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Markus Bambach

Johannes Buhl

Armin Fügenschuh
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Introduction

Application context: Wire-arc additive manufacturing

Printing robot and work pieces, by courtesy of Johannes Buhl, BTU Cottbus-Senftenberg
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Introduction

Example workpiece: Horseshoe, CAD plot

Challenges:

• Determine structures of high strength-to-weight ratio

• Enhance printability by specific routing scheme
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Introduction

Contents of the talk: Some ways to tackle the challenges, work in progress

• First stage (discussed in some detail): Stable structure of printed objects
– Two approaches borrowed from image processing techniques are discussed and investigated

• Second stage (just touched): Optimal printing path and process
– Incorporates many mathematical techniques and models

5/31



Introduction

The desired complete pipeline, sketched using a few images
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Constructed structure, extracted graph, and computed trajectory
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Honeycomb Structure

Interesting structure in nature: Honeycombs
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Honeycomb Structure

Voronoi tesselation (VT):

• Partition of a region Ω⊂ R2 into Voronoi cells Vi ⊂Ω depending on generators xi ∈Ω

• Vi = {x ∈Ω : |x− xi|<
∣∣x− x j

∣∣ , j 6= i}
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m = 20 generators in Ω = [0,1]× [0,1], corresponding Voronoi tesselation
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Honeycomb Structure

Centroidal Voronoi tesselation (CVT):

Special type of VT, generators coincide with centroids, possibly addressing a stress map or density ρ
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Left: VT, constant density. Middle: CVT, constant density. Right: CVT, Gaussian density
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Honeycomb Structure

Finding a CVT corresponds to energy minimisation:

min
x1,...,xm∈R2

m

∑
i=1

∫
V (xi)

ρ(x) |x− xi|2 dx

Lloyd’s algorithm (1982): Iterate the following steps

1. Given xi, generate Voronoi cells Vi.

2. Given Vi, replace xi with the center of mass in Vi: xi←

∫
Vi

ρ(x)xdx∫
Vi

ρ(x)dx
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Generating Voronoi Tesselations

Approaches to Voronoi tessellation

Geometric Optimisation PDE-based Approach

Employ Delaunay Triangulation
(Barber et al., 1996)

Discretise Eikonal Equation
(e.g., Cristiani and Falcone, 2007)

Question: Which approach is better for finding CVTs?
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Geometric Optimisation

Delaunay triangulation (DT):

• Triangulation of the generators, such that no generator is inside the circumcircle of any triangle

• Circumcenters are vertices of VT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Generators
12/31



Geometric Optimisation

Delaunay triangulation (DT):

• Triangulation of the generators, such that no generator is inside the circumcircle of any triangle

• Circumcenters are vertices of VT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Generators, DT
12/31



Geometric Optimisation

Delaunay triangulation (DT):

• Triangulation of the generators, such that no generator is inside the circumcircle of any triangle

• Circumcenters are vertices of VT

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Generators, circumcenters
12/31



Geometric Optimisation

Delaunay triangulation (DT):

• Triangulation of the generators, such that no generator is inside the circumcircle of any triangle

• Circumcenters are vertices of VT
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Geometric Optimisation

Delaunay triangulation (DT):

• Triangulation of the generators, such that no generator is inside the circumcircle of any triangle

• Circumcenters are vertices of VT
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PDE-based Approach

PDE-based approach: Solve eikonal equation (e.g. by fast marching)

|∇d(x)|= 1, x ∈Ω\X

with the boundary condition
d(xi) = 0, xi ∈ X

to generate Voronoi cells Vi = {x ∈Ω : d(x,xi)< d(x,x j), j 6= i}

Question: Is high accuracy required here (i.e. use of high-order discretisation)?

Question: What is the impact of grid resolution?
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Model for Evaluation

Density functions: constant density ρ ≡ 1 and
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PDE: Numerical Accuracy
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Energy progression and PDE-based CVT (Θ = [0,1]2, 200×200 grid),
FM of 1st vs. 2nd order, for (top) Gaussian ρg and (bottom) Rosenbrock function ρr

Implication: First-order FM will do for our purpose (so we stick to it)
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Geometric vs. PDE

Impact of mesh size: Constant density
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c m = 10, 100×100 grid
E = 1.7180 ·10−2

Implication: ↑ Number of seeds =⇒ mesh size ↓
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d m = 10, 200×200 grid
E = 1.7083 ·10−2

Implication: ↑ Number of seeds =⇒ mesh size ↓

16/31



Geometric vs. PDE
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a m = 10, geometric
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e m = 10, 400×400 grid
E = 1.7068 ·10−2

Implication: ↑ Number of seeds =⇒ mesh size ↓
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Geometric vs. PDE

Impact of mesh size: Constant density
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b m = 20, geometric
E = 8.4304 ·10−3
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f m = 20, 100×100 grid
E = 8.7656 ·10−3

Implication: ↑ Number of seeds =⇒ mesh size ↓
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Impact of mesh size: Constant density
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g m = 20, 200×200 grid
E = 8.7127 ·10−3

Implication: ↑ Number of seeds =⇒ mesh size ↓
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Geometric vs. PDE

Impact of mesh size: Constant density
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h m = 20, 400×400 grid
E = 8.5067 ·10−3

Implication: ↑ Number of seeds =⇒ mesh size ↓
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Geometric vs. PDE

Evaluation of energy: m = 10, 400×400 grid
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Implication: PDE-based approach performs better for complicated densities
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Geometric vs. PDE

Evaluation of energy: m = 20, 400×400 grid
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Implication: It is possible to combine advantages of geometric/PDE-based approach (hybrid scheme)
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Optimal Printing Process

Application of trajectory optimisation
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Problem: Nodes of odd degree
Preferable solution: Remove nodes/edges but keep stability
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Optimal Printing Process

What means trajectory optimisation?

• Goal: Find best welding path in terms of temperature distribution

• Consider connected sequence of welding and deadheading moves

• Minimise temperature gradient i.e. minimising material stress (cf. Young’s modulus)

• Features of the approach:

– includes discrete approximations of heat conduction within printed material w.r.t. substrate plate
– includes approximate radiation (heat transfer between separate, printed material surfaces),

especially view factor evaluation (Quasi-Monte-Carlo-Method)
– includes model for heat distribution from welding torch
– material data estimation using LS-DYNA (cf. Buhl et al., in Journal of Machine Engineering, 2019)

• Mathematical model combines (after many approximations)
to mixed-integer linear optimisation problem (solved with BARON, 2018)

20/31



Evaluation of Combined Approach

Real workpiece, with CVT internal structure: (top) optimal path, (bottom) worst path.
Heat distributions (snapshots) are acquired with a thermal camera. 21/31



Evaluation of Combined Approach
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Evaluation of Combined Approach

Independent indicator for quality of the printing process: Distortion of substrate plate

Distortion distribution of the substrate plate for the worst (left) and the best welding path (right)
according to the thermal calculation. Distortion can be reduced by∼ 30% by path optimisation.
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Alternative Approach: Skeletonisation

Reminding of a biological skeleton: Medial axis transform

Typical skeletonisation result (medial axis transform) from image processing:
The skeleton has width of one pixel, is connected and does not touch the object boundary
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Skeleton Computation

First solve eikonal equation

|∇d(x)|= 1, x ∈Ω\X

with the boundary condition
d(xi) = 0, ∀xi ∈ ∂X

to compute distance map d.

Then compute average outward flux F in each point p to determine sinks:

F(p) =
1
8

8

∑
i=1

∇d(p) ·N(ni(p))

where ni(p) are neighbours of p, and N(ni(p)) is the normalised vector pointing from p to ni(p)

Then define a suitable (thinning) threshold number τ and apply a flux-ordered homotopic thinning
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Illustration of Skeletonisation

Left: Skeleton, enhanced by morphological thickening. Right: Recursive skeletonisation.
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Evaluation of the Approach

Shape of a workpiece and its skeleton, plus printed version
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Evaluation of the Approach

Printed nodes can be connected with guiding and spring function, subject to elastic deformation test
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Evaluation of the Approach

Dimensions of test geometries: 100×100×10mm, simulation performed using Abaqus.
We measure the maximum displacement sy for Von Mises Stress at a force of 200N in y-direction:
sy = 0.0009mm for skeleton-based geometry, sy = 0.023mm for standard geometry.
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The End

Many thanks for your attention!
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