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3D Reconstruction a.k.a. Inverse Imaging

To convert one or multiple 2D images to a 3D 
model of the observed object or environment

Digital images
Filming or 

photographing
3D reconstruction

Camera
(model)

Structure
(objet or 

environment 
model)

Point cloud

+ topology (eg, mesh)

+ texturemap

+ differentiability



3D Reconstruction Approaches

Physics-based Learning-based

Blur

ShadowSilhouette

OcclusionsShading

Analysis and modelling of the imaging process 

Automatic implicit combination of visual cues

Hand-crafted explicit use of visual cues

Learning of the reconstruction function from data

Visual
motion

Optic flow or
correspondences



3D Reconstruction Approaches

Physics-based

Analysis and modelling of the imaging process 

Visual
motion

Optic flow or
correspondences

Hand-crafted explicit use of visual cues

Agarwal et al, University of Washington

• Structure-from-Motion / SLAM
• Visual geometry theory
• Multiple images + rigidity

The result is quantitative and uncertainty can be analysed



• To turn 𝑁 images of a deformable object into 𝑁 3D shapes

Quantitative Monocular Non-Rigid 3D Reconstruction 

• Proposal of a physics-based approach based on visual motion, as SfM



• Priors on the shape
• Smoothness

• Low curvature

• Subspace

• Priors on the deformation
• Smoothness

• Isometry, elasticity, etc

• Low curvature

• Subspace 

• Small baseline (video frames)

• The template prior

Which priors to replace rigidity?



Template-based Case: Shape-from-Template (SfT)

Possible solution from a single image

Template

SfT



Template Computation

Template

SfT

Using SfM or SLAM

Using a digital 
object model

SfM

Template

SfT



Real-Time Isometric Shape-from-Template

Collins et al, ISMAR 2015



Template-free Case: Non-Rigid Structure-from-Motion (NRSfM)

Possible solution from at least two images

NRSfM



• Local depth computation in SfT

• Local depth computation in NRSfM

• Application to laparoscopy

Presentation Layout



• Shape-from-Template
• The short story: an algebraic derivation

• The whole story: Riemannian geometry

Can we Reconstruct from One Point Correspondence?

SfT

NRSfM

• Non-Rigid Structure-from-Motion
• The very short story: a partial algebraic derivation

Bartoli et al, PAMI 2015

Parashar et al, PAMI 2018



1. Modeling

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

= unknown

= known

Π ∈ 𝐶∞ ℝ3, ℝ2

Differentiable



2. Data and Unknowns

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2

𝐩 ∈ Ω

𝐪 ∈ ℝ2

𝐐 ∈ ℝ3

= unknown

= known

Find 𝐐 ∈ ℝ3 (given 𝐩 ↔ 𝐪 and Π)



3. The Reprojection Constraint, Order 0

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2

𝐩 ∈ Ω

𝐪 ∈ ℝ2

𝐐 ∈ ℝ3

= unknown

= known

Find 𝐐 ∈ ℝ3

Π 𝐐 = 𝐪



4. The Deformation Constraint

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2

𝐩 ∈ Ω

𝐪 ∈ ℝ2

𝐐 ∈ ℝ3

= unknown

= known

Find 𝐐 ∈ ℝ3

Π 𝐐 = 𝐪

A𝐩

A𝐐
⊤A𝐐 = A𝐩

⊤A𝐩

, A𝐐 ∈ ℝ
3×2

A𝐐 ∈ ℝ
3×2(isometry is local rigidity)



5. Solving?

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2

𝐩 ∈ Ω

𝐪 ∈ ℝ2

𝐐 ∈ ℝ3

= unknown

= known

Find 𝐐 ∈ ℝ3

Π 𝐐 = 𝐪

9 unknowns

5 constraints

A𝐐 ∈ ℝ
3×2

A𝐩

, A𝐐 ∈ ℝ
3×2

Underconstrained
A𝐐
⊤A𝐐 = A𝐩

⊤A𝐩



6. The Reprojection Constraint, Order 1

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2

𝐩 ∈ Ω

𝐪 ∈ ℝ2

𝐐 ∈ ℝ3

= unknown

= known

Find 𝐐 ∈ ℝ3

Π 𝐐 = 𝐪

A𝐩

A𝐐 ∈ ℝ
3×2

, A𝐐 ∈ ℝ
3×2

A𝐪 ∈ ℝ
2×2

𝛻Π 𝐐 A𝐐 = A𝐪

𝒜
A𝐐
⊤A𝐐 = A𝐩

⊤A𝐩



A𝐐
⊤A𝐐 = A𝐩

⊤A𝐩

7. Solving

Template - Ω ⊂ ℝ2

Input image

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2

𝐩 ∈ Ω

𝐪 ∈ ℝ2

𝐐 ∈ ℝ3

= unknown

= known

Find 𝐐 ∈ ℝ3

Π 𝐐 = 𝐪

A𝐩

A𝐐 ∈ ℝ
3×2

, A𝐐 ∈ ℝ
3×2

A𝐪 ∈ ℝ
2×2

𝛻Π 𝐐 A𝐐 = A𝐪

9 unknowns

9 constraints
𝒜

Consistent… solvable?



7. Solving

Find 𝐐 ∈ ℝ3

Π 𝐐 = 𝐪

, A𝐐 ∈ ℝ
3×2

𝛻Π 𝐐 A𝐐 = A𝐪

Linear

Quadratic

Quadratic (for the perspective camera)

𝒜 is a quadratic algebraic system

Theorem. The algebraic system 𝒜 has a unique solution for 𝐐 and two solutions for A𝐐.

Theorem. The algebraic system 𝒜 represents P3P for infinitesimally close points.

Bézout’s bound on the number of solutions is 27 = 128.

𝒜

Result. The algebraic system 𝒜 has a simple analytic solution.

A𝐐
⊤A𝐐 = A𝐩

⊤A𝐩



8. Practical Considerations

For a point 𝐩 ∈ Ω we have

𝐐 ∈ ℝ3, A𝐐+, A𝐐− ∈ ℝ
3×2

Analytic solution

A first-order differential correspondence,
represented by a 2D affine transform

𝐪 ∈ ℝ2, A𝐪 ∈ ℝ
2×2

Computable in at least three ways:

1. Detect and match affine covariant keypoints

2. Use dense optic flow correspondences

3. Use a warp function fitted to keypoint correspondences



9. The Warp Function

𝜑 ∈ 𝐶2 Ω,ℝ3

= unknown

= known

Template - Ω ⊂ ℝ2

Input image

𝜂 ∈ 𝐶2 Ω,ℝ2

unknown 
3D shape

Example of a Thin-Plate Spline
Computed from keypoint correspondences

Π ∈ 𝐶∞ ℝ3, ℝ2



Reconstruction Results

Gay-Bellile et al, PAMI 2010 ; Perriollat et al, IJCV 2011



Reconstruction Results

Bartoli et al, PAMI 2015



• Full 3D templates – same framework

• Isometric deformation and focal length – second-order local solution

• Conformal deformation (angle-preserving) – first-order local solution for normal

• Equiareal deformation (area-preserving) – no local solution found

• Metric affine cameras – local solutions

• 1D structures – no local solution

Extensions

Bartoli et al, ICCV 2013, PAMI 2015 ; Casillas-Perez et al, JMIV 2019 ; Gallardo et al, IJCV 2020



Is the Warp 𝜂 an Arbitrary Smooth 2D Function?

𝜑 ∈ 𝐶2 Ω,ℝ3

Template - Ω ⊂ ℝ2

Input image

𝜂 ∈ 𝐶2 Ω,ℝ2

unknown 
3D shape

• Isowarp: perspective projection of isometric deformation
• Characterisation: a second-order PDE on 𝜂

Π ∈ 𝐶∞ ℝ3, ℝ2

Pizarro et al, BMVC 2013

𝜂 = Π ∘ 𝜑 ℱ 𝜂 = 0



• Shape-from-Template
• The short story: an algebraic derivation

• The whole story: Riemannian geometry

Can we Reconstruct from One Point Correspondence?

SfT

NRSfM

• Non-Rigid Structure-from-Motion
• The very short story: a partial algebraic derivation

Bartoli et al, PAMI 2015

Parashar et al, PAMI 2018



Modeling

unknown 
3D shape

unknown 
3D shape

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known



Data and Unknowns

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known

𝐪1 ∈ ℝ
2

𝐪2 ∈ ℝ
2

𝐐1 ∈ ℝ
2

𝐐2 ∈ ℝ
2

Find 𝐐1, 𝐐2∈ ℝ
3 (given 𝐪1 ↔ 𝐪2 and Π)



The Reprojection Constraints, Order 0

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known

𝐪1 ∈ ℝ
2

𝐪2 ∈ ℝ
2

𝐐1 ∈ ℝ
2

𝐐2 ∈ ℝ
2

Find 𝐐1, 𝐐2∈ ℝ
3

Π 𝐐1 = 𝐪1

Π 𝐐2 = 𝐪2



The Deformation Constraint

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known

𝐪1 ∈ ℝ
2

𝐪2 ∈ ℝ
2

𝐐1 ∈ ℝ
2

𝐐2 ∈ ℝ
2

Find 𝐐1, 𝐐2∈ ℝ
3

Π 𝐐1 = 𝐪1

Π 𝐐2 = 𝐪2

A𝐪1 ∈ ℝ
2×2

A𝐐1 ∈ ℝ
3×2

A𝐐2 ∈ ℝ
3×2

, A𝐐1 , A𝐐2 ∈ ℝ
3×2

𝛻Π 𝐐1 A𝐐1 = A𝐪1

A𝐐1
⊤ A𝐐1 = A𝐐2

⊤ A𝐐2

𝒜0



𝛻Π 𝐐1 A𝐐1 = A𝐪1

Solving?

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known

𝐪1 ∈ ℝ
2

𝐪2 ∈ ℝ
2

𝐐1 ∈ ℝ
2

𝐐2 ∈ ℝ
2

Find 𝐐1, 𝐐2∈ ℝ
3

Π 𝐐1 = 𝐪1

Π 𝐐2 = 𝐪2

A𝐪1 ∈ ℝ
2×2

A𝐐1 ∈ ℝ
3×2

A𝐐2 ∈ ℝ
3×2

, A𝐐1 , A𝐐2 ∈ ℝ
3×2

A𝐐1
⊤ A𝐐1 = A𝐐2

⊤ A𝐐2

18 unknowns

11 constraints

𝒜0

Underconstrained



The Reprojection Constraint, Order 1

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known

𝐪1 ∈ ℝ
2

𝐪2 ∈ ℝ
2

𝐐1 ∈ ℝ
2

𝐐2 ∈ ℝ
2

Find 𝐐1, 𝐐2∈ ℝ
3

Π 𝐐1 = 𝐪1

Π 𝐐2 = 𝐪2

A𝐪1 ∈ ℝ
2×2

A𝐐1 ∈ ℝ
3×2

A𝐐2 ∈ ℝ
3×2

, A𝐐1 , A𝐐2 ∈ ℝ
3×2

A𝐐1
⊤ A𝐐1 = A𝐐2

⊤ A𝐐2

A𝐪2 ∈ ℝ
2×2

𝛻Π 𝐐1 A𝐐1 = A𝐪1
𝛻Π 𝐐2 A𝐐2 = A𝐪2

𝒜1



Solving?

Π ∈ 𝐶∞ ℝ3, ℝ2Π ∈ 𝐶∞ ℝ3, ℝ2

Input image 1 Input image 2

= unknown

= known

𝐪1 ∈ ℝ
2

𝐪2 ∈ ℝ
2

𝐐1 ∈ ℝ
2

𝐐2 ∈ ℝ
2

Find 𝐐1, 𝐐2∈ ℝ
3

Π 𝐐1 = 𝐪1

Π 𝐐2 = 𝐪2

A𝐪1 ∈ ℝ
2×2

A𝐐1 ∈ ℝ
3×2

A𝐐2 ∈ ℝ
3×2

, A𝐐1 , A𝐐2 ∈ ℝ
3×2

A𝐐1
⊤ A𝐐1 = A𝐐2

⊤ A𝐐2

18 unknowns

15 constraints

A𝐪2 ∈ ℝ
2×2

𝛻Π 𝐐1 A𝐐1 = A𝐪1
𝛻Π 𝐐2 A𝐐2 = A𝐪2

𝒜1

Underconstrained



Synthesis and Happy End

Result. The algebraic systems 𝒜0 and 𝒜1 are underconstrained.

Result. The algebraic system 𝒜2 is consistent.

Result. The algebraic system 𝒜2 can be reduced to two cubics in two variables under infinitesimal planarity.

Theorem. The algebraic system 𝒜2 has between 2 and 18 solutions for A𝐐1 and A𝐐2 while 𝐐1 and 𝐐2 cannot be resolved.

Result. Using a third image generally disambiguates A𝐐1 , A𝐐2 and A𝐐3 but does not resolve 𝐐1, 𝐐2 and 𝐐3.

Conjecture. The algebraic system 𝒜2 represents planar SfM for infinitesimally close points.

Results. The algebraic system 𝒜2 can be solved numerically using the theory of resultants by finding the roots of a nonic.



Results from Isometric Non-Rigid Structure-from-Motion (IsoSfM)

Error: 3.23 to  5.72 mmReconstruction Groundtruth

Error: 4.55 to  6.50 mm

Reconstruction

Groundtruth

Chhatkuli et al, PAMI 2018



• Isometric deformation and focal length – second-order local solution

• Conformal deformation (angle-preserving) – second-order local solution for 
normal

• Equiareal deformation (area-preserving) – no local solution found

• Metric affine cameras – local solutions

Extensions

Parashar et al, ECCV 2018 ; Parashar et al, PAMI 2018



• We have ‘minimal’ very local solutions

• Robust statistics

• Isometric consistency checks

Robustification of SfT and NRSfM

𝐐 ∈ ℝ3, A𝐐+, A𝐐− ∈ 𝕊3×2
Analytic solution

𝐪 ∈ ℝ2, A𝐪 ∈ ℝ
2×2

𝐪1, 𝐪2 ∈ ℝ
2, A𝐪2 ∈ ℝ

2×2, B𝐪2 ∈ ℝ
6 A𝐐1

𝑖 ∈ ℝ3×2, A𝐐2
𝑖 ∈ ℝ3×2

𝑖=1

𝑘
, 2 < 𝑘 ≤ 18

Analytic solution

𝐪1, … , 𝐪𝑛 ∈ ℝ
2, A𝐪2 , … , A𝐪𝑛 ∈ ℝ

2×2 , B𝐪2 , … , B𝐪𝑛 ∈ ℝ
6 A𝐐1 , … , A𝐐𝑛 ∈ ℝ

3×2
Analytic solution

Collins et al, ECCV 2014



• Use the template to simulate training data under many conditions

• One network = one template = one object

• Use a few Kinect depthmaps for domain adaptation

• Compute depth and registration

DeepSfT: Deep Neural Network based solution to SfT

Fuentes-Jimenez et al, arxiv, 2020



Laparoscopy



Laparoscopy

Classical laparoscopy

Preoperative CT scan
Diagnosis



Finding the Tumours

The tumours are endophytic, so invisible

Endoscopic US does not help; palpation is obviously not an option

Mentally aligning the CT to laparoscopy is impossible



Proposed Approach: Augmented Laparoscopy

Preoperative CT scan
Diagnostic

Classical laparoscopy Augmented laparoscopy

… and intraoperative guidance

Hepataug



Problem Statement

+ =

Preoperative 3D reconstruction:
Shape of the organ and 
internal structures
 Biomechanical 
preoperative 3D model

Intraoperative registration
Correspondence between preoperative 3D model
and intraoperative laparoscopy image
 3D non-rigid flow

Main difficulty: no fixed structures such as bones, non-rigidities (pneumoperitoneum, mobilisation)



Preoperative 3D Reconstruction

MITK



Equivalence to Textureless SfT

Π ∈ 𝐶∞ ℝ3, ℝ2

unknown 
3D shape



Segmentectomy 6 Case



Segmentectomy 6 Case

tumour

margin

1 mm



Myomectomy Application
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