INdAM Workshop

Different ways to impose 3D Printing overhang restrictions in Topology Optimization

Emiel vd Ven, Rajit Ranjan, Can Ayas, Fred van Keulen

Matthijs Langelaar

Delft University of Technology, the Netherlands

TUDelft

Outline

- Topology optimization (TO)
- Additive manufacturing (AM)
- Overhang
- Approaches to control overhang in TO
 - 1. Geometrical, regular meshes
 - 2. Geometrical, unstructured meshes
 - 3. Thermal
- Concluding remarks

TUDelft

Computational TO characteristics

- Iterative process: many evaluations
- Main computational cost: FEA, sensitivity

- Sensitivity computation crucial:
 - Gradient-based optimization
 - Complexity depends on response and analysis type
 - Models must be differentiable!

Compliance minimization

Frequently used TO problem:

$$\min_{\pmb{\rho}} \ \ \mathcal{C} = \pmb{f}^T \pmb{u}(\pmb{\rho}) \qquad \qquad \text{Compliance}$$
 s. t. $V(\pmb{\rho}) \leq V_{\max}$ Volume constraint
$$\pmb{K}(\pmb{\rho}) \pmb{u} = \pmb{f} \qquad \qquad \text{Finite element analysis}$$
 $0 \leq \rho_i \leq 1$

Overhang restriction in TO

Various approaches:

- E.g. directly constraining boundary angles/normals
- Or using a simplified, *geometry-based* process simulation
- Or introducing physics-based constraints (gravity load):

11

Outline

- Topology optimization (TO)
- Additive manufacturing (AM)
- Overhang
- Approaches to control overhang in TO
 - 1. Geometrical, regular meshes
 - 2. Geometrical, unstructured meshes
 - 3. Thermal
- Concluding remarks

Outline

- Topology optimization (TO)
- Additive manufacturing (AM)
- Overhang
- Approaches to control overhang in TO
 - 1. Geometrical, regular meshes
 - 2. Geometrical, unstructured meshes
 - 3. Thermal
- Concluding remarks

Unstructured meshes

- Common in engineering practice
- Overhang control:
 - Use mesh mapping to regular mesh
 - Develop approach for abribrary mesh

TUDelft

23

Concept: front propagation

• Propagating from Γ_0 :

$$\|\nabla T\| = \frac{1}{v(x,\theta)}, \quad x \in \Omega$$

Anisotropic propagation speed: 180°

90°

TUDelft

Concept: front propagation

• Propagating from Γ_0 :

$$\|\nabla T\| = \frac{1}{v(x,\theta)},$$

 $x \in \Omega$

Implementation in TO

- Propagation using Ordered Upwind Method [Sethian & Vladimirsky, 2003]
- Front should only propagate through solid regions: speed scaled with local density

$$\rho_{print} = \rho e^{-\alpha(T-y)}$$

· Obtain printable part: reduce density strongly in overhanging regions

Outline

- Topology optimization (TO)
- Additive manufacturing (AM)
- Overhang
- Approaches to control overhang in TO
 - 1. Geometrical, regular meshes
 - 2. Geometrical, unstructured meshes
 - 3. Thermal
- Concluding remarks

Overhangs are linked to overheating

- Local temperatures during printing process depend on local geometry
- Overhanging regions have reduced heat conduction and can be prone to overheating
- Overheating causes defects and inferior material quality

AM process simulation

Further simplifications

- 1. Cooling time between layers sufficiently long:
 - Decoupling of layers
 - Only consider heating phase

- 2. Length scale of heated region:
 - Only consider 'slab'

- 3. Replace transient simulation by steady-state analysis:
 - Measure of local conductance
 - Qualitative hotspot indicator

37

TO with overheating control

Problem formulation:

min
$$C = f^T u$$
 Compliance

s.t. $T_{\max}(\text{part}) \leq \hat{T}$ Limit peak temperature

 $V \leq V_{\max}$ Volume constraint $0 \leq \rho_i \leq 1$ $E(\rho), K(\rho), q(\rho)$

- Computational advantages:
 - Small decoupled steady state problems
 - Sensitivity analysis relatively straightforward

Concluding remarks

- Topology Optimization: versatile method for both part and support optimization for Additive Manufacturing
- Overhang control: different approaches possible
 - Fast geometric approach for regular meshes
 - Generic geometric approach using front propagation
 - Physics-based approach using local heat transfer analysis
 - And various others!

Equally important: determining best build orientation

43

References

- Ranjan, R., Ayas, C., Langelaar, M., Van Keulen, A. (2020). Fast Detection of Heat Accumulation in Powder Bed Fusion Using Computationally Efficient Thermal Models. *Materials* 13(20), 4576.
- Van de Ven, E.A., Ayas, C., Langelaar, M., Maas, R., Van Keulen, F (2020). Accessibility of support structures
 in topology optimization for additive manufacturing. *International Journal for Numerical Methods in Engineering*, online.
- Van de Ven, E.A., Maas, R., Ayas, C., Langelaar, M., Van Keulen, F (2020). Overhang control based on front propagation in 3D topology optimization for additive manufacturing. *Computer Methods in Applied Mechanics and Engineering*, 369, 113169.
- Langelaar, M. (2019), Integrated component-support topology optimization for additive manufacturing with post-machining, Rapid Prototyping Journal, 25(2), 255-265.
- Langelaar, M. (2018). Combined Optimization of Part Topology, Support Structure Layout and Build Orientation for Additive Manufacturing. Structural and Multidisciplinary Optimization, 57(5) 1985-2004.
- Van de Ven, E.A., Maas, R., Ayas, C., Langelaar, M., Van Keulen, F (2018). Continuous front propagation based overhang control for topology optimization, Structural and Multidisciplinary Optimization 57:2075-2091.
- Langelaar, M. (2017). An additive manufacturing filter for topology optimization of print-ready designs. Structural and Multidisciplinary Optimization 55.3: 871-883.
- Langelaar, M. (2016). Topology Optimization of 3D Self-Supporting Structures for Additive Manufacturing.
 Additive Manufacturing 12 (A), 60-70.

