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Optical Acquisition
• Numerous technologies exist for optical acquisition 

of 3D models: laser scanning, structured light 
scanning, structure from motion, time of flight, etc.


• Triangulation is the simple principle underlying 
many methods.


• Usually,  reconstruction consists of two phases:


• Reconstruction of points from images


• Reconstruction of 3D surface from points



Overview

• 3D Reconstruction from point clouds


• Non-rigid registration through smoothing before (or after) reconstruction


• Using graph methods to capture very thin structures



Neighborhood Graph vs 2D Delauny Triangulation

Connect each point to 
all neighbours within a 
given radius

2D Delaunay 
triangulation (trimmed)



3D Reconstruction

Basically, this is the problem



Combinatorial 3D Reconstruction
• Connect points to form triangles


• Caveat: we usually require a manifold triangle mesh:


• All edges incident on at most two triangles


• Triangles form a single loop around each vertex


• In practice, many methods start from the Delaunay Tetrahedralization:


• [Cazals and Giesen 2006] provide a nice overview



Volumetric Reconstruction
• Find a characteristic function, χ : R3→[0,1], such that for a point, x, 


• χ(x) < τ if x is inside  

• χ(x) > τ if x is outside 

• χ(x) = τ if x is on the surface 

• For some threshold, τ 

• Usually, χ is stored in tabulated form in a volume, i.e. voxel grid.


• A manifold surface can now be found using iso-surface contouring



Iso-Surface Contouring
• Prefer dual contouring [Frisken 98, Nielson 04, AB et al. 12] to marching 

cubes.


• Dual contouring identifies faces separating inside from outside then 
pushes vertices to surface.



Poisson Reconstruction

• Estimated normals can be construed as a vector field V

• We want gradients of χ to match V, i.e.  

• Applying divergence, , we arrive at


• a Poisson problem, 


• This insight led to the Poisson Reconstruction method [Kazhdan et al. 
2006 ]. Several later improvements by the authors.

∇χ = V

∇ ⋅ ∇χ = ∇ ⋅ V

Δχ = ∇ ⋅ V

χ

V



• χ does not need to be globally defined


• This leads to 
 




•   clamped to limited support,  
and   


• Similar to FSSR [Fuhrmann and Goesele 2014]

χ(x) =
∑i wi(x)ϕi(x)

∑i wi(x)

wi = exp( −∥x − pi∥2/σ2)
ϕi = ni ⋅ (x − pi)

Volumetric Reconstruction

x

pi

ni



Volumetric Reconstruction
Input points and estimate norms (usually by local plane fitting) 
Create voxel grid, V, and weight grid, V_w 
Execute code below:

Now, compute the mesh by iso-surface contouring.

Input: 666750 points

Volume dimensions:  




Output:


 triangles

522 × 1023 × 751

1.1 × 106



• Method due to Digne et al. [2011]


• Observation: smoothing point cloud leads to 
easier reconstruction problem (more points used)


• Reconstruction using Ball Pivot Algorithm 
[Bernardini et al. 1999].


• After reconstruction, we can put the points back

Scale Space Meshing

Input: 666750 points

Output:


 triangles1.3 × 106





0



Mesh Comparison



Mesh Comparison



10 iterations of Taubin smoothing
Mesh Comparison



The Need for Non-Rigid Registration

Mesh reconstructed using Co3Ne

[Boltcheva, D. and Lévy, B. 2017]



Non-Rigid Registration through Smoothing

• Optical scans of the same object usually differ by a slight deformation:


• Our camera lens is not a pinhole: some lens distortion unmodeled


• Many materials are slightly translucent


• Some objects are deformable 


• We could remove the noise by smoothing, but that would wash out features


• Our scheme: smooth the reconstructed mesh, but keeping subscans as 
rigid as possible



Toy Example

• Dotted line connects samples 
from two data sets: hence 
the high frequency noise



Toy Example

• The Laplacian is a deformation 
vector we can apply to each 
point



Toy Example

• Smooth the deformation 
before applying it, yields 
green curve



Non-Rigid Registration through Smoothing

• We developed a method for Non-Rigid Alignment (NRA) which allows for 
different sources of displacement [Gawrilowicz and AB 2014]


• The energy is  ,  where


•  are target displacements


•  the displacements we seek


•  incidence matrix for sub scans


•  is a parameter controlling stiffness

E = ∥D − T∥2 + α∥MD∥2

T

D

M

α





Smoothing



NRA





• Original scans,  
color coded



• NRA applied with  
T = graph Laplacians 
computed from Co3Ne 
reconstruction



• NRA applied with  
T = centroids of k-nearest 
neighbours.



• Owl before (left) and after (right) 
NRA with graph Laplacian 
displacements



Comments and Caveats

• This NRA method assumes a good rigid registration and only limited 
deformation


• You can apply NRA even after combinatorial reconstruction, but also using 
the neighborhood graph of the combined point cloud.


• The main benefit of graph Laplacians computed from mesh is speed.



Features not handled so far …

LiDaR scan of a free standing 
Oak tree. 
Courtesy of Ebba Dellwik,  
DTU Wind Energy



3D Model



Fiedler Vector
Aka first non-constant 
eigenvector of the  
Laplace-Beltrami  
Opreator



Mesh as Graph



Separators from Fiedler vector

• Using algorithm similar to 
Dijkstra’s we visit all vertices 
in order of Fiedler vector 
value


• For specific time steps, 
we output the front as  
a selection of vertices 
(color coded)



Skeleton

• A skeleton is trivially 
computed by contracting 
separators obtained from 
front sets.


• The skeleton is not  
satisfactory



• Repeat the process for 
several eigenvectors of the 
Laplace-Beltrami 
eigenvector


• Results are increasingly  
hopeless …



• We can significantly improve the 
skeleton by packing separators 
from a variety of eigenvectors 
[AB & Rotenberg 2020]



Computing Local Separators



Computing Local Separators

Local separators are separators  
of a subgraph. In practice, we  
grow a cluster of vertices and  
a separator is found when the 
front breaks into two components


[AB & Rotenberg 2020]



Skeleton from Local Separators



Local Separators

[AB & Rotenberg 2020]



Skeleton from Local Separators

[AB & Rotenberg 2020]



Skeletons Compared

Local separators LBO Eigen vector skeleton



Skeleton of Tree



Reconstructing the Tree
• Leonardo da Vinci estimated that in branches, the cross-sectional area of daughter 

branches sum to the area of the mother branch [Villesen 2020]:


• This appears to be a good model near the trunk, less so close to the smallest 
twigs. Tree was reconstructed using convolution surfaces with radius given by 
equation above using model fitted Δ


• The skeleton graph was also processed to attach loose branches [Villesen 2020] 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Looking Forward

• Surface reconstruction is both trivial and extremely hard!


• Combinatorial methods and graph structures point to one future 
direction.


• Another direction is optimising shapes directly to match input images 
[Jensen 2021]
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