Seeing in 3D from a Single Image with Geometric Priors

Adrien Bartoli

Endoscopy and Computer Vision group (EnCoV)

Institut Pascal – UMR6602, CNRS, Université Clermont Auvergne, SIGMA CHU de Clermont-Ferrand, Departments of Gynecologic Surgery, HPB Surgery, Hepatogastroenterology and Radiology

Toby Collins, Daniel Pizarro, Nicolas Bourdel, Michel Canis, Emmanuel Buc, Bertrand Le Roy et al

3D Reconstruction a.k.a. Inverse Imaging

To convert one or multiple 2D images to a 3D model of the observed object or environment

3D Reconstruction Approaches

3D Reconstruction Approaches

Physics-based

Analysis and **modelling** of the imaging process

Hand-crafted explicit use of visual cues

correspondences

- Structure-from-Motion / SLAM ٠
- Visual geometry theory •
- Multiple images + rigidity

The result is **quantitative** and **uncertainty** can be analysed

Quantitative Monocular Non-Rigid 3D Reconstruction

• To turn N images of a **deformable** object into N 3D shapes

• Proposal of a **physics-based** approach based on **visual motion**, as SfM

Which priors to **replace rigidity**?

- Priors on the **shape**
 - Smoothness
 - Low curvature
 - Subspace
- Priors on the **deformation**
 - Smoothness
 - Isometry, elasticity, etc
 - Low curvature
 - Subspace

EnCov

- Small baseline (video frames)
- The **template** prior

Template-based Case: Shape-from-Template (SfT)

Possible solution from a single image

Template Computation

Using a **digital** object model

Using SfM or SLAM

Real-Time Isometric Shape-from-Template

Template-free Case: Non-Rigid Structure-from-Motion (NRSfM)

Possible solution from at least two images

Presentation Layout

- Local depth computation in SfT
- Local depth computation in NRSfM
- Application to laparoscopy

Can we Reconstruct from **One** Point Correspondence?

- Shape-from-Template
 - The short story: an algebraic derivation
 - The whole story: Riemannian geometry

Bartoli et al, PAMI 2015

- Non-Rigid Structure-from-Motion
 - The very short story: a partial algebraic derivation

Parashar et al, PAMI 2018

1. Modeling

(;

2. Data and Unknowns

Find $\mathbf{Q} \in \mathbb{R}^3$ (given $\mathbf{p} \leftrightarrow \mathbf{q}$ and Π)

3. The Reprojection Constraint, Order 0

4. The Deformation Constraint

(;

5. Solving?

6. The Reprojection Constraint, Order 1

7. Solving

7. Solving

 \mathcal{A} is a **quadratic** algebraic system

Bézout's bound on the number of solutions is $2^7 = 128$.

Theorem. The algebraic system \mathcal{A} has a unique solution for **Q** and two solutions for A₀.

Theorem. The algebraic system \mathcal{A} represents P3P for infinitesimally close points.

Result. The algebraic system \mathcal{A} has a simple analytic solution.

8. Practical Considerations

Computable in at least three ways:

- 1. Detect and match affine covariant keypoints
- 2. Use dense optic flow correspondences
- 3. Use a warp function fitted to keypoint correspondences

9. The Warp Function

*E*ⁿC**o**√

Example of a **Thin-Plate Spline** Computed from **keypoint correspondences**

Reconstruction Results

Reconstruction Results

Extensions

- Full 3D templates same framework
- Isometric deformation and focal length second-order local solution
- Conformal deformation (angle-preserving) first-order local solution for normal
- Equiareal deformation (area-preserving) no local solution found
- Metric affine cameras local solutions
- 1D structures no local solution

Is the Warp η an Arbitrary Smooth 2D Function?

- Isowarp: perspective projection of isometric deformation
- Characterisation: a second-order PDE on η

Pizarro et al, BMVC

Can we Reconstruct from **One** Point Correspondence?

- Shape-from-Template
 - The short story: an algebraic derivation
 - The whole story: Riemannian geometry

Bartoli et al, PAMI 2015

- Non-Rigid Structure-from-Motion
 - The very short story: a partial algebraic derivation

Parashar et al, PAMI 2018

Modeling

Encov

Data and Unknowns

The Reprojection Constraints, Order 0

The Deformation Constraint

Find \mathbf{Q}_1 , $\mathbf{Q}_2 \in \mathbb{R}^3$, $A_{\mathbf{Q}_1}$, $A_{\mathbf{Q}_2} \in \mathbb{R}^{3 \times 2}$ $\Pi(\mathbf{Q}_1) = \mathbf{q}_1$ $\Pi(\mathbf{Q}_2) = \mathbf{q}_2$ ${\cal A}_0$ = known = unknown

Solving?

The Reprojection Constraint, Order 1

Find $\mathbf{Q}_1, \mathbf{Q}_2 \in \mathbb{R}^3, A_{\mathbf{Q}_1}, A_{\mathbf{Q}_2} \in \mathbb{R}^{3 \times 2}$ $\Pi(\mathbf{Q}_1) = \mathbf{q}_1$ $\Pi(\mathbf{Q}_2) = \mathbf{q}_2$ $\mathcal{A}_1 \quad A_{\mathbf{Q}_1}^{\mathsf{T}} A_{\mathbf{Q}_1} = A_{\mathbf{Q}_2}^{\mathsf{T}} A_{\mathbf{Q}_2}$ $\nabla \Pi(\mathbf{Q}_1) A_{\mathbf{Q}_1} = A_{\mathbf{q}_1}$ $\nabla \Pi(\mathbf{Q}_2) A_{\mathbf{Q}_2} = A_{\mathbf{q}_2}$

<u>EnCov</u>

Solving?

Synthesis and Happy End

Result. The algebraic systems \mathcal{A}_0 and \mathcal{A}_1 are underconstrained.

Result. The algebraic system \mathcal{A}_2 is consistent.

Result. The algebraic system A_2 can be reduced to two cubics in two variables under infinitesimal planarity.

Theorem. The algebraic system A_2 has between 2 and 18 solutions for A_{Q_1} and A_{Q_2} while Q_1 and Q_2 cannot be resolved.

Result. Using a third image generally disambiguates A_{Q_1} , A_{Q_2} and A_{Q_3} but does not resolve Q_1 , Q_2 and Q_3 .

Conjecture. The algebraic system \mathcal{A}_2 represents planar SfM for infinitesimally close points.

Results. The algebraic system A_2 can be solved numerically using the theory of resultants by finding the roots of a nonic.

Results from Isometric Non-Rigid Structure-from-Motion (IsoSfM)

ReconstructionGroundtruthError: 3.23 to 5.72 mm

Extensions

- Isometric deformation and focal length second-order local solution
- Conformal deformation (angle-preserving) second-order local solution for normal

Parashar et al, ECCV 2018 ; Parashar et al

- Equiareal deformation (area-preserving) no local solution found
- Metric affine cameras local solutions

Robustification of SfT and NRSfM

• We have 'minimal' very local solutions

$$\mathbf{q} \in \mathbb{R}^{2}, \mathbf{A}_{\mathbf{q}} \in \mathbb{R}^{2 \times 2} \xrightarrow{\text{Analytic solution}} \mathbf{Q} \in \mathbb{R}^{3}, \mathbf{A}_{\mathbf{Q}^{+}}, \mathbf{A}_{\mathbf{Q}^{-}} \in \mathbb{S}_{3 \times 2}$$

$$\mathbf{q}_{1}, \mathbf{q}_{2} \in \mathbb{R}^{2}, \mathbf{A}_{\mathbf{q}_{2}} \in \mathbb{R}^{2 \times 2}, \mathbf{B}_{\mathbf{q}_{2}} \in \mathbb{R}^{6} \xrightarrow{\text{Analytic solution}} \{\mathbf{A}_{\mathbf{Q}_{1}}^{i} \in \mathbb{R}^{3 \times 2}, \mathbf{A}_{\mathbf{Q}_{2}}^{i} \in \mathbb{R}^{3 \times 2}\}_{i=1}^{k}, 2 < k \leq 18$$

$$\mathbf{q}_{1}, \dots, \mathbf{q}_{n} \in \mathbb{R}^{2}, \mathbf{A}_{\mathbf{q}_{2}}, \dots, \mathbf{A}_{\mathbf{q}_{n}} \in \mathbb{R}^{2 \times 2}, \mathbf{B}_{\mathbf{q}_{2}}, \dots, \mathbf{B}_{\mathbf{q}_{n}} \in \mathbb{R}^{6} \xrightarrow{\text{Analytic solution}} \mathbf{A}_{\mathbf{Q}_{1}}, \dots, \mathbf{A}_{\mathbf{Q}_{n}} \in \mathbb{R}^{3 \times 2}$$

- Robust statistics
- Isometric consistency checks

DeepSfT: Deep Neural Network based solution to SfT

- Use the template to simulate training data under many conditions
- One network = one template = one object
- Use a few Kinect depthmaps for domain adaptation
- Compute depth and registration

Laparoscopy

Laparoscopy

Classical laparoscopy

Finding the Tumours

The tumours are **endophytic**, so invisible

Endoscopic US does not help; palpation is obviously not an option

Mentally aligning the CT to laparoscopy is impossible

Proposed Approach: Augmented Laparoscopy

Problem Statement

Main difficulty: no fixed structures such as bones, non-rigidities (pneumoperitoneum, mobilisation)

→ Biomechanical preoperative 3D model

ни

Intraoperative registration

Correspondence between preoperative 3D model and intraoperative laparoscopy image

 \rightarrow 3D non-rigid flow

Preoperative 3D Reconstruction

Equivalence to Textureless SfT

Segmentectomy 6 Case

Segmentectomy 6 Case

Myomectomy Application

Seeing in 3D from a Single Image with Geometric Priors

Adrien Bartoli

Endoscopy and Computer Vision group (EnCoV)

Institut Pascal – UMR6602, CNRS, Université Clermont Auvergne, SIGMA CHU de Clermont-Ferrand, Departments of Gynecologic Surgery, HPB Surgery, Hepatogastroenterology and Radiology

Toby Collins, Daniel Pizarro, Nicolas Bourdel, Michel Canis, Emmanuel Buc, Bertrand Le Roy et al

