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Outline

We want overhang control: constraint based on first-order derivatives of density

However, oscillating boundaries may occur: measure and suppress them by
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Introduction Outline

Topology optimization and 3D printing

Topology optimization allows to determine the optimal design to withstand a
given set of loads.

The optimized design can, nonetheless, be complex and have fine features.

3D-printing is attractive to manufacture the optimized designs
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Introduction Overhangs in 3D printing

Overhangs in 3D printing

Consider an additive manufacturing process that is performed along a given
build direction b (e.g., the vertical axis). Let α denote the overhang angle.

α

b

Figure: The overhang angle, where b is the build direction and α is the overhang angle
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Introduction Overhangs in 3D printing

if α sufficiently steep self-supporting;

if α not steep enough structure may collapse during manufacturing.

In topology optimization, we can forbid designs that are not self-supporting by
filters or constraints.
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The PUP constraint Introduction to PUP constraint

The Projected Undercut Perimeter (PUP) constraint

The PUP constraint2 is based on the analysis of the gradient of density. In
particular, let γ be the design variable.

∇γ 6= 0 only along the contour of the design;
∇γ · b > 0 in overhanging boundaries.

Figure: A design (left) and the directional derivative∇γ · b (right)

2X. Qian. “Undercut and overhang angle control in topology optimization: A density gradient based integral
approach”. In: International Journal for Numerical Methods in Engineering 111.3 (2017), pp. 247–272.
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The PUP constraint Introduction to PUP constraint

Moreover, it is easy to correlate∇γ · b to the overhang angle α by
∇γ · b
‖∇γ‖

= cos(α).

b

90◦

90◦∇γ

α
α

b
∇γ
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The PUP constraint Introduction to PUP constraint

Then, if ᾱ is a given threshold to the overhang angle, a boundary is
self-supporting when

∇γ · b
‖∇γ‖

≤ cos(ᾱ).

The PUP constraint is based on imposing this condition by means of a
(continuous and differentiable approximation of) Heaviside projection. By
applying also a shifting,

Hᾱ(γ) = H
(∇γ · b
‖∇γ‖

− cos(ᾱ)
)

is a function which is nonzero only along boundaries which violate the
self-support condition.

Density derivative-based approaches for overhang control in topology optimization in 3D-printing 8 / 34



The PUP constraint Introduction to PUP constraint
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The PUP constraint The PUP gradient-based overhang constraint

The projected overhang can thus be represented as

Pᾱ =

∫
Ω
Hᾱ(γ)∇γ · bdΩ

and the PUP constraint is formulated as

Pᾱ ≤ P̄ᾱ,

where P̄ᾱ is a given threshold to the overhanging perimeter where the overhang
angle exceeds ᾱ.

Gradient-based overhang constraint
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The PUP constraint Geometrical constraints and boundary oscillations

Geometrical constraints and boundary oscillations

Advantages PUP:
Simple, and with direct geometrical meaning;
It can be imposed by adding a single integral constraint to the TO problem.

Issue: The PUP constraint can be satisfied also by oscillating solid-void
boundaries.

Figure: Comparison of designs obtained without (left) and with (right) PUP constraint

This issue characterizes geometrical overhang constraints3.
3G. Allaire et al. “Structural optimization under overhang constraints imposed by additive manufacturing

technologies”. In: Journal of Computational Physics 351 (2017), pp. 295–328.
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Measuring boundary oscillations Analysis of oscillations

Analysis of oscillations

We need to explicitly forbid designs with boundary oscillations

We formulate a measure of boundary oscillations4, which is nonzero only when
oscillations are present

tip

valley top of a hole, geometrically identical to a valley

4F. Mezzadri and X. Qian. “A second-order measure of boundary oscillations for overhang control in
topology optimization”. In: Journal of Computational Physics 410, art. 109365 (2020), pp. 1–32.
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Measuring boundary oscillations Oscillations as maxima and minima

Oscillations as maxima and minima

Let us analyze how γ evolves at a fixed height ẑ. The function

Γ(x) = γ(x, ẑ)

describes how γ(x, z) changes along x at z = ẑ.

z = ẑ

Γ(x)

x
0

z = ẑ

Γ(x)

x

1

Figure: Tips and valleys of oscillating boundaries as local maxima and minima
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Measuring boundary oscillations Boundary oscillations and second-order density derivatives

It is then easy to prove the following proposition:

Oscillations and second-order density derivatives

Let (x̂, ẑ) be a point of the domain Ω ⊂ R2 and let Γ(x) = γ(x, ẑ) be
twice continuously differentiable in some neighborhood I(x̂) with
Γ′′(x̂) 6= 0. Then, if (x̂, ẑ) is the tip of an oscillation, the condition

Γ′′(x̂) =
∂2γ(x̂, ẑ)

∂x2
< 0

must be satisfied.
Similarly, if (x̂, ẑ) is the valley of an oscillation or a pointy horizontal
overhang, the condition

Γ′′(x̂) =
∂2γ(x̂, ẑ)

∂x2
> 0

must be satisfied.
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Measuring boundary oscillations Boundary oscillations and second-order density derivatives

(a) Design (b)
∂γ(x, z)

∂x

(c)
∂2γ(x, z)

∂x2
(d) min(0,

∂2γ(x, z)

∂x2
)

Figure: Derivatives of γ with respect to x differentiate tips from valleys in an oscillating
design

Density derivative-based approaches for overhang control in topology optimization in 3D-printing 14 / 34



Measuring boundary oscillations Boundary oscillations and second-order density derivatives

A characterization of tips of boundary oscillations

Second-order density derivatives are non-zero in various parts of the boundary.

However, tips of boundary oscillations are all facing directly downwards.

In all these points, we have

‖∇γ‖ =
∂γ

∂z
.

Characterization of tips of boundary oscillations

Let γ(x, z) be defined on the domain Ω ⊂ R2 . Furthermore, let γ(x, z)
be twice continuously differentiable on Ω and assume that oscillations
are aligned along the z-axis. If a point (x̂, ẑ) ∈ Ω satisfies

‖∇γ(x̂, ẑ)‖ =
∂γ(x̂, ẑ)

∂z
and

∂2γ(x̂, ẑ)

∂x2
< 0,

then (x̂, ẑ) is the tip of an oscillation.
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Measuring boundary oscillations Boundary oscillations and second-order density derivatives

More in general, for an arbitrary build direction, we obtain the conditions

∇γ(x̂, ẑ) · b
‖∇γ(x̂, ẑ)‖

= 1 and q(γ) < 0,

where
q(γ) = bT⊥ · ∇2γ(x̂, ẑ) · b⊥.

We can write a derivative-based measure to detect tips of oscillating boundaries
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Measuring boundary oscillations The measure of boundary oscillations

The second-order measure of boundary oscillations

Thus, we formulate the measure

m(γ) = q(γ)Hθ(γ)∇γ · b

Density derivative-based approaches for overhang control in topology optimization in 3D-printing 17 / 34



Measuring boundary oscillations The measure of boundary oscillations

The second-order measure of boundary oscillations
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Measuring boundary oscillations The measure of boundary oscillations

The second-order measure of boundary oscillations

Thus, we formulate the measure

m(γ) = q(γ) Hθ(γ) ∇γ · b

Nonzero only in horizontal overhangs
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Measuring boundary oscillations The measure of boundary oscillations
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Measuring boundary oscillations The measure of boundary oscillations
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Measuring boundary oscillations The measure of boundary oscillations

m̂(γ) = max(0,−m(γ))

or, in practice, the differentiable approximation

m̃(γ) = − m(γ)

1 + eβm(γ)

are larger than zero only at tips of boundary oscillations.

(a) Design (b) −m(γ)

(c) m̂(γ) (d) m̃(γ)

(e) m̂(γ) over design (f) Negative values of −m(γ)
over design

Figure:
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Boundary oscillation control Strategies

Boundary oscillation control

Usingm(γ) we can develop several strategies to control boundary oscillations.

For instance,
1 We can suppress boundary oscillations by an adaptive PDE filter, whose

(possibly anisotropic) radius is chosen based on m̂(γ)

We limit the disadvantages of large filter radius

2 We can formulate explicit constraints or cost penalizations

We directly impose that m̃(γ) sufficiently small
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Boundary oscillation control Adaptive filter

Generalities of adaptive filter

We compute

M̂ =

∫
Ω
m̂(γ)dΩ

If M̂ is above or below given thresholds, the filter radius (possibly only along a
single direction) is increased or reduced locally.

In particular,
If M̂ is large, then boundary oscillations are present

the radius is increased along downward-facing boundaries
If M̂ is close to zero, then boundary oscillations are not present

we can reduce the filter radius everywhere, to obtain sharper designs
We can use the non-differentiable m̂(γ) because sensitivities are not needed.
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Boundary oscillation control Cost penalization

Outline of cost penalization

m̃(γ) is nonnegative, its p-norm can be written as

M̃ =
(∫

Ω
m̃(γ)pdΩ

)1/p
.

We impose that M̃ is small by constraints or cost penalization

Our implementation:
1 Set p large, so that M̃ approximates the uniform norm of m̃(γ);
2 Add M̃ to the cost, applying also a weight w

In this context we use m̃(γ), which is differentiable. We can then compute
sensitivities.
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Generalization to 3D

Oscillations in 3D domains

In 3D, we can still interpret tips of boundary oscillations as local maxima.

x

y

z

plane z = ẑ

Figure: A boundary oscillation in 3D space
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Generalization to 3D

Thus, we just have to consider maxima on planes instead that in one dimension.

Characterization of boundary oscillations in 3D

Let γ(x, y, z) be defined on the domain Ω ⊂ R3 . Furthermore, let
γ(x, y, z) have continuous second-order partial derivatives on Ω and
assume that boundary oscillations are downward-facing. Finally, define
Γ(x, y) = γ(x, y, ẑ). Then, if a point (x̂, ŷ, ẑ) ∈ Ω satisfies

‖∇γ(x̂, ŷ, ẑ)‖ =
∂γ(x̂, ŷ, ẑ)

∂z
and ∇2Γ(x̂, ŷ) ≺ 0,

(x̂, ŷ, ẑ) is the tip of a boundary oscillation.

The sign of the (2× 2) Hessian matrix is studied by considering the sign of its
minors, which involve the sign of the second-order derivatives of γ w.r.t. x and y.
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Numerical experiments Statement of the problems

Numerical experiments

F L

2L

(a) 2D cantilever beam problem (b) 3D cantilever beam problem

Figure: Domain and boundary conditions of the considered problems
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Numerical experiments 2D results with adaptive filter

2D results with adaptive filter

(a) ᾱ = 30◦ , P̄ = 3.5 (b) ᾱ = 45◦ , P̄ = 1.0 (c) ᾱ = 60◦ , P̄ = 0.35

Figure: Optimized designs for various choices of critical overhang angle ᾱ

Table: Cost of the designs, corresponding to different overhang angles ᾱ.

ᾱ c δc Mnd

30◦ 62.70 9.1% 3.6%
45◦ 76.64 20.1% 6.4%
60◦ 109.58 38.6% 5.8%
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Numerical experiments 2D results with cost penalization

2D results with cost penalization

(a) ᾱ = 30◦ , P̄ = 1.5 (b) ᾱ = 45◦ , P̄ = 5.0 (c) ᾱ = 60◦ , P̄ = 3.0

Figure: Optimized designs for various choices of critical overhang angle ᾱ

Table: Cost of the designs, corresponding to different overhang angles ᾱ.

ᾱ c δc Mnd

30◦ 69.52 −0.8% 4.9%
45◦ 71.11 25.8% 4.2%
60◦ 89.59 46.4% 6.1%
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Numerical experiments Analysis of the 3D problem

Analysis of the 3D problem

Also in the considered 3D example, the PUP constraint can produce oscillating
boundaries. The 3D measure can be used to detect them.

(a) Measure of boundary oscil-
lations over a view of the design

(b) Zoom-in of the measure of boundary oscilla-
tions in an oscillating boundary

Figure: The measure of boundary oscillations detects 3D oscillating boundaries
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Numerical experiments Analysis of the 3D problem

Results with adaptive filter

(a) Without adaptive filter. Cost:
41,382

(b) With adaptive filter. Cost:
42,852

(c) Witout adaptive filter, large ra-
dius. Cost: 64,989

Figure: Comparison between adaptive and non-adaptive filters of different radii.
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Numerical experiments Analysis of the 3D problem

Results with cost penalization

(a) Unconstrained (b) With oscillation penalty

(c) Design of point c (in yellow) over un-
constrained

Figure: Results with cost penalization
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Numerical experiments An application in optimization of support structures

An application in optimization of support structures
In some cases, a specific design must be manufactured, and it cannot be

changed.

Support structures are needed.

In this case, it is possible to compute optimized support structures by solving a
topology optimization problem5.

Build direction

Part to print

Support zone Design domain

Figure: Setting of the problem for support optimization

5F. Mezzadri, V. Bouriakov, and X. Qian. “Topology optimization of self-supporting support structures for
additive manufacturing”. In: Additive Manufacturing 21 (2018), pp. 666–682.
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Numerical experiments An application in optimization of support structures

(a) A supported MBB beam (b) A supported dome

(c) A supported complex structure

Figure: Some examples of optimized support structures
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Numerical experiments An application in optimization of support structures

The proposed approaches can be useful also in the optimization of support
structures.
Indeed, optimized supports structures can, in some cases, not be self supporting.
Overhang control may then be required.

(a) Supports without overhang
constraint

(b) Supports with overhang con-
straint

Figure: Comparison of optimized supports with and without overhang control
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Conclusions

Conclusions

1 Approaches based on derivatives of the density function can be effectively
used to detect overhangs and boundary oscillations;

2 Then, they allow to implement overhang control strategies for topology
optimization in 3D printing;

3 The derivative-based measures allow to formulate various filters,
constraints and penalizations;

4 Numerical results show the actual applicability of these procedures, also for
3D problems.
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