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Polarization vision
Background and motivation



Why polarization vision?

• Polarization cameras are becoming more widely and more cheaply 
available.

• Polarization images can be used to 

- recover surface shape
- estimate refractive index or changes in refractive index
- analyse the shape of transparent objects
- probe surface substructure (e.g. layers)

• Applications include imaging in  bad atmospheric conditions and 
directly measuring  surface properties such as refractive index.

• Used by many animals with specialist vision systems.
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What does a polarization camera 
measure?
• Degree of polarization

• Phase

• Mean intensity

At every pixel in the image



Does light source need to polarized?

•No – light develops spontaneous polarization 
when it scatters from a surface.

•Depends on the refractive index of the 
surface and the angle reflection.



What do polarization images reveal?

• Single polarization image: surface normals and hence 3D shape of an 
object provided refractive index known.

• Multiple polarization images: (from different viewing  angles or light 
source direction) shape, refractive index, albedo (intrinsic surface 
texture).

• Spectro-polarimetric images: (polarization images at different 
wavelengths) shape, albedo and refractive inex at different 
wavelengths. 



Reflectance Distributions
Plastic leavesNatural leaves



Reflectometry
• Distinguishing natural and man-made (camouflage) surfaces

Test Image Natural surface Artificial surface



Polarization vision in nature
• Evidence that both insects and aquatic creatures (e.g. shrimps, crabs, 

cuttlefish) exhibit polarization vision, with eyes having up to  16 
channels.

• Most animals lack optical polarizing filters. Instead, their individual 
photoreceptors are sensitive to polarized light. 



Underwater vision: phase of polarization 
reveals structure of scene



Degree of polarization: reveals translucent 
objects (via variations in refractive index).



Can be used to dehaze scenes.



An end user

The mantis shrimp has 12-16 visual channels which it uses for 
polarization vision.



Mantis shrimp eyes

Highly mobile with multiple colour and 
polarization channels.



Publications relevant to work
• Use diffuse polarization measurements to estimate surface 

orientation (IEEE TIP 06).

• Extend to multiple views to resolve ambiguities and extend 
object coverage (PAMI 07).  

• Use method to estimate BRDF’s for surfaces composed of 
different materials (CVIU  08).

• Spectro-polarimetry (fixed view, multiple wavelengths) IJCV 
2013.

• Direct height estimation from multiple polarization images 
(ICCV 2017).



Polarization Vision and Applications
Shape from polarization

Polarization vision Wolff and Boult TPAMI ’91
Shape recovery Miyazaki et al ICCV ’03, TPAMI ’04

Drbohlav and Šára SPIE ’99
Rahmann and Canterakis CVPR ’01



Polarization Vision and Applications
Other  early uses of polarization

Reflection components Umeyama TPAMI ’04
Photometric stereo Drbohlav and Šára ICCV ’01
Range scanning Clark, Trucco and Wolff IVC ’97
Marine vision Schechner and Karpel CVPR ’03
BRDF estimation Shibata et al SPIE ’05
Segmentation / classification Chen and Wolff IJCV ’98



Polarization Vision and Applications

Revival on interest in graphics
Graphics                                       Ghosh SIGGRAPH Asia 2012
Cues for coarse depth maps         Kadamba ICCV 2015
Planar Surface  Polarimetry Riviere SIGGRAPH 2017
Polarimetry in the wild                   Gosh SIGRAPH Asia 2017
Transparent object reconstruction.   Wu ACM Tgraphics 2018
Polarimetric reflectance estimation Baek ACM TGraphics 2020
Skin Reflectance                             Riviere ACM Tgraphics 2020
Holographic VR                               Maimone ACM TGraphics 2019



Basic physics



Polarization of Light

• Linear polarization: confinement of the electric field vector or magnetic 
field vector to a given plane along the direction of propagation. 

• Circular polarization: the electric field of the wave has a constant 
magnitude but its direction rotates with time at a steady rate in a plane 
perpendicular to the direction of the wave.



Linear polarization           Circular polarization 



Origins of polarization

• When scattered or passed through a dichroic medium, 
light in different polarization states experience 
different absorption.

• Results in spontaneous polarization on scattering.



Origins of polarization
• Sunlight is unpolarized (when it leaves 

the sun).

• Atmospheric Rayleigh scattering from 
air molecules, water, dust, and 
aerosols causes the sky's light to have 
a defined polarization pattern. The 
same elastic scattering processes 
cause the sky to be blue. 

• Pattern of polarization depends on 
angle. Some insects use this for 
navigation.



Origins of polarization

Occurs when light is reflected from 
boundary between layers of different 
refractive index





Physics  of polarization

• Degree of polarization depends on angle of incidence 
of scattered light.

• Also determined by refractive index of scattering 
surface.

• Polarsation can hence be used to determine surface 
shape and surface composition.



Single light source Target on turn-table

Image plane Phase anglePolarizer angle

Polarization Camera
1. Acquire polarization images with light souce, camera and object 

fixed while polarizer rotates

Note: incident light is unpolarized.



Commercial polarization camera

Polarization filters with different orientations arranged in 2x2 pixel 
blocks. Some cameras allow readout of Stokes vector.



Polarisation representations

• Transmission radiance  sinusoid – mean-intensity, degree of 
polarization, phase.

• Stokes vector – distinguishes different states of linear and circular 
polarization, plus unpolarized case. Spherical representation of 
polarization parameters. Related to components of electric field 
vector.

• Jones matrices - model effects of optical medium on fully polarized 
light represented using  Stokes vectors.

• Mueller matrices – additionally model effects of optical medium on 
Stokes vectors for randomly or  partially polarized or incoherent light.



Settings

• Single polarization image: surface normals of a constant 
albedo uniform refractive index  surface.

• Single polarization and  brightness images: normals, 
albedo and variations in refractive index. (Polarimetric
stereo)

•Multiple polarization and brightness images: height 
(directly), albedo, refractive index.

•Multiple polarization images at different wavelengths 
and fixed direction: surface normals, albedo, variations 
of refractive index. (Spectro-polarimetry)



Shape shading and polarization compared

Angle of light incidence to 
surface normal



Shape shading and polarization compared

Angle of light incidence to 
surface normal

Brightness measurement determines 
direction between surface normal and 
light source direction.



Shape shading and polarization compared

Zenith angle of surface 
normal to viewer direction



Shape shading and polarization compared

Zenith angle of surface 
normal to viewer direction

Degree of polarization determines zenith
angle between surface normal and viewer 
direction. 
Phase determines azimuth angle about 
normal up to an ambiguity of 180 degrees.



Theoretical background

Fresnel theory



Augustin-Jean Fresnel (1788-1827)



Basic concepts



Rotating linear polarizer

Theory: Physical Origins of Polarization by Reflection
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Polarization for specular reflection
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Specular polarization versus incidence angle

Because of Brewster angle, for a  measured polarization there are two 
possible  incidence  angles.

Brewster angle increases with refractive index.



Some representative refractive indices

Material λ (nm) n Ref.

Vacuum 1 (by definition)

Air at STP 1.000277

Gases at 0 °C and 1 atm

Air 589.29 1.000293 [1]

Carbon dioxide 589.29 1.001 [2][3][4]

Helium 589.29 1.000036 [1]

Hydrogen 589.29 1.000132 [1]

Liquids at 20 °C

Arsenic trisulfide and sulfur in methylene iodide 1.9 [5]

Benzene 589.29 1.501 [1]

Carbon disulfide 589.29 1.628 [1]

Carbon tetrachloride 589.29 1.461 [1]

Ethanol (ethyl alcohol) 589.29 1.361 [1]

Water 589.29 1.330 [1]

10% Glucose solution in water 589.29 1.3477 [6]

20% Glucose solution in water 589.29 1.3635 [6]

60% Glucose solution in water 589.29 1.4394 [6]

Solids at room temperature

Silicon carbide (Moissanite; 6H form) 589.29 2.65 [7]

Titanium dioxide (rutile phase) 589.29 2.614 [8][9]

Diamond 589.29 2.417 [1]

Strontium titanate 589.29 2.41 [10]

Amber 589.29 1.55 [1]

Sodium chloride 589.29 1.544 [11]

Fused silica (a pure form of glass, also called 
fused quartz) 589.29 1.458 [1][12]

https://en.wikipedia.org/wiki/Vacuum
https://en.wikipedia.org/wiki/Atmosphere_of_Earth
https://en.wikipedia.org/wiki/Standard_conditions_for_temperature_and_pressure
https://en.wikipedia.org/wiki/Earth's_atmosphere
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Carbon_dioxide
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Helium
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Arsenic_trisulfide
https://en.wikipedia.org/wiki/Sulfur
https://en.wikipedia.org/wiki/Methylene_iodide
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Benzene
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Carbon_disulfide
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Carbon_tetrachloride
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Ethanol
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Water
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Silicon_carbide
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Titanium_dioxide
https://en.wikipedia.org/wiki/Rutile
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Diamond
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Strontium_titanate
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Amber
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Sodium_chloride
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/Fused_silica
https://en.wikipedia.org/wiki/Glass
https://en.wikipedia.org/wiki/List_of_refractive_indices
https://en.wikipedia.org/wiki/List_of_refractive_indices


Polarization for diffuse reflection
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Use Snell’s law to re-express in terms of emittance angle 



Diffuse polarization versus emmittance angle

No Brewster angle for diffuse polarization. Single measurement of 
polarization gives a single emittance angle.

Polarization stronger the larger refractive index.



Low polarization

Theory: Polarization by Reflection

Specular reflection

ni = 1
nt = 1.4
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Theory: Polarization by Reflection
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Specular reflection

High polarization



Theory: Polarization by Reflection

 ¯e
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Specular reflection

Complete polarization:
Brewster Angle

Reflected light totally 
extinguished by  rotating 
polarizer.



Theory: Polarization by Reflection
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Specular reflection

High polarization



Theory: Shape from Diffuse Polarization

||0E

Diffuse reflection

Diffuse component emerges  
after subsurface  scattering 



Polarization measurements

Measured intensity variation

Polarizer angle180º 360º

Imax

Imin

f
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q pol

Degree of
polarization

• Rotate polarizer and measure 
brightness at each pixel with 
camera, light source and 
object fixed.

• Brightness varies sinusoidally
with polarizer angle.

• Fit to recover maximum and  
minimum brightness together 
with  phase of sinusoid at each 
pixel.

• Compute polarization from 
max and min brightneses.



Polarization Image

• Composed of brightness, phase and polarization 

Brightness Phase Polarization



Single view shape reconstruction
Use estimates of zenith and azimuth angles to recover 
surface normals. Reconstruct object shape using 
surface integration.



Single View Shape Recovery: Overview

1. Acquire polarization images

2. Estimate zenith angles from degree of polarization

3. Ambiguously estimate azimuth angles

4. Disambiguate azimuth angles

5. Integrate normals using Frankot-Chellappa method [TPAMI ’88]



Single light source Target on turn-table

Image plane Phase anglePolarizer angle

Single View Vision: Apparatus
1. Acquire polarization images



Single View Vision: Method
A: Estimate zenith angles from degree of polarization

Single real solution since polarization increases monotonically with 
emittance angle. i.e. there is no Brewster angle for diffuse 
polarization.



Single View Vision: Method

Polarizer angle180º 360º

Imax

Imin

a

B: Ambiguously estimate azimuth angles from measured  phase
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Azimuth angle of surface normal is orientation of projection of surface 
normal onto image plane. Light is reflected most efficiently when polarized 
parallel to plane containing surface normal and reflected ray. Hence, phase 
of polarized light is equivalent to azimuth angle of surface normal up to an 
ambiguity of 180 degrees.



Disambiguation

• On boundary select azimuth angle that is closest to that of occluding 
boundary normal.

• Propagate constraint as brush-fire into interior of object.

• For small zenith angles allow aburpt changes of azimuth angle.



• Diffuse polarization solved for surface normal 
zenith angle (unambiguously)

• Analogous to shape-from-shading, where 
Lambert’s law allows zenith angle to be 
determined from measured image brightness

qcos. == snL



Single View Vision: Method
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Single View Vision: Method
4. Disambiguate azimuth angles
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Examples



Height functions



Shape and Refractive Index 
from Spectro-polarimetric 

Imagery



Idea

• Multiple polarization images from a single 
viewpoint and different wavelengths

• Additional constraints on a) wavelength and b) 
surface integrability.

• Solved using optimisation method.



Physics
From the Fresnel equations

2),( luR=

Solve for zenith angle



Material Dispersion Equations
Need model of wavelength dependence of refractive 
index (sometimes varies by as much as 10% over 
visible spectrum).

Cauchy

Sellmeier



Cost Function

• At each pixel allow refractive index to vary with wavelength, but 
zenith and azimuth angles remain fixed with wavelength.

• Objective function is the squared  difference between measured and 
predicted values of the max/min intensity ratio plus a smoothness 
(regularisation term) that ensures the surface normal field is 
integrable.

• Minimise with respect to the Cauchy/Sellmeir parameters and the 
surface normal directions.



Integrability constraint on zenith and azimuth 
angles

Int J Comput Vis (2013) 101:64–94 73

and Imin = IT ⊥ and obtain the ratio of the recovered mini-
mal and maximal radiance on the TRS curve as

Imin

Imax
= IT ⊥

IT ‖

= 1 − F⊥
1 − F‖

. (10)

Following the expressions of the Fresnel reflection co-
efficients in Wolff (1994) and Snell’s law of refraction, we
can relate the ratio on the right-hand side of Eq. (10) to the
zenith angle and refractive index through the equation

Imin

Imax
=

(cos θ(u)

√
η2(u,λ) − sin2 θ(u) + sin2 θ(u)

η(u,λ)

)2

.

(11)

The right-hand side of Eq. (11) is the Fresnel trans-
mission ratio. To simplify computation, we let R(u,λ) =√

Imin
Imax

, i.e.

R(u,λ) !
cos θ(u)

√
η2(u,λ) − sin2 θ(u) + sin2 θ(u)

η(u,λ)
. (12)

In prior literature, the zenith angle of surface normals
and the index of refraction can be recovered from the degree
of polarisation (Atkinson and Hancock 2005, 2006, 2007b;
Miyazaki et al. 2002, 2004; Thilak et al. 2007). Indeed, all
of these methods make use of the Fresnel reflection theory to
arrive at an equation similar to Eq. (11). However, the main
limitation to their practical application resides on their re-
liance upon either known index of refraction (Atkinson and
Hancock 2005, 2006, 2007b; Miyazaki et al. 2002, 2004),
imagery captured from multiple viewpoints (Miyazaki et al.
2004) or under several known light source directions (Thi-
lak et al. 2007). The need for multiple measurements and
instrumental setups makes them impractical for shape and
material analysis on real-world data.

The estimation of both the zenith angle and the index
of refraction cannot be performed without additional con-
straints. This is because the Fresnel theory only provides a
single equation per wavelength relating the zenith angle and
index of refraction to the transmission ratio Imin

Imax
. As a result,

the number of variables to be estimated is one more than the
number of equations, rendering the problem ill-posed.

To deal with these limitations, we propose two additional
constraints in order to recover the zenith angle and the re-
fractive index in a well-posed manner. To do this, we make
use of both the surface integrability constraint on the spa-
tial domain and the material dispersion equations. While
the integrability constraint enforces spatial consistency be-
tween neighbouring surface locations, the dispersion con-

straint aims to resolve the ill-posedness of the joint estima-
tion of the zenith angle and refractive index.

3.3.1 Integrability Constraint

We commence by formulating the integrability constraint
with respect to the zenith and azimuth angles of the surface
normal. Assume that the surface under study can be repre-
sented by a two-dimensional twice-differentiable function
with a continuous second derivative (Frankot and Chellappa
1988). As a result, its cross derivatives are the same irrespec-
tive of the order of the differentiated variable.

Using the reference coordinate system previously de-
fined, let the surface height function at the pixel u be Z(u).
By definition, the normalised surface normal at the pixel u

is given by

$N = 1
√

Z 2
x + Z 2

y + 1
[−Zx,−Zy,1]T , (13)

where Zx and Zy are the surface gradients in the x and y

direction of our coordinate system.
The normalised surface normal direction can also be rep-

resented with respect to the azimuth and zenith angles as
follows

$N =




cosα(u) sin θ(u)

sinα(u) sin θ(u)

cos θ(u)



 . (14)

From Eqs. (13) and (14), we have

Zx = − cosα(u) tan θ(u) (15)

Zy = − sinα(u) tan θ(u). (16)

Recall that, in Sect. 3.2, we have obtained an estimation
of the azimuth angle α(u) up to an ambiguity of 180 de-
gree and treat it as a known value in Eqs. (15) and (16).
As a consequence, the cross derivatives can be rewritten
as Zxy = − cosα(u) ∂ tan θ(u)

∂y and Zyx = − sinα(u) ∂ tan θ(u)
∂x .

Since the integrability constraint enforces that Zxy = Zyx ,
we can express it in terms of the zenith and azimuth angles
as

cosα(u)
∂ tan θ(u)

∂y
= sinα(u)

∂ tan θ(u)

∂x
. (17)

According to the chain rule, ∂ tan θ(u) = ∂θ(u)
cos2 θ(u)

. There-
fore, the integrability constraint in Eq. (17) can be rewritten
as

cosα(u)θy(u) = sinα(u)θx(u), (18)

with θx(u) and θy(u) being the derivatives of θ(u) with re-
spect to x and y.
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sinα(u) sin θ(u)

cos θ(u)



 . (14)

From Eqs. (13) and (14), we have

Zx = − cosα(u) tan θ(u) (15)

Zy = − sinα(u) tan θ(u). (16)

Recall that, in Sect. 3.2, we have obtained an estimation
of the azimuth angle α(u) up to an ambiguity of 180 de-
gree and treat it as a known value in Eqs. (15) and (16).
As a consequence, the cross derivatives can be rewritten
as Zxy = − cosα(u) ∂ tan θ(u)

∂y and Zyx = − sinα(u) ∂ tan θ(u)
∂x .

Since the integrability constraint enforces that Zxy = Zyx ,
we can express it in terms of the zenith and azimuth angles
as

cosα(u)
∂ tan θ(u)

∂y
= sinα(u)

∂ tan θ(u)

∂x
. (17)

According to the chain rule, ∂ tan θ(u) = ∂θ(u)
cos2 θ(u)

. There-
fore, the integrability constraint in Eq. (17) can be rewritten
as

cosα(u)θy(u) = sinα(u)θx(u), (18)

with θx(u) and θy(u) being the derivatives of θ(u) with re-
spect to x and y.
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3.3.2 Material Dispersion

In order to impose further constraints on the variation of the
refractive index in the wavelength domain, we note that,
for a wide variety of materials, the index of refraction is
governed by the material dispersion equation (Born and
Wolf 1999). The material dispersion equation models the
wavelength-dependence of the refractive index using a small
number of parameters. The number of these parameters is
generally lower than the number of spectral bands. Hence,
the implication is that the number of variables to be esti-
mated in the spectral domain can be significantly reduced,
especially for spectral images with a high spectral resolu-
tion.

Thus, we introduce dispersion equations as a constraint
on the refractive index for our optimisation scheme. Among
several approximating functions of material dispersion in the
physics literature, perhaps Cauchy’s and Sellmeier’s (Born
and Wolf 1999) are the most popular. In the former, Cauchy
modelled the empirical relationship between the refractive
index of a material and the wavelength of light as follows

η(u,λ) =
M∑

m=1

Cm(u)λ−2(m−1), (19)

where the index of refraction depends solely on the wave-
length and the material-specific dispersion coefficients
Cm(u), m ∈ {1, . . . ,M}.

In addition, Sellmeier’s dispersion equation (Sellmeier
1871) can handle anomalous dispersive regions by including
additional coefficients to represent vacuum wavelengths, i.e.
where the wave front moves across vacuum, and holds for a
wide range of wavelengths, including the ultraviolet, visi-
ble and infrared spectrum. Sellmeier’s dispersion equation
is given by

η2(u,λ) = 1 +
M∑

m=1

Bm(u)λ2

λ2 − Dm(u)
, (20)

where Bm(u) and Dm(u) are the material-specific dispersion
coefficients.

The dispersion equations above allow a representation
of the index of refraction as a linear combination of M ra-
tional functions of wavelength. With these representations,
the estimation of refractive index can be treated as that of
computing the dispersion coefficients. In practice, an ex-
pansion containing up to the sixth term is sufficient to rep-
resent a wide range of materials including crystals, liq-
uids, glasses, gases and plastics (Kasarova et al. 2007). For
spectral imagery comprising more than seven wavelength-
indexed bands, the number of equations relating the Fresnel
transmission ratio to the zenith angle and refractive index
exceeds the number of dispersion coefficients, rendering the

problem solvable. As a result, the problem becomes a well-
constrained one that can be formulated in a minimisation
setting.

3.3.3 Objective Function

Having introduced the integrability and material dispersion
constraints in Sects. 3.3.1 and 3.3.2, we now focus on the
formulation of an objective function for the estimation of
the zenith angle and refractive index. The rationale behind
our cost function lies in the use of the additional constraints,
including integrability and dispersion equations so as to al-
low the recovery of the shape and index of refraction to be
performed without prior knowledge or predetermined illu-
mination conditions.

The cost function aims at satisfying Eq. (11), which
equates the square root of the Fresnel transmission ratio de-

fined in Eq. (12) to the quantity
√

Imin
Imax

while taking into ac-
count the integrability of the surface and the material disper-
sion equation. Our objective function is given by two terms.
The first of these accounts for the error of the Fresnel trans-
mission ratio R(u,λ) in Eq. (12) with respect to the ratio

r(u,λ) !
√

Imin
Imax

as computed from the image radiance. The
second term measures the error of the integrability constraint
described in Eq. (18). Thus, the cost function is given by

E =
∫

S

∫

W

(
R(u,λ) − r(u,λ)

)2
dλdu

+ β(u)

∫

S

(
cosα(u)θy(u) − sinα(u)θx(u)

)2
du, (21)

subject to the chosen dispersion equation, i.e. Eq. (19)
or (20), where S is the image spatial domain and W is the
wavelength range.

In Eq. (21), we assume to have obtained an estima-
tion of the azimuth angle α(u) up to a 180-degree ambi-
guity, as described in Sect. 3.2, and treat it as a constant
in the cost function. We note that this cost function is in-
variant to the 180-degree shift in the azimuth angle, i.e.
(cosα(u)θy(u) − sinα(u)θx(u))2 = (cos(α(u) + π)θy(u) −
sin(α(u) + π)θx(u))2. Therefore, we can utilise the rough
estimate of the azimuth angle obtained in Sect. 3.2 without
an adverse effect in the estimation of the zenith angle and
the refractive index.

In addition, the Fresnel transmission ratio R(u,λ) is re-
lated to the zenith angle and refractive through Eq. (12).
The regularisation parameter β(u) is spatially varying and
weighs the relative importance between the data closeness
and surface smoothness imposed by the integrability con-
straint. Here, we use the spatial dependence of β(u) on the
surface location so as to reflect the reliability of the az-
imuth angle α(u) estimated from polarisation information.
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4.1 Recovery of the Zenith Angle

Here we derive a solution for the zenith angle while keeping
the refractive index fixed in each iteration. We note that the
original cost functional in Eq. (21) is complex, involving a
non-linear Fresnel transmission ratio function R(u,λ) with
respect to the zenith angle θ(u). To minimise this cost func-
tional, we need to solve a highly non-linear Euler-Lagrange
equation whose analytical solution cannot be derived in a
straightforward manner. To this end, we opt for an equiva-
lent, yet simpler formulation of the cost functional, which
expresses the data error term using the inverse function of
the Fresnel transmission ratio in Eq. (12). Eventually, we
reformulate the cost functional with a quadratic function of
the zenith angle θ(u) in the data error term, whose minimum
can be derived analytically.

With the refractive index η(u,λ) fixed, we can invert the
Fresnel transmission ratio function in Eq. (12) with respect
to the zenith angle θ(u) as follows

sin θ(u) ≡ η(u,λ)
√

1 − R2(u,λ)
√

η2(u,λ) − 2R(u,λ)η(u,λ) + 1
. (23)

Note that the zenith angle is a geometric variable inde-
pendent of the wavelength. However, the above equation
provides for wavelength-dependent estimates of the zenith
angle. In practice, these estimates may not be the same
across the spectrum due to measurement error and noise cor-
ruption. If the index of refraction is at hand, the value of
r(u,λ) computed from the ratio of maximal and minimal
image irradiance can be used as an estimate for the func-
tion R(u,λ). This yields a wavelength-dependent estimate
ϕ(u,λ) for the zenith angle θ(u), which is given by

ϕ(u,λ) = arcsin
(

η(u,λ)
√

1 − r2(u,λ)
√

η2(u,λ) − 2r(u,λ)η(u,λ) + 1

)
. (24)

Note that in Eq. (24), we use the notation ϕ(u,λ) for the
wavelength-dependent estimate and distinguish it from the
wavelength-independent zenith angle θ(u). We take advan-
tage of this wavelength dependency and, instead of directly
minimising the original cost functional in Eq. (21), we seek
to recover a zenith angle close to the wavelength-dependent
estimates in Eq. (24) while satisfying the integrability con-
straint. Thus, we employ the alternative cost functional

E1 =
∫

S

∫

W

(
θ(u) − ϕ(u,λ)

)2
dλdu

+ β(u)

∫

S

(
cosα(u)

∂θ(u)

∂y
− sinα(u)

∂θ(u)

∂x

)2

du,

(25)

as an alternative to that in Eq. (21).

Equation (25) poses the minimisation problem in a sim-
pler setting. The merit of the alternative cost function is that
the Fresnel ratio error is quantified as a quadratic form of
θ(u). This is important since this quadratic form is more
tractable than the original error term, which contains a ra-
tional function in the expression for R(u,λ). Moreover, we
can rewrite Eq. (25) as follows

E1 =
∫

S
f

(
u, θ(u), θx(u), θy(u)

)
du, (26)

by letting f (·) be given by

f
(
u, θ(u), θx(u), θy(u)

)

!
∫

W

(
θ(u) − ϕ(u,λ)

)2
dλ

+ β(u)
(
cosα(u)θy(u) − sinα(u)θx(u)

)2
. (27)

The function f (·) is important since it permits the use of
calculus of variations to recover the minimiser of the func-
tional in Eq. (26). We do this by noting that the minima must
satisfy the following Euler-Lagrange equation

∂f

∂θ
= ∂

∂x

(
∂f

∂θx

)
+ ∂

∂y

(
∂f

∂θy

)
. (28)

By computing the derivatives of f so as to satisfy the
Euler-Lagrange equation above, we arrive at the following
differential equation

θ(u)

∫

W
dλ −

∫

W
ϕ(u,λ) dλ

= β(u) ×
(
sin2 α(u)θxx(u) − sin 2α(u)θxy(u)

+ cos2 α(u)θyy(u)
)
, (29)

where θxx(u), θyy(u) and θxy(u) are the second order and
covariant derivatives of θ(u) with respect to the x and y axes
of the coordinate system.

In the discrete case, where the imagery is acquired at
K wavelength-indexed bands λ ∈ {λ1, . . . ,λK }, we have∫

W dλ = K . Therefore, θ(u) satisfies the differential equa-
tion

θ(u) = 1
K

∫

W
ϕ(u,λ) dλ + β(u)

K

(
sin2 α(u)θxx(u)

− sin 2α(u)θxy(u) + cos2 α(u)θyy(u)
)
. (30)

We note that Eq. (30) is a second-order partial differential
equation with respect to θ(u). We further enforce the conti-
nuity and differentiability of the spatial domain by assuming
that the function θ(u) is continuously twice-differentiable,
i.e. θxy(u) = θyx(u). This assumption permits the decom-
position of θ(u) into an orthogonal basis of integrable two-
dimensional functions, in a similar manner to that in Frankot
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Here we derive a solution for the zenith angle while keeping
the refractive index fixed in each iteration. We note that the
original cost functional in Eq. (21) is complex, involving a
non-linear Fresnel transmission ratio function R(u,λ) with
respect to the zenith angle θ(u). To minimise this cost func-
tional, we need to solve a highly non-linear Euler-Lagrange
equation whose analytical solution cannot be derived in a
straightforward manner. To this end, we opt for an equiva-
lent, yet simpler formulation of the cost functional, which
expresses the data error term using the inverse function of
the Fresnel transmission ratio in Eq. (12). Eventually, we
reformulate the cost functional with a quadratic function of
the zenith angle θ(u) in the data error term, whose minimum
can be derived analytically.

With the refractive index η(u,λ) fixed, we can invert the
Fresnel transmission ratio function in Eq. (12) with respect
to the zenith angle θ(u) as follows

sin θ(u) ≡ η(u,λ)
√

1 − R2(u,λ)
√

η2(u,λ) − 2R(u,λ)η(u,λ) + 1
. (23)

Note that the zenith angle is a geometric variable inde-
pendent of the wavelength. However, the above equation
provides for wavelength-dependent estimates of the zenith
angle. In practice, these estimates may not be the same
across the spectrum due to measurement error and noise cor-
ruption. If the index of refraction is at hand, the value of
r(u,λ) computed from the ratio of maximal and minimal
image irradiance can be used as an estimate for the func-
tion R(u,λ). This yields a wavelength-dependent estimate
ϕ(u,λ) for the zenith angle θ(u), which is given by

ϕ(u,λ) = arcsin
(

η(u,λ)
√

1 − r2(u,λ)
√

η2(u,λ) − 2r(u,λ)η(u,λ) + 1

)
. (24)

Note that in Eq. (24), we use the notation ϕ(u,λ) for the
wavelength-dependent estimate and distinguish it from the
wavelength-independent zenith angle θ(u). We take advan-
tage of this wavelength dependency and, instead of directly
minimising the original cost functional in Eq. (21), we seek
to recover a zenith angle close to the wavelength-dependent
estimates in Eq. (24) while satisfying the integrability con-
straint. Thus, we employ the alternative cost functional

E1 =
∫

S

∫

W

(
θ(u) − ϕ(u,λ)

)2
dλdu

+ β(u)

∫

S

(
cosα(u)

∂θ(u)

∂y
− sinα(u)

∂θ(u)

∂x

)2

du,

(25)

as an alternative to that in Eq. (21).

Equation (25) poses the minimisation problem in a sim-
pler setting. The merit of the alternative cost function is that
the Fresnel ratio error is quantified as a quadratic form of
θ(u). This is important since this quadratic form is more
tractable than the original error term, which contains a ra-
tional function in the expression for R(u,λ). Moreover, we
can rewrite Eq. (25) as follows

E1 =
∫

S
f

(
u, θ(u), θx(u), θy(u)

)
du, (26)

by letting f (·) be given by

f
(
u, θ(u), θx(u), θy(u)

)

!
∫

W

(
θ(u) − ϕ(u,λ)

)2
dλ

+ β(u)
(
cosα(u)θy(u) − sinα(u)θx(u)

)2
. (27)

The function f (·) is important since it permits the use of
calculus of variations to recover the minimiser of the func-
tional in Eq. (26). We do this by noting that the minima must
satisfy the following Euler-Lagrange equation

∂f

∂θ
= ∂

∂x

(
∂f

∂θx

)
+ ∂

∂y

(
∂f

∂θy

)
. (28)

By computing the derivatives of f so as to satisfy the
Euler-Lagrange equation above, we arrive at the following
differential equation

θ(u)

∫

W
dλ −

∫

W
ϕ(u,λ) dλ

= β(u) ×
(
sin2 α(u)θxx(u) − sin 2α(u)θxy(u)

+ cos2 α(u)θyy(u)
)
, (29)

where θxx(u), θyy(u) and θxy(u) are the second order and
covariant derivatives of θ(u) with respect to the x and y axes
of the coordinate system.

In the discrete case, where the imagery is acquired at
K wavelength-indexed bands λ ∈ {λ1, . . . ,λK }, we have∫

W dλ = K . Therefore, θ(u) satisfies the differential equa-
tion

θ(u) = 1
K

∫

W
ϕ(u,λ) dλ + β(u)

K

(
sin2 α(u)θxx(u)

− sin 2α(u)θxy(u) + cos2 α(u)θyy(u)
)
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We note that Eq. (30) is a second-order partial differential
equation with respect to θ(u). We further enforce the conti-
nuity and differentiability of the spatial domain by assuming
that the function θ(u) is continuously twice-differentiable,
i.e. θxy(u) = θyx(u). This assumption permits the decom-
position of θ(u) into an orthogonal basis of integrable two-
dimensional functions, in a similar manner to that in Frankot
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and Imin = IT ⊥ and obtain the ratio of the recovered mini-
mal and maximal radiance on the TRS curve as

Imin

Imax
= IT ⊥

IT ‖

= 1 − F⊥
1 − F‖

. (10)

Following the expressions of the Fresnel reflection co-
efficients in Wolff (1994) and Snell’s law of refraction, we
can relate the ratio on the right-hand side of Eq. (10) to the
zenith angle and refractive index through the equation

Imin

Imax
=

(cos θ(u)

√
η2(u,λ) − sin2 θ(u) + sin2 θ(u)

η(u,λ)

)2

.

(11)

The right-hand side of Eq. (11) is the Fresnel trans-
mission ratio. To simplify computation, we let R(u,λ) =√

Imin
Imax

, i.e.

R(u,λ) !
cos θ(u)

√
η2(u,λ) − sin2 θ(u) + sin2 θ(u)

η(u,λ)
. (12)

In prior literature, the zenith angle of surface normals
and the index of refraction can be recovered from the degree
of polarisation (Atkinson and Hancock 2005, 2006, 2007b;
Miyazaki et al. 2002, 2004; Thilak et al. 2007). Indeed, all
of these methods make use of the Fresnel reflection theory to
arrive at an equation similar to Eq. (11). However, the main
limitation to their practical application resides on their re-
liance upon either known index of refraction (Atkinson and
Hancock 2005, 2006, 2007b; Miyazaki et al. 2002, 2004),
imagery captured from multiple viewpoints (Miyazaki et al.
2004) or under several known light source directions (Thi-
lak et al. 2007). The need for multiple measurements and
instrumental setups makes them impractical for shape and
material analysis on real-world data.

The estimation of both the zenith angle and the index
of refraction cannot be performed without additional con-
straints. This is because the Fresnel theory only provides a
single equation per wavelength relating the zenith angle and
index of refraction to the transmission ratio Imin

Imax
. As a result,

the number of variables to be estimated is one more than the
number of equations, rendering the problem ill-posed.

To deal with these limitations, we propose two additional
constraints in order to recover the zenith angle and the re-
fractive index in a well-posed manner. To do this, we make
use of both the surface integrability constraint on the spa-
tial domain and the material dispersion equations. While
the integrability constraint enforces spatial consistency be-
tween neighbouring surface locations, the dispersion con-

straint aims to resolve the ill-posedness of the joint estima-
tion of the zenith angle and refractive index.

3.3.1 Integrability Constraint

We commence by formulating the integrability constraint
with respect to the zenith and azimuth angles of the surface
normal. Assume that the surface under study can be repre-
sented by a two-dimensional twice-differentiable function
with a continuous second derivative (Frankot and Chellappa
1988). As a result, its cross derivatives are the same irrespec-
tive of the order of the differentiated variable.

Using the reference coordinate system previously de-
fined, let the surface height function at the pixel u be Z(u).
By definition, the normalised surface normal at the pixel u

is given by

$N = 1
√

Z 2
x + Z 2

y + 1
[−Zx,−Zy,1]T , (13)

where Zx and Zy are the surface gradients in the x and y

direction of our coordinate system.
The normalised surface normal direction can also be rep-

resented with respect to the azimuth and zenith angles as
follows

$N =




cosα(u) sin θ(u)

sinα(u) sin θ(u)

cos θ(u)



 . (14)

From Eqs. (13) and (14), we have

Zx = − cosα(u) tan θ(u) (15)

Zy = − sinα(u) tan θ(u). (16)

Recall that, in Sect. 3.2, we have obtained an estimation
of the azimuth angle α(u) up to an ambiguity of 180 de-
gree and treat it as a known value in Eqs. (15) and (16).
As a consequence, the cross derivatives can be rewritten
as Zxy = − cosα(u) ∂ tan θ(u)

∂y and Zyx = − sinα(u) ∂ tan θ(u)
∂x .

Since the integrability constraint enforces that Zxy = Zyx ,
we can express it in terms of the zenith and azimuth angles
as

cosα(u)
∂ tan θ(u)

∂y
= sinα(u)

∂ tan θ(u)

∂x
. (17)

According to the chain rule, ∂ tan θ(u) = ∂θ(u)
cos2 θ(u)

. There-
fore, the integrability constraint in Eq. (17) can be rewritten
as

cosα(u)θy(u) = sinα(u)θx(u), (18)

with θx(u) and θy(u) being the derivatives of θ(u) with re-
spect to x and y.
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3.3.2 Material Dispersion

In order to impose further constraints on the variation of the
refractive index in the wavelength domain, we note that,
for a wide variety of materials, the index of refraction is
governed by the material dispersion equation (Born and
Wolf 1999). The material dispersion equation models the
wavelength-dependence of the refractive index using a small
number of parameters. The number of these parameters is
generally lower than the number of spectral bands. Hence,
the implication is that the number of variables to be esti-
mated in the spectral domain can be significantly reduced,
especially for spectral images with a high spectral resolu-
tion.

Thus, we introduce dispersion equations as a constraint
on the refractive index for our optimisation scheme. Among
several approximating functions of material dispersion in the
physics literature, perhaps Cauchy’s and Sellmeier’s (Born
and Wolf 1999) are the most popular. In the former, Cauchy
modelled the empirical relationship between the refractive
index of a material and the wavelength of light as follows

η(u,λ) =
M∑

m=1

Cm(u)λ−2(m−1), (19)

where the index of refraction depends solely on the wave-
length and the material-specific dispersion coefficients
Cm(u), m ∈ {1, . . . ,M}.

In addition, Sellmeier’s dispersion equation (Sellmeier
1871) can handle anomalous dispersive regions by including
additional coefficients to represent vacuum wavelengths, i.e.
where the wave front moves across vacuum, and holds for a
wide range of wavelengths, including the ultraviolet, visi-
ble and infrared spectrum. Sellmeier’s dispersion equation
is given by

η2(u,λ) = 1 +
M∑

m=1

Bm(u)λ2

λ2 − Dm(u)
, (20)

where Bm(u) and Dm(u) are the material-specific dispersion
coefficients.

The dispersion equations above allow a representation
of the index of refraction as a linear combination of M ra-
tional functions of wavelength. With these representations,
the estimation of refractive index can be treated as that of
computing the dispersion coefficients. In practice, an ex-
pansion containing up to the sixth term is sufficient to rep-
resent a wide range of materials including crystals, liq-
uids, glasses, gases and plastics (Kasarova et al. 2007). For
spectral imagery comprising more than seven wavelength-
indexed bands, the number of equations relating the Fresnel
transmission ratio to the zenith angle and refractive index
exceeds the number of dispersion coefficients, rendering the

problem solvable. As a result, the problem becomes a well-
constrained one that can be formulated in a minimisation
setting.

3.3.3 Objective Function

Having introduced the integrability and material dispersion
constraints in Sects. 3.3.1 and 3.3.2, we now focus on the
formulation of an objective function for the estimation of
the zenith angle and refractive index. The rationale behind
our cost function lies in the use of the additional constraints,
including integrability and dispersion equations so as to al-
low the recovery of the shape and index of refraction to be
performed without prior knowledge or predetermined illu-
mination conditions.

The cost function aims at satisfying Eq. (11), which
equates the square root of the Fresnel transmission ratio de-

fined in Eq. (12) to the quantity
√

Imin
Imax

while taking into ac-
count the integrability of the surface and the material disper-
sion equation. Our objective function is given by two terms.
The first of these accounts for the error of the Fresnel trans-
mission ratio R(u,λ) in Eq. (12) with respect to the ratio

r(u,λ) !
√

Imin
Imax

as computed from the image radiance. The
second term measures the error of the integrability constraint
described in Eq. (18). Thus, the cost function is given by

E =
∫

S

∫

W

(
R(u,λ) − r(u,λ)

)2
dλdu

+ β(u)

∫

S

(
cosα(u)θy(u) − sinα(u)θx(u)

)2
du, (21)

subject to the chosen dispersion equation, i.e. Eq. (19)
or (20), where S is the image spatial domain and W is the
wavelength range.

In Eq. (21), we assume to have obtained an estima-
tion of the azimuth angle α(u) up to a 180-degree ambi-
guity, as described in Sect. 3.2, and treat it as a constant
in the cost function. We note that this cost function is in-
variant to the 180-degree shift in the azimuth angle, i.e.
(cosα(u)θy(u) − sinα(u)θx(u))2 = (cos(α(u) + π)θy(u) −
sin(α(u) + π)θx(u))2. Therefore, we can utilise the rough
estimate of the azimuth angle obtained in Sect. 3.2 without
an adverse effect in the estimation of the zenith angle and
the refractive index.

In addition, the Fresnel transmission ratio R(u,λ) is re-
lated to the zenith angle and refractive through Eq. (12).
The regularisation parameter β(u) is spatially varying and
weighs the relative importance between the data closeness
and surface smoothness imposed by the integrability con-
straint. Here, we use the spatial dependence of β(u) on the
surface location so as to reflect the reliability of the az-
imuth angle α(u) estimated from polarisation information.

Theoretical value

Empirical value
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4.1 Recovery of the Zenith Angle

Here we derive a solution for the zenith angle while keeping
the refractive index fixed in each iteration. We note that the
original cost functional in Eq. (21) is complex, involving a
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respect to the zenith angle θ(u). To minimise this cost func-
tional, we need to solve a highly non-linear Euler-Lagrange
equation whose analytical solution cannot be derived in a
straightforward manner. To this end, we opt for an equiva-
lent, yet simpler formulation of the cost functional, which
expresses the data error term using the inverse function of
the Fresnel transmission ratio in Eq. (12). Eventually, we
reformulate the cost functional with a quadratic function of
the zenith angle θ(u) in the data error term, whose minimum
can be derived analytically.

With the refractive index η(u,λ) fixed, we can invert the
Fresnel transmission ratio function in Eq. (12) with respect
to the zenith angle θ(u) as follows

sin θ(u) ≡ η(u,λ)
√

1 − R2(u,λ)
√

η2(u,λ) − 2R(u,λ)η(u,λ) + 1
. (23)

Note that the zenith angle is a geometric variable inde-
pendent of the wavelength. However, the above equation
provides for wavelength-dependent estimates of the zenith
angle. In practice, these estimates may not be the same
across the spectrum due to measurement error and noise cor-
ruption. If the index of refraction is at hand, the value of
r(u,λ) computed from the ratio of maximal and minimal
image irradiance can be used as an estimate for the func-
tion R(u,λ). This yields a wavelength-dependent estimate
ϕ(u,λ) for the zenith angle θ(u), which is given by

ϕ(u,λ) = arcsin
(

η(u,λ)
√

1 − r2(u,λ)
√

η2(u,λ) − 2r(u,λ)η(u,λ) + 1

)
. (24)

Note that in Eq. (24), we use the notation ϕ(u,λ) for the
wavelength-dependent estimate and distinguish it from the
wavelength-independent zenith angle θ(u). We take advan-
tage of this wavelength dependency and, instead of directly
minimising the original cost functional in Eq. (21), we seek
to recover a zenith angle close to the wavelength-dependent
estimates in Eq. (24) while satisfying the integrability con-
straint. Thus, we employ the alternative cost functional

E1 =
∫

S

∫

W

(
θ(u) − ϕ(u,λ)

)2
dλdu

+ β(u)

∫

S

(
cosα(u)

∂θ(u)

∂y
− sinα(u)

∂θ(u)

∂x

)2

du,

(25)

as an alternative to that in Eq. (21).

Equation (25) poses the minimisation problem in a sim-
pler setting. The merit of the alternative cost function is that
the Fresnel ratio error is quantified as a quadratic form of
θ(u). This is important since this quadratic form is more
tractable than the original error term, which contains a ra-
tional function in the expression for R(u,λ). Moreover, we
can rewrite Eq. (25) as follows

E1 =
∫

S
f

(
u, θ(u), θx(u), θy(u)

)
du, (26)

by letting f (·) be given by

f
(
u, θ(u), θx(u), θy(u)

)

!
∫

W

(
θ(u) − ϕ(u,λ)

)2
dλ

+ β(u)
(
cosα(u)θy(u) − sinα(u)θx(u)

)2
. (27)

The function f (·) is important since it permits the use of
calculus of variations to recover the minimiser of the func-
tional in Eq. (26). We do this by noting that the minima must
satisfy the following Euler-Lagrange equation

∂f

∂θ
= ∂

∂x

(
∂f

∂θx

)
+ ∂

∂y

(
∂f

∂θy

)
. (28)

By computing the derivatives of f so as to satisfy the
Euler-Lagrange equation above, we arrive at the following
differential equation

θ(u)

∫

W
dλ −

∫

W
ϕ(u,λ) dλ

= β(u) ×
(
sin2 α(u)θxx(u) − sin 2α(u)θxy(u)

+ cos2 α(u)θyy(u)
)
, (29)

where θxx(u), θyy(u) and θxy(u) are the second order and
covariant derivatives of θ(u) with respect to the x and y axes
of the coordinate system.

In the discrete case, where the imagery is acquired at
K wavelength-indexed bands λ ∈ {λ1, . . . ,λK }, we have∫

W dλ = K . Therefore, θ(u) satisfies the differential equa-
tion

θ(u) = 1
K

∫

W
ϕ(u,λ) dλ + β(u)

K

(
sin2 α(u)θxx(u)

− sin 2α(u)θxy(u) + cos2 α(u)θyy(u)
)
. (30)

We note that Eq. (30) is a second-order partial differential
equation with respect to θ(u). We further enforce the conti-
nuity and differentiability of the spatial domain by assuming
that the function θ(u) is continuously twice-differentiable,
i.e. θxy(u) = θyx(u). This assumption permits the decom-
position of θ(u) into an orthogonal basis of integrable two-
dimensional functions, in a similar manner to that in Frankot
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Focus on minimizing the reduced cost function

Solution given by
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and Chellappa (1988). Since digital images have a limited
band of spatial frequencies, the surface shading can be ex-
pressed as a finite linear combinations of the real part of
Fourier basis functions, which are cosine functions. This
representation allows an analytical solution to the functional
minimisation problem above. Moreover, we will show later
that this representation also leads to a computationally effi-
cient solution to Eq. (30).

Note that the function θ(u) can be viewed as a discrete
function on a two-dimensional lattice. Let the size of the
lattice be X × Y , where X and Y are the image width
and height, respectively. Based on the Nyquist–Shannon
sampling theorem (Shannon 1949), the zenith angle θ(u)

can be reconstructed using frequency components of up to
one-half of the sampling frequency of the image. In im-
age processing, these sampling frequencies υ , where υ =
(υx,υy), are often chosen such that υx = 2π i

X , where i =
0,1, . . . ,X − 1, and υy = 2πj

Y , where j = 0,1, . . . , Y − 1
(Gonzalez and Woods 1992). With these two-dimensional
frequency components, the function θ(u) can be recon-
structed with an orthogonal set of Fourier basis functions
ei(uT v) = ei(υxxu+υyyu), where i is the imaginary number and
u = (xu, yu) is the pixel location. Formally, this is given by

θ(u) =
∑

υ

κυei(uT v). (31)

Intuitively, Eq. (31) means that the shading of the sur-
face can be decomposed into a linear combination of Fourier
components with a range of frequencies matching that of the
input imagery. In the equation, κυ is the coefficient (weight)
of the Fourier basis function ei(uT v), which can be computed
making use of the equation

κυ = 1
|S|

∑

u

θ(u)e−i(uT v),

where |S| represents the number of image pixels.
Similarly, the partial derivatives of θ(u) can also be ex-

pressed in terms of the Fourier basis, as follows

θxx(u) = −
∑

υ

κυυ2
xei(uT v) (32)

θxy(u) = −
∑

υ

κυυxυye
i(uT v) (33)

θyy(u) = −
∑

υ

κυυ2
yei(uT v). (34)

Let h(u) = 1
K

∫
W ϕ(u,λ) dλ. By substituting Eqs. (31),

(32), (33) and (34) into Eq. (30), we obtain

h(u) =
∑

υ

κυei(uT v)

(
1 + β(u)

K

(
sin2 α(u)υ2

x

− sin 2α(u)υxυy + cos2 α(u)υ2
y

))
. (35)

Note that Eq. (35) applies to every image location u and
every spatial frequency υ . By making use of the expres-
sions for h(u) at every image location and frequency, we
can construct a linear system with respect to the unknown
vector U = [κυ ]T , which is, effectively, the concatenation
of all the Fourier coefficients. The recovery of the coeffi-
cients κυ can be then effected by solving the linear system
LU = H, with H = [h(u)]T , which is the vectorial concate-
nation of the known function values h(u) for all the image
locations u and L is a matrix with rows and columns indexed
to the image pixels and spatial frequencies, respectively. In
other words, the matrix element Lu,υ corresponding to a
given pixel u and a given frequency υ is Lu,υ = ei(uT v)(1 +
β(u)
K (sin2 α(u)υ2

x − sin 2α(u)υxυy + cos2 α(u)υ2
y )). With a

chosen Fourier basis and the azimuth angle α(u) obtained as
described in Sect. 3.2.2, the matrix L can be computed in a
straightforward manner. With the coefficients κυ at hand, the
zenith angle θ(u) can be recovered through the application
of Eq. (31).

4.2 Recovery of the Refractive Index

With the zenith angle in hand, we now turn our attention to
the estimation of the refractive index at each image location
making use of the Fresnel transmission ratio. To derive the
refractive index directly from the Fresnel transmission ratio
in Eq. (12), we are required to solve a quadratic equation
involving the index of refraction η(u,λ). This expression is
given by

(
cos2 θ(u) − r2(u,λ)

)
× η2(u,λ)

+ 2r(u,λ) sin2 θ(u) × η(u,λ) − sin2 θ(u) = 0. (36)

In general, the quadratic equation above yields no more
than two real-valued roots. The choice of refractive index
value depends on the physical plausibility of these roots,
i.e. the refractive index for dielectrics must be a real value
greater than one. This choice is straightforward if only one
of the roots is physically plausible.

In the case where the two roots are plausible, we adopt an
iterative approach which iteratively selects the root closer to
the refractive index average at the same wavelength within
the local spatial neighbourhood. This approach works under
the assumption that there is a single solution to the refractive
index at a number of pixels in the image. Initially, we label
these pixels as having their refractive index uniquely deter-
mined. At each iteration, we assign the refractive index of
those pixels with two plausible solutions making use of the
regions whose refractive index is already determined. We
do this by selecting the root which is in better accordance

With zenith angle 𝜃(𝑢) and intensity ratio r(u,𝜆) at pixel u 
known, we solve the following quadratic equation for refractive 
index, selecting smoothest physically plausible root



Method

• Collect images with fixed viewpoints at different light source, 
polarizer and wavelength settings.

• Solve minimisation problems for refractive index and zenith angle

• Use wavelength dependant phase information for resolve azimuth 
anlge ambiguity.

• Reconstruct depth using Frankot and Chellappa Fourier domain 
surface integration method.
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Fig. 13 Shape estimation and rendering for real-world images. First
column: The 45◦ polarisation component images rendered in trichro-
matic pseudo-colours. Second column: Needle maps. Third column:
Shading maps. Fourth and fifth columns: Two-view stereo rendering of

the input shapes under L3. In the fourth row, the view direction is 10◦

to the left of the original view. In the fifth row, the view direction forms
an angle of 10◦ to the right of the original view

Input               normals albedo                     
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Fig. 14 Depth maps of the objects shown in Fig. 13

Table 7 The angular deviation
(in degrees) between the
spectral reflectance images
rendered for the frontal viewing
direction and the ground truth
images. The mean and standard
deviation of these errors across
pixels are reported for each
image

L3 L4 L5 L1 + L5 L2 + L4

Bear 11.63 ± 2.90 12.22 ± 3.67 12.94 ± 5.95 12.65 ± 4.71 11.48 ± 3.17

Statue 12.32 ± 3.43 14.11 ± 3.24 14.18 ± 4.02 15.75 ± 4.03 13.46 ± 2.90

Pig 10.70 ± 3.40 11.78 ± 3.47 12.94 ± 4.14 12.87 ± 4.43 10.53 ± 2.91

Dinosaur 10.67 ± 3.76 12.19 ± 6.94 14.01 ± 8.15 9.02 ± 3.94 8.27 ± 3.60

Pine Tree 10.82 ± 2.69 11.33 ± 3.51 14.92 ± 4.81 13.05 ± 3.94 10.35 ± 3.99

For this purpose, we again reconstructed the surface height
from surface orientation using the integration method intro-
duced by Frankot and Chellappa (1988). For validation, we
captured the ground truth images of these objects under in-
candescent lights with directions coplanar to the horizontal
axis of the image plane. Specifically, from left to right, these
light source directions point towards the illuminated object,
forming angles of −45◦, −30◦, 0◦, 30◦ and 45◦ with the
viewing direction, where a negative angle means the light
is located to the left-hand side of the camera and positive
to the right. We denote these light directions L1, L2, L3, L4

and L5, respectively, so as to be consistent with the synthetic
dataset.

In the fourth and fifth columns of Fig. 13, we show a pair
of stereo images of the original objects rendered under the
frontal illumination direction L3. The left and right images
were generated for two viewing directions displaced 10◦ to
the left and to the right of the original viewing direction.
The novel views reveal the object shapes near the left and
right occlusion boundaries. This points to potential applica-
tions in the three-dimensional visualisation of objects using
single-view images.

In Fig. 14, we present the depth maps recovered from the
real-world imagery. These maps have been produced in such
a way that the gray level corresponds to the surface height.
We note that the three-dimensional structure of the recon-
structed shapes is, in general, perceptually consistent with
their original input images and the corresponding stereo
pairs in Fig. 13. We also note that the distortions across ma-
terial boundaries are particularly visible in the reconstructed
shapes for the bear and the dinosaur. This is because the vari-
ation of polarisation across materials has been interpreted as
a result of the variation in surface geometry.

To provide a quantitative analysis of the rendering results,
we proceed to render the objects under the power spectrum

of an incandescent light. In Table 7, we show the render-
ing accuracy under the novel lighting directions. The error
is measured as the angular difference between the rendered
image reflectance spectra and their ground-truth on a per-
pixel basis. It is worth stressing that, our error measures are
obtained from the multi-spectral images rather than the RGB
values yielded by the color matching functions. Recall that
we estimate the image reflectance spectra from the render-
ing equation of the Wolff reflectance model (Wolff 1994).
The numerical results reported in Table 7 are the mean and
standard deviation across pixels in each image. The results
here are consistent with the qualitative results presented pre-
viously in the sense that the rendering quality is better for
the cases of the frontal illuminant and the two simultane-
ous illuminants. This is due to the fact that in such con-
ditions, the objects are fully illuminated and the rendered
image has a smooth shading variation. On the other hand,
the lower rendering accuracy for the oblique illuminant di-
rections is due to non-smooth shading where cast shadows
occur across material boundaries. Nonetheless, our method
can produce rendering results that are in good accordance
with the ground truth. In addition, the method delivers shad-
ing maps which accord well with the geometry of the object
under study, based solely on polarisation information. This
is an important characteristic of our method since it does not
employ shading or chrominance as a cue.

We present qualitative results for refractive index esti-
mated from the real-world imagery. In Fig. 15, we show
the mean refractive index recovered from the input spectro-
polarimetric images, whose 45◦ polarisation components are
shown in pseudocolour in the left-most column. The sec-
ond, third and fourth columns in the figure correspond to
the refractive index corresponding to the wavelengths of
450, 550 and 650 nm, respectively. In these, for purposes
of visualisation, pure white corresponds to a refractive in-
dex of 3, whereas 1

3 corresponds to a refractive index of 1.

𝐿!=frontal, 𝐿"= 14 degrees right, 𝐿#= 26.5 degrees
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Fig. 8 Synthetic images of our test shapes rendered with the refractive
index of Polystyrene under five different illumination conditions. The
rows, from top to bottom, correspond to the combinations of illumi-
nation directions L3, L4, L5, L2 + L4 and L1 + L5. The images are

rendered in pseudo trichromatic colours synthesized from the multi-
spectral radiance of the polarisation component oriented at 45◦ with
respect to the horizontal axis of the image coordinate system

The strategy of smoothing the azimuth angles we described
in Sect. 3.2.1 tends to be effective on convex surfaces, but
breaks down at non-convex parts for shapes consisting of a
mixture of concave and convex surfaces, such as the Mozart
and the Duck. Here, the horizontal symmetry of the re-
covered surface normals for a number of shapes, such as
the Dome, Ridge, Torus, Two-Domes and Vase, indicates
that our estimation method relies on polarisation rather than
shading to reveal the surface geometry. The results also im-
ply that our method is insensitive to changes in the illumi-
nant power spectrum and direction.

With surface normal estimates in hand, we reconstruct
the surface depth by means of surface normal field in-
tegration. To this end, we make use of the surface in-
tegration method introduced by Frankot and Chellappa
(1988) for the purpose of surface reconstruction. In the
first row of Fig. 11, we present the surface rendering for
each of the shapes in the dataset. The subsequent rows
show rendering of the recovered surfaces when the in-
put surfaces are illuminated from several different illumi-
nation directions, including L3, L4 and L5. Each of the
surfaces is rendered under the same novel lighting direc-
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Conclusions

• Demonstrated potential of diffuse polarization for 
shape-recovery from single and multiple polarization 
images.

• Gives reliable shape recovery, and could be the basis 
of a range imaging camera design.

• Can be used to estimate material characteristics of 
surface (refractive index, complex refractive index).


