energy



3D Model




Aka first non-constant

Fiedler Vector s

Opreator




Mesh as Graph
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Separators from Fiedler vector
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« Using algorithm similar to u 0
Dijkstra’s we visit all vertices | A3
in order of Fiedler vector ' ey
value
ey Mg et o
* For specific time steps, ol : PO et
we output the frontas "¢ - T
a selection of vertices 4

(color coded)



Skeleton
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Repeat the process for
several eigenvectors of the
Laplace-Beltrami
eigenvector

Results are increasingly
hopeless ...
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* We can significantly improve the
skeleton by packing separators
from a variety of eigenvectors
[AB & Rotenberg 2020]
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Computing Local Separators

4\
b

Local separators are separators
of a subgraph. In practice, we
grow a cluster of vertices and

a separator is found when the
front breaks into two components

[AB & Rotenberg 2020]



Skeleton from Local Separators
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Local Separators

[AB & Rotenberg 2020]



Skeleton from Local Separators
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[AB & Rotenberg 2020]



Skeletons Compared
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Local separators

LBO Eigen vector skeleton



Skeleton of Tree




Reconstructing the Tree

e Leonardo da Vinci estimated that in branches, the cross-sectional area of daughter
branches sum to the area of the mother branch [Villesen 2020]:

N
d® =Y d
1=1

e This appears to be a good model near the trunk, less so close to the smallest
twigs. Tree was reconstructed using convolution surfaces with radius given by
equation above using model fitted A

« The skeleton graph was also processed to attach loose branches [Villesen 2020]
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Looking Forward

« Surface reconstruction is both trivial and extremely hard!

« Combinatorial methods and graph structures point to one future
direction.

e Another direction is optimising shapes directly to match input images
[Jensen 2021]
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