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Additive Manufacturing – 3D printing

• Additive Manufacturing (AM), also known as 3D printing, is the process of joining materials in a
layer-by-layer manner to build an object from 3D model data.

• Advantages with respect to other manufacturing techniques:

very rapid prototyping cycles, flexible designs, waste reduction.

• As the mechanical properties of a metal manufactured part depend on thermal history,

the simulation of the thermal history of the AM procedure is a key aspect to ensure the quality of the
resulting product.

OUR GOAL:

Simulate the AM thermal history (modeled by a parabolic PDE) by a convolutional
neural network



Metal AM: Selective Laser Melting (SLM)

SLM PROCESS

1. A thin layer of metal powder is spread over a

build platform

2. A high power laser scans the cross-section of

the object, selectively melting and fusing the

metal powders together and creating the next

layer

3. Once the scanning process is complete, the

build platform moves downwards by one layer

thickness and another thin layer of metal

powder is spread

4. The process is repeated until the whole object

is complete



Modeling approach

• The thermal analysis starts at the point when the first layer of
powder is laid upon the machine table and the laser head begins
to offer energy to the powder.

• The analysis continues over time, by simulating the
movement of the laser scanner head.

• A further increase of the accuracy is achieved by assuming
temperature dependent material properties:

✓ thermal conductivity k ,
✓ specific heat capacity c,
✓ density ρ.



Thermal properties:



Modeling a 2D section

• A square domain Ωₓ represents a layer of powder.
• The top boundary ГN₂ is split into 10 subdomains representing all the

possible positions assumed by the laser.
• ξ ∈ ℝ10 position vector with values 0 or 1 depending on whether the

laser fires heat or not.



Modeling a 2D section



Finite Element Method (FEM) Solver

• The mesh:
the stability of the method strongly depends
on mesh quality;

• Computational cost:
FEM can be computationally expensive for
complex problems

Simulation by the FEM method has some limitations:



Semi-implicit Euler scheme to solve time-dependent PDEs

Apply backward finite difference scheme in time:

Linearize the PDE considering the non-linear quantities k, ρ,c as functions of the previous time-step solution.
The result is a sequence of (stationary) step for Tn+1, assuming Tn is known at the previous time step:

Replace in (2):

(2)



What’s it neural network?

• The goal is to approximate some function f*

• A feedforward network f defines a mapping

y = f(x;w) 
which learns the value of the parameters w that result in the best function approximation.

Supervised Training

• Both the inputs 𝑥1, … , 𝑥𝑛 and the outputs 𝑦1, … , 𝑦𝑛 are provided during training.

• The network then processes the inputs and compares the resulting outputs against the desired
outputs.

• Errors are then propagated back through the system, causing the system to adjust the weights
which control the network.



Mathematical inspiration

• Considering the Poisson equation with Dirichlet boundary conditions, Ω unit disk in ℝ2, f ∈ 𝐶∞ തΩ

• The solution of the homogeneous Dirichlet problem can be represented as:

where G(x,y) is the Green’s function for the unit disk in ℝ2

• An explicit solution mapping between a source term f and the associated solution Gf=u:



Mathematical inspiration

Introduce a uniform grid ∑ which covers the Ω
¯

domain with fixed resolution R
Let Ωd the collection of mesh points in ∑, we can define the associated:
• Interpolation:

• Projection mappings:

Then the discretized composite mapping:

can be approximate by a multi-layer feedforward network.

✓ The convolutional form of the integral operator G inspires the use of convolutional layers 
within this network approximation.



Thermal-Net: Lu=f

The network has two primary components:
• encoder designed to map high-level input functions to low-dimensional latent features
• decoder used to map these latent features to approximate solutions



• Encoder consists of a series of convolutional layers
which reduce the resolution of input features

• The encoder features with spatial resolutions 32×32,
16×16, and 8×8 are concatenated with the features of
the same resolution in the network’s decoder

• The decoder maps the sampled latent features back to
the original resolution using a series of convolutional
layers followed by bilinear interpolation.

• Some layers have been split into inception blocks: max-
pooling layer along with 1×1, 3×3, and two stacked 3×3
convolutional layers implemented in parallel

• Dropout layers with drop-rate 0.045 have also been
included before and after the first inception block in the
decoder.



Input-Output

• Input: images of size 128 x 128 x 7

o Solution at time t: Tt

o Neumann boundary conditions: Nbc

o Dirichlet boundary condition

o Thermal conductivity: kt

o Specific heat capacity: ct

o Density: ρt

o Domain

• Output:

• Solution at time t+1: Tt+1

Tt kt ct

Tt+1



Dataset Generation
• The dataset is generated using a FEM solver:

• Divide the top boundary domain in 10 position ГN2i 
, i={1,…,10}

• 𝑡 ∈ 0, ҧ𝑡 , final time ҧ𝑡=0,035

• Time-step Δtpos = n*0,0035   n={0,1,2…}

• For each position ГN2i 
we obtain 5 solutions Δt = 0,000875 distant

• 80% Training set 
• 10% Validation set
• 10% Test set



Example  
two groups of 5 solutions each in two successive positions ГN2i 

i = 4 i = 9



Training phase

• Loss Function (MSE):

• Number of epochs: 600,000

• Optimizer: Adam optimization algorithm, with batch size of 64 samples

• Learning rate : 0.000075 with exponential decay applied every 10,000 steps by a factor of 0.95



Network                                   FEM

𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ 𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ

0,00434 0,00934

Network  FEM

Numerical results:
- stationary state LT=f

L = (I-Δt(ത𝑘∇2))



Numerical results:
- stationary state LT=f

𝑻𝒇𝐞𝐦 − 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ 𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ

0,00476 0,001019

Network  FEM
Network  FEM



Numerical results:
- evolution Tt=∇ ∙ (ത𝑘∇𝑇)



𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ 𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ

0,01829 0,02359

Network  FEM
Network  FEM

Numerical results:
- stationary state LT=f



Network  FEM
Network  FEM

𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ 𝑻𝒇𝒆𝒎− 𝑻𝒏𝒆𝒕

2

2 on 𝝏Ωₓ

0,01727 0,01832

Numerical results:
- stationary state LT=f



Conclusion and future work

• Degrees of freedom: 

• position of the laser 

• training with different materials

• spatial domain 

• Execution time (resolution of image)
Stationary step

FEM 7.3592s

Network 0,28s


