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Introduction

I Original problem: Segmentation of some 3D shapes with some known training examples.
Here rat brains.

I Variation in shapes and poses

I A few examples have been manually segmented.

I They have somewhat similar appearances.

I Goal: include training knowledge supporting
I invariance to pose
I ”reasonable variations” to model shapes



Segmentation Objective

I Find a segmentation/object A in image I , A should be similar to some examples
B1, . . . ,Bn. Ingredients for a segmentation objective with shape priors:

F(A; I ,B1, . . . ,Bn) = E(A; I ) + λL(A;B1, . . . ,Bn)

I Image similarity term E(A; I ): modality dependent.

I Shape prior term L(A;B1, . . . ,Bn). Should be

I Invariant to poses: no change if A is scaled, translated, rotated, or more
I tolerant to reasonable variations from examples.



Why this work

I Cremers, Osher and Soatto, Kernel Density Estimation and Intrinsic Alignment for Shape Priors in
LevelSet Segmentation. IJCV 2006. A simple mechanism that fixes position and scale in 2D. Why
did they not introduce rotational invariance? Actually because things become more complicated....

I Hansen, Lauze, Segmentation of 2D and 3D Objects with Intrinsically Similarity Invariant Shape
Regularisers. SSVM 2019. Adds rotations to obtain invariance by similarities. Correct algorithm
but dubious maths...

I Then, what did I miss?
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Distances

I Compare candidate shape A to reference B.

I Most common in literature: Lp-types distances

dp(A,B) =

(∫
Rn

‖χA − χB‖ dx
) 1

p

= |A∇B|
1
p

χA(x) =

{
1 x ∈ A

0 x 6∈ A

I Already clear that there is no invariance: similarity transform

Ã = sR.A + ~t = {sRx + ~t, x ∈ A} : d(Ã,B) 6= d(A,B)



Pose Invariance

Variations in pose may depend on experimental context:

I Position, Scale, Rotation, More general affine transformations

In general, a (closed subgroup G of the Special Affine Group A+
n = GL+

n oRn, n = 2, 3.

I Group of translations: G ' Rn

I Positive Scalings: G = R∗+ id

I Positive Scalings and Translations: G ' R∗+ oRn

I Special Euclidean group: G = SE (n) := SO(n) oRn

I Special Euclidean similarities: G = S(n) := R∗+ × SO(n) oRn

I Everything: G = A+
n .



What is a shape?

I Kendall 1984: all the geometrical information that remains when location, scale and
rotational effects are filtered out from an object.

I Kendall shapes are classes of objects modulo the group of Euclidean Similarities.

I To us: classes of objects modulo one of the subgroups listed above.

I Objects: Compact connected subsets of Rn with non empty interior. May need extra
hypotheses (boundary regularity)



What is a shape?

I Action of an affine transformation on an object: g = (L, ~t) transforms A ⊂ Rn by

g .A = {Lx + ~t, x ∈ A}

I A shape is an orbit: {g .A, g ∈ G} : G .A

I Work on space of shapes = space of orbits X/G , quotient space.



Invariant Shape function

I A function: f : X = {Objects} → R, which does not change by a transformation of the
object: f (g .A) = f (A).

I Factorization i.e., commutative diagram

X R

X/G

f

q
f̃

I Is it easy to construct? In general: no, depends on what we want. . .

I The structure of the set of objects orbits X/G : (quotient set) may turn to be complicated!

I Depends on the group.



An SE (2)-orbit



Some standard ways

I Quotient construction. Finite dimension.

I D. J. Kendall, Shape Manifolds, Procrustean Metrics and Complex Projective Spaces, Bull. London

Math. Soc., 1984.

I Special Orbit representatives.

I M. E. Leventon, W. E. Grimson, O. Faugeras, Statistical Shape Influence in Geodesic Active

Contours, CVPR 2000. (Normalisation/denormalisation, PCA).
I D. Cremers, et al. op. cit., 2006. Normalisation prior to comparison.
I J. Wang, S.-K. Yeung, K. L. Chan, Matching-consrained active contours with affine-invariant shape

prior., CVIU 2015. Denormalisation, Point distributions.

I Optimisation over orbits.

I M. Fussenegger, R. Deriche, A. Pinz, A Multiphase Level Set Based Segmentation Framework with

Pose Invariant Shape Priors, ACCV 2006. Training shape is normalised.

I Comparison of invariant features.

I A. Foulonneau, P. Charbonnier, F. Heitz, Affine-Invariant Geometric Shape Priors for Region-Based

Active Contours, PAMI 2006. Features are invariant via normalisation.

In this talk: explore invariance via equivariant features to reduce orbit search.



Outline

Introduction

Approaches for Enforcing Invariance in Shape priors

Invariance via Equivariance

Denormalisation/Normalisation

And some examples.



Normalisation and Denormalisation

I In most approaches, normalisation and denormalisations to and from ”canonical forms”
are used.

I For objects or features.

I Essential to build shape densities.

I Is it always possible?



A few generalities, facts...

G -actions, equivariance, orbits stabilizers

I A mapping ϕ : G × X → X , (g , x)→ ϕ(g , x) = g .x is a (left) G -action if

i) eG .x = x , ii) g .(h.x) = (gh).x

X is called a G -space.

I G .x = {g .x , g ∈ G} is the G -orbit of x .

I Gx = {g ∈ G , g .x = x} is the stabilizer of x .

I One-liner: Gg .x = gGxg
−1.

I If X and Y are G -spaces, a mapping f : X → Y is G -equivariant if

f (g .x) = g .f (x)

f is called a G -map.

I One liner: Gx ⊂ Gf (x): extracting features may add, but not remove symmetries.



I The map πX : x → G .x is the orbit/quotient map X → X/G .
I A section of πX is a mapping s : X/G → X such that

X

X/G

πX
s πX (s(G .x)) = G .x

I s chooses a unique orbit representative : s(G .x) = x̄ is the canonical representation
of any element of orbit G .x .

I As a simple mapping: always exists, and many are possible (axiom of choice).
G continuous/Lie group, s continuous/smooth? No in general, but with caution...



I The map πX : x → G .x is the orbit/quotient map X → X/G .
I A section of πX is a mapping s : X/G → X such that

X

X/G

πX
s πX (s(G .x)) = G .x

I s chooses a unique orbit representative : s(G .x) = x̄ is the canonical representation
of any element of orbit G .x .

I As a simple mapping: always exists, and many are possible (axiom of choice).
G continuous/Lie group, s continuous/smooth? No in general, but with caution...



Invariance via Equivariance

I Assume given f : X → Y a G -equivariant map and canonical representatives for elements
of Y :
I a section sY of πY : Y → Y /G and
I ȳ the canonical form of y , ȳ = sY (πY (y))

I For each x ∈ X , set

N(x) = {g ∈ G , f (g .x) = g .f (x) = f (x)}

N(x) transformations g which normalize f (x): N(x) = M(f (x)).

Proposition

I N(x) satisfies the relation N(g .x) = N(x)g−1: one liner.

I Consequently, if L : X → R is any function, then

L(x) = inf
g∈N(x)

L(g .x)

is G -invariant: one liner too.



Sort of kind of in words...

I Given a ”complicated set” X where G acts, extract some G -equivariant features f (x) in
feature space Y , which would be simpler.

I Assume that one can ”easily” normalise features (for G ) in Y , i.e., find a unique ”good”
representative of each orbit.

I For an object x in X , N(x) will be the set of transformations g such that the features of
g .x are normalised.

I There may be more that one of these g , which provide feature normalisation. I can have
f (g1.x) = f (g2.x) while g1.x 6= g2.x!

I For any function L : X → R, choose L(x) = min{f (g .x), g ∈ N(x)}.



G -invariant shape priors for segmentation

I One training shape B, feature-normalised.

LB(A) = d(A,B) = inf
g∈N(A)

d(χg .A, χB)p

I Multiple training shapes B1, . . . ,Bn all feature-normalised.

L(A;B1, . . . ,Bn) =
n∑

i=1

LBi (A)

L(A;B1, . . . ,Bn) = − log

(
n∑

i=1

e
−

LBi (A)

2ρ2

)
I ...



Back to the optimisation problem

Given: equivariant feature map f : X → Y to a feature manifold.
Objective function/optimisation problem of the form

min
A∈X
F(A) = E(A) + inf

g∈N(A)
L(g .A)

I To optimise it:

I Differential structure on X , on Y , on the group G . But not enough:

I Existence of good feature normalisation?
I Even if it exists, N(A) depends on A.

I General problem f : X → Y equivariant, normalisation in Y , good way to deal with

inf
g∈N(x)

L(g .x)
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Denormalisation and Normalisation

S ∈ Y image of a (local) section. G .S = {g .ȳ , g ∈ G , ȳ ∈ S}.
Note that G .S ⊆ Y , not necessarily equal.

denormalisation:

G × S (g , ȳ)

G .S g−1.ȳ

p

Normalisation of y ∈ G .S : fibre p−1(y)

p−1(y) = {(g , ȳ), g .y = ȳ} = M(b)× {ȳ}

M(y): set of transformations which normalise y .

∀g ∈ M(y),M(y) = Gȳ g , N(x) = M(f (x))
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Favourable situation: G locally compact Lie group, Y manifold with proper G -action. S ∈ Y :

I smooth submanifold

I a subgroup H of G , such that Gȳ = H for each ȳ in S .

If it exists:

I M(y) = Hg for any g ∈ M(y)

I H is a compact subgroup of G

I local map y 7→ gy ∈ M(y) smooth.

inf
g∈N(x)

L(g .x) = inf
h∈H

L(hgf (x).x)

I Optimisation on a fixed (compact subgroup). If L continuous, it is a minimum problem.

Does it exists? Not always...
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Slices – representing Y /G in Y

S ⊂ Y is a H-slice if

I S is H-invariant: H.S = S ,

I S is closed in G .S ,

I If g ∈ G\H, gS ∩ S = ∅.
I G .S is open in Y .

I Palais 1960: Existence of Slices.
I In good case, at and y ∈ Y , they provide sorts of local charts in Y to Y /G ...
I They should be ”transverse to orbits”
I Depends on Gy as G .y ' G/Gy . In my cases local is very large with ”small stabilisers”.
I Think of SO(2) acting on R2 for instance, orbits and stabilisers at y = ~0 and at y 6= ~0.
I In favourable case of a ”good slice”, denormalisation map has a classical structure:

principal H-bundle.

I R. Palais, ”The classification of G-spaces”, Memoirs of the AMS, 36, 1960.

I R. Palais, ”On the existence of slices for actions of non-compact Lie groups”, Ann. Math. 73 (1961).

I M. Audin, ”Torus Action on symplectic manifolds”, Springer, 2004.

I A. Antonyan, ”Characterizing slices for proper actions”, arXiv 2017.



Fibre bundles
A manifold which looks locally like a Cartesian product basis×fibre, but maybe not globally.

Cylinder: S1 × [−1, 1],

trivial

Möbius strip, non

trivial

Torus: S1 × S1, trivial

Covering map (helicoid),

non trivial



A fibre bundle is a n-uple (E ,F , π,B) (or just π : E → B)

I E is the total space

I B is the base space

I π : E → B is the projection

I F is the fiber type: each fibre
Eb := π−1(b) ' F

I Each point b has a neighbourhood U such that
EU = π−1(U) ' U × F .

I Local section: A smooth mapping
σ : V ⊂ B → E , π(σ(b)) = b. Always exists.

I A H-principal bundle: fibres are copies of group H, H acts on the bundle via its fibres.



Sections – same but different ones!

S ⊂M ”good” H-slice: denormalisation is a H-principal bundle

G × S G .Sp

ξ

I ξ is a local section of p: p(ξ(y)) = y ,

I ξ defined on an open set of G .S : ξ(y) = (gy , ȳ) ⊂ M(y)× {ȳ} and

M(y) = Hgy =⇒ M(y)g−1
y = H, gy .y = ȳ =⇒ ξ(y) = (gy , gy .y)

I Always possible to find one.

I Only globally defined over G .S if G × S ' G .S × H (trivial bundle)

For optimisation:
inf

g∈N(x)
L(g .x) = inf

h∈H
L(hgf (x).x)
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An example for scaling and translations

I G = R∗+ oRn: group of scalings and translations.

I Action of g = (λ Idn, ~t) on object space:

g .A = {λx + ~t, x ∈ A}.

I Feature manifold: scale and position, M = R∗+ × Rn.

I Action of g on an element of the feature manifold:

g .(σ, τ) = (λσ, λτ + ~t)

I Transitive and free action: a unique g such that g .(σ, τ) = (σ′, τ ′)

I M is a principal homogeneous space of G .

I Only one orbit: any point can be chosen as ”nice representation”. For instance: unit scale
and centred (σ, τ) = (1,O)



Feature map built from object moments.

I volume , barycentre, covariance

|A| =

∫
A

dx , µ(A) =
1

|A|

∫
A

x dx

Σ(A) =
1

|A|

∫
A

(x − µ(A)) (x − µ(A))T dx

Feature map: F (A) : position µ(A) and scale σ(A) =
√

Tr Σ(A)
Equivariance: F (g .A) = g .F (A) by simple check.



I N(A): Transformations g which normalise the scale and position of A: only one such
transformation gA = (σ(A)−1,−σ(A)−1µ(A)),

gA.A =
A− µ(A)

σ(A)

I A 7→ L
(

A−µ(A)
σ(A)

)
is G -invariant. One gets [Cremers et al. 2006].

I Here A 7→ gA normalises the features and the object too.

I There is a simple relation between the group and the feature space.

I E = {(σ−1,−σ−1τ), (σ, τ) ∈M} →M:
I very trivial principal bundle
I Fiber type H ≈ {id}.



Similarities: scalings, rotations and translations

I Same features, augmented group G = R∗+ × SO(n) oRn

I Action on features:
(s,R, ~t).(σ, τ) = (sσ, sRτ + ~t)

I One orbit, but the action is not free: many transformations send (σ, τ) to (1,O):

{(σ−1,R,−σ−1Rτ), R ∈ SO(n)} ' SO(n)

I Feature normaliser

M(σ, τ) = {(σ−1,R,−σ−1Rτ), R ∈ SO(n)} ' SO(n)

Computing infg∈N(A) L(g .a) is more complicated!

I Scale and position features do not convey orientation information.



Add covariance Σ(A) features: M = Rn × SPD(n)

I Action: g = (s,R, ~t) acts on (τ,Σ) as

g .(τ,Σ) = (gτ, s2RΣRT ) = (sRτ + ~t, s2RσRT )

I Normalised representations: the set S of all the (O,Λ), with Λ
I diagonal
I λ1 ≥ λ2 ≥ · · · ≥ λn > 0
I

∑
i λi = 1

I good: each orbit G .(0,Λ) contains exactly one such (0,Λ),

I but the stabilisers G(0,Λ) are not all identical.

g .(0,Λ) = (0,Λ) ⇐⇒ s2RΛRT = Λ =⇒ s = 1

I reduced to G̃ = SO(n), computing the stabiliser G̃Λ

I G̃Λ depends on the pattern of repeated eigenvalues in Λ



Add covariance Σ(A) features: M = Rn × SPD(n)

I Action: g = (s,R, ~t) acts on (τ,Σ) as

g .(τ,Σ) = (gτ, s2RΣRT ) = (sRτ + ~t, s2RσRT )

I Normalised representations: the set S of all the (O,Λ), with Λ
I diagonal
I λ1 ≥ λ2 ≥ · · · ≥ λn > 0
I

∑
i λi = 1

I good: each orbit G .(0,Λ) contains exactly one such (0,Λ),

I but the stabilisers G(0,Λ) are not all identical.

g .(0,Λ) = (0,Λ) ⇐⇒ s2RΛRT = Λ =⇒ s = 1

I reduced to G̃ = SO(n), computing the stabiliser G̃Λ

I G̃Λ depends on the pattern of repeated eigenvalues in Λ



Add covariance Σ(A) features: M = Rn × SPD(n)

I Action: g = (s,R, ~t) acts on (τ,Σ) as

g .(τ,Σ) = (gτ, s2RΣRT ) = (sRτ + ~t, s2RσRT )

I Normalised representations: the set S of all the (O,Λ), with Λ
I diagonal
I λ1 ≥ λ2 ≥ · · · ≥ λn > 0
I

∑
i λi = 1

I good: each orbit G .(0,Λ) contains exactly one such (0,Λ),

I but the stabilisers G(0,Λ) are not all identical.

g .(0,Λ) = (0,Λ) ⇐⇒ s2RΛRT = Λ =⇒ s = 1

I reduced to G̃ = SO(n), computing the stabiliser G̃Λ

I G̃Λ depends on the pattern of repeated eigenvalues in Λ



Minimal symmetries: N(A) is a trans-
lated of {± id}

Circular symmetries: N(A) is a trans-
lated of SO(2)



The fibre bundle structure for similarities

I Restrict L to SO(n)× D∗, No repetition patterns in D∗

SO(n)× D∗ R,Λ

SPD∗(n) RTΛR

I SPD(n)∗ matrices with distinct eigenvalues.

I Non trivial H-principal bundle.

H 3 P =


α1 . . . 0
0 . . . 0
...

...

0
... αn


αi ∈ {±1},

∏
i

αi = 1

I Finite fibres, translations of H: Galois covering map.



Optimisation for Similarities

I Priors of the form

L(A) = min
P∈H

L

(
(PRA) (A− µ(A))

σ(A)

)
I RA diagonalises ΣA

I if L is continuous and t 7→ A(t) a continuous shape trajectory

P(t) =

{
arg. min

P∈H
L

((
PRA(t)

)
(A(t)− µ(A(t)))

σ(A(t))

)}
≡ P(0)

for t ∈ [0,T ] small enough

I Always the case when the denormalisation bundle has finite fibres.



A segmentation functional

EDl
(A, c1, c2) =

1

2

∫
Ω

g ∗
[
(u − c1(x))2χA + (u − c2(x))2χΩ\A

]
(x) dx

ES(A) = − log F (A,B1, . . . ,BN) = − log

(
N∑
i=1

e
−

LBi
(A)

2ρ2

)
.

(a) (b)

Figure: Slice of an MRI scan of a rat cranium (a), 3D brain segmentation (b).



Figure: Shape evolution snapshots



Faithful features

I Scaling position situation: faithful action of G = R∗+ oRn:

Gy = Id

I Similarities, (τ,Σ): we probe a shape with Gaussian type features: inner symmetries

Gȳ = H 6= {Id}

I But with H discrete, simplifications are possible.

I Modify features? Probe with non symmetric: Calculation complexity?

I If Y = Y1 × · · · × Yn, each Yi a G -space:

Gy = (y1, . . . , yn),Gy = ∩ni=1Gyi

I Suggest: add features to simplify the action?

I But can too increase calculations complexity.



Conclusion

I An attempt to understand some of the principles used when designing invariant shape
priors,

I A ”recipe” for generating invariant functions,

I Link with classical objects of differential geometry.

I Limited use in 3D printing until now apart from femurs (and rat brains)...

I Other areas where locally compact groups actions would be of interest in CV / Medical
imaging?

I For infinite dimensional groups? Theory of Moduli spaces. Slices may not even locally
exist.
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