Spectral Perturbations and Generative Models in Geometric Deep Learning

Emanuele Rodolà

GLADIA lab

Overview

- ☐ Sci-fi
- ☐ Shape-from-spectrum (optimization)
- Shape-from-spectrum (learning-based)
- Spectral adversarial attacks

CAN ONE HEAR THE SHAPE OF A DRUM?

MARK KAC, The Rockefeller University, New York

To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

"La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes . . . , elle nous fait presentir la solution." H. Poincaré.

Wave equation

$$\frac{\partial^2 u(x,y;t)}{\partial t^2} = \Delta u(x,y;t)$$

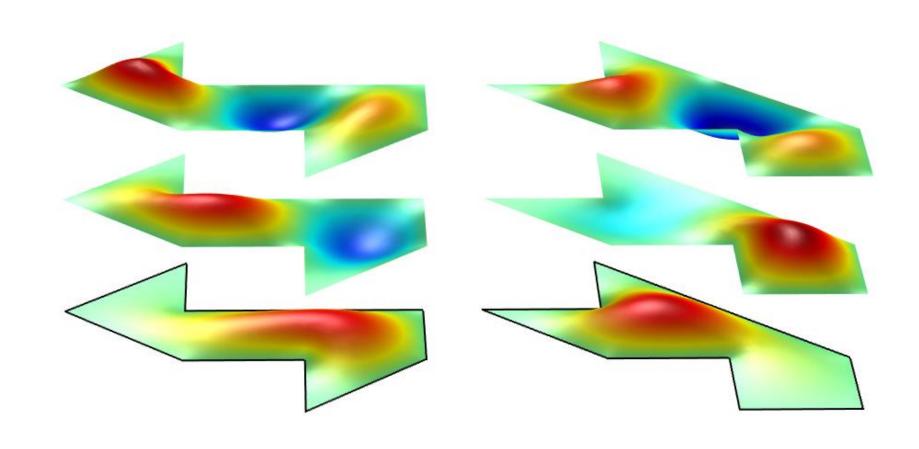
$$\Delta \phi_i = \lambda_i \phi_i$$

$$u(x, y; t) = \sum_{j} d_{j} \phi_{j}(x, y) \left(\cos \left(\sqrt{\lambda_{j}} t \right) + i \sin \left(\sqrt{\lambda_{j}} t \right) \right)$$

Isometry invariance

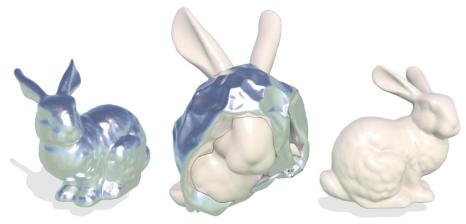
Isometric shapes have the same Laplacian eigenvalues

Isospectral ≠ Isometric



Existing approaches

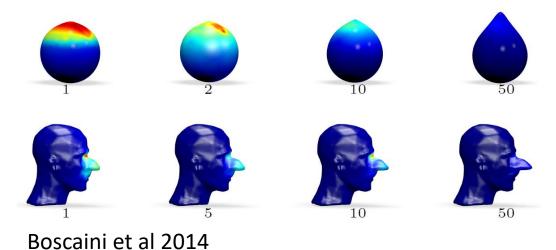
Shape-from-metric



Chern et al 2018

Borrelli et al 2012

Shape-from-operator



An empirical approach

Discrete setting



Isospectralization

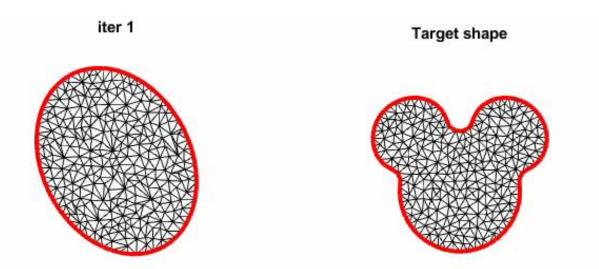
$$\min_{\mathbf{X} \in \mathbb{R}^{n \times d}} \| \boldsymbol{\lambda}(\boldsymbol{\Delta}_X(\mathbf{X})) - \boldsymbol{\mu} \|_{\omega} + \rho_X(\mathbf{X})$$

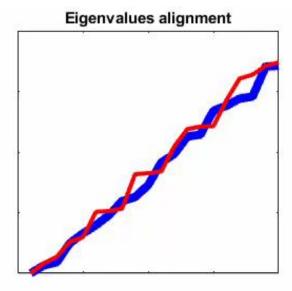
Data term: weighted norm (frequency balancing)

$$\|\boldsymbol{\lambda} - \boldsymbol{\mu}\|_{\omega}^2 = \sum_{i=1}^k \frac{1}{\mu_i^2} (\lambda_i - \mu_i)^2$$

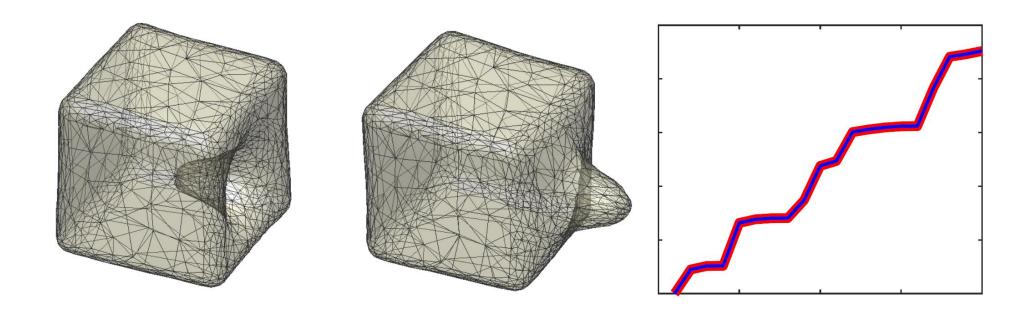
- Regularizers to promote smoothness / maximize volume
- Input: ≤ 30 eigenvalues
- Optimization: Nonlinear conjugate gradient with automatic differentiation

Example: Mickey-from-spectrum



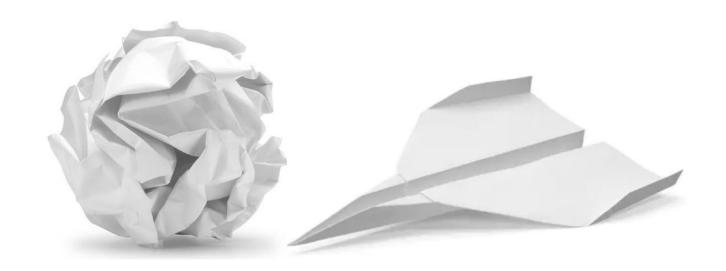


Geometric priors



Example: Volume regularizer to avoid isometric ambiguities

Geometric priors are not enough

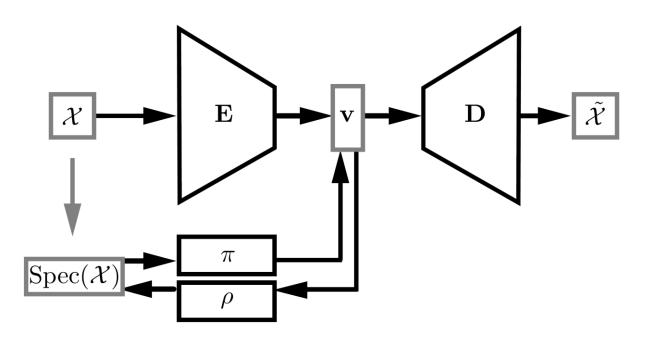


Do we really have to design regularizers?

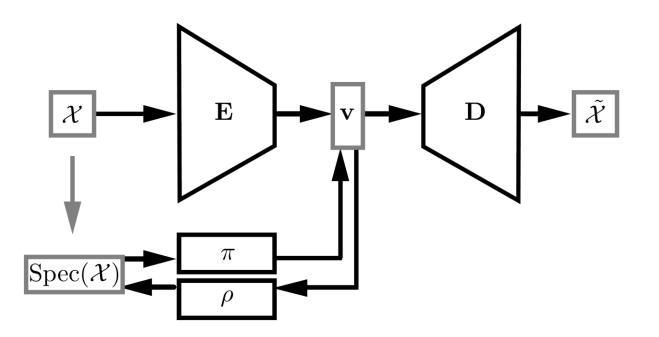
Learn from data what is hard to model axiomatically

Data-driven formulation

AE-based learning model:



AE-based learning model:

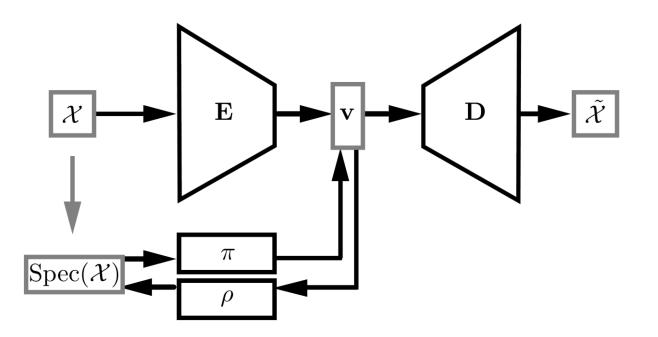


$$\ell = \ell_{\mathcal{X}} + \alpha \ell_{\lambda}, \text{ with}$$

$$\ell_{\mathcal{X}} = \frac{1}{n} \|D(E(\mathbf{X})) - \mathbf{X}\|_F^2$$

$$\ell_{\lambda} = \frac{1}{k} (\|\pi(\lambda) - E(\mathbf{X})\|_2^2 + \|\rho(E(\mathbf{X})) - \lambda\|_2^2)$$

AE-based learning model:



$$\ell = \ell_{\mathcal{X}} + \alpha \ell_{\lambda}, \text{ with}$$

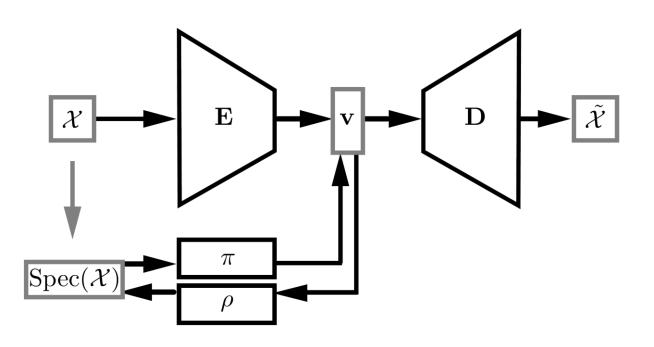
$$\ell_{\mathcal{X}} = \frac{1}{n} \|D(E(\mathbf{X})) - \mathbf{X}\|_F^2$$

$$\ell_{\lambda} = \frac{1}{k} (\|\pi(\lambda) - E(\mathbf{X})\|_2^2 + \|\rho(E(\mathbf{X})) - \lambda\|_2^2)$$

The spectral loss enforces:

$$\rho \approx \pi^{-1}$$

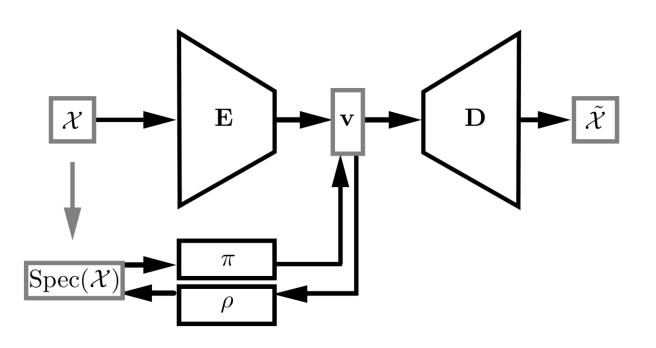
AE-based learning model:



Remarks:

• **No back-propagation** through the eigen-decomposition

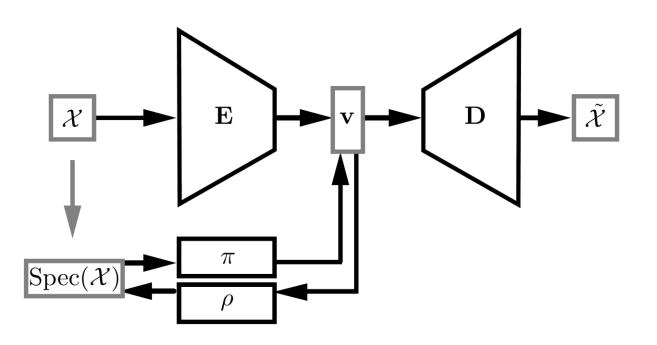
AE-based learning model:



Remarks:

- No back-propagation through the eigen-decomposition
- The input spectrum can be arbitrarily accurate

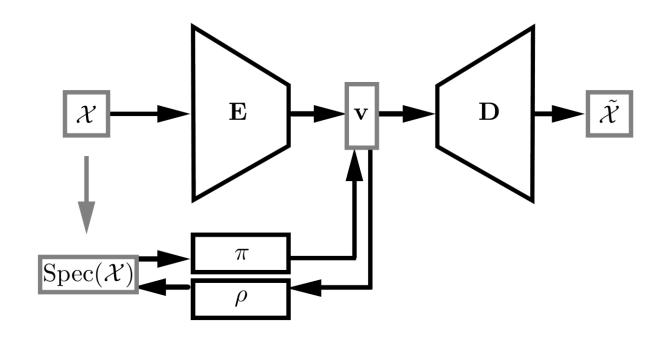
AE-based learning model:



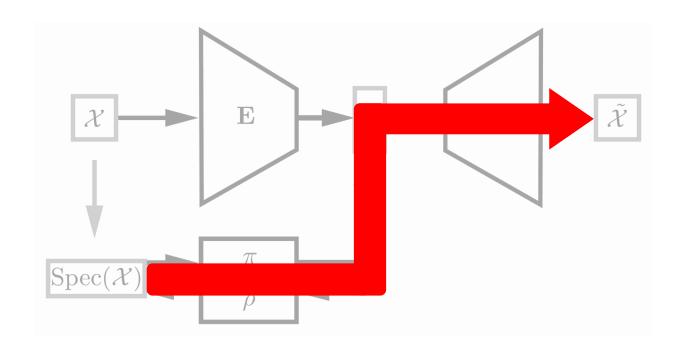
Remarks:

- No back-propagation through the eigen-decomposition
- The input spectrum can be arbitrarily accurate
- Admits **any AE** model (e.g. for point clouds, meshes, etc.)

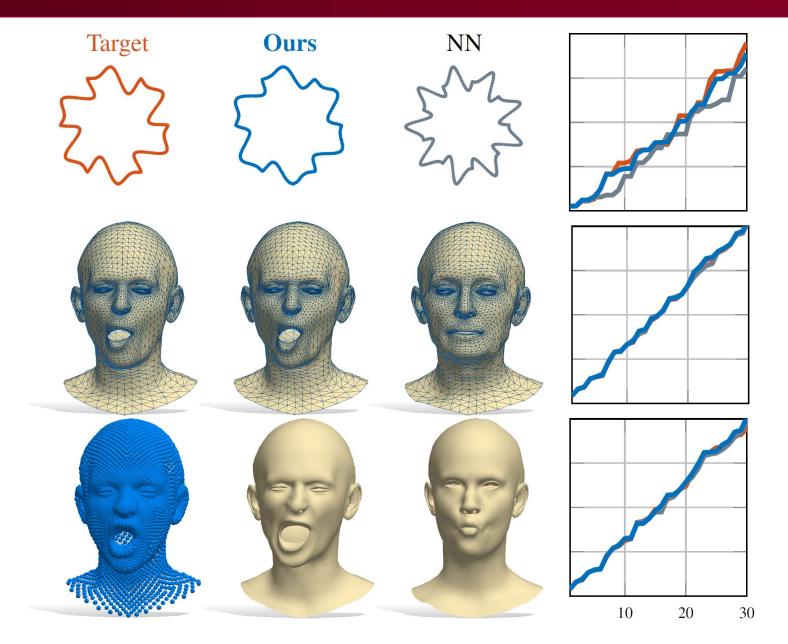
Shape-from-spectrum reconstruction



Shape-from-spectrum reconstruction



Examples

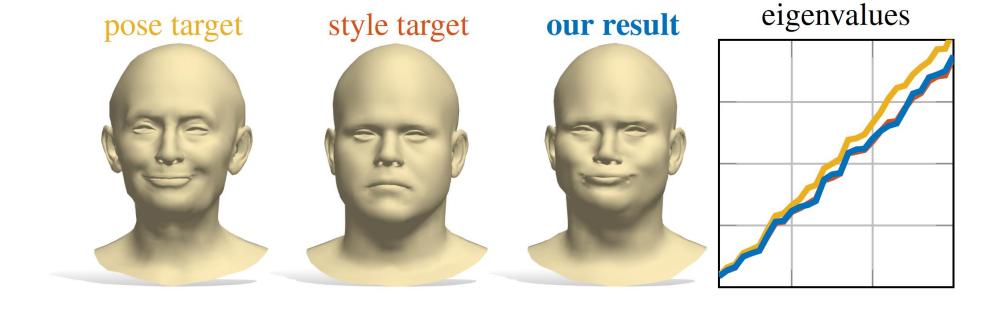


Application: Style transfer

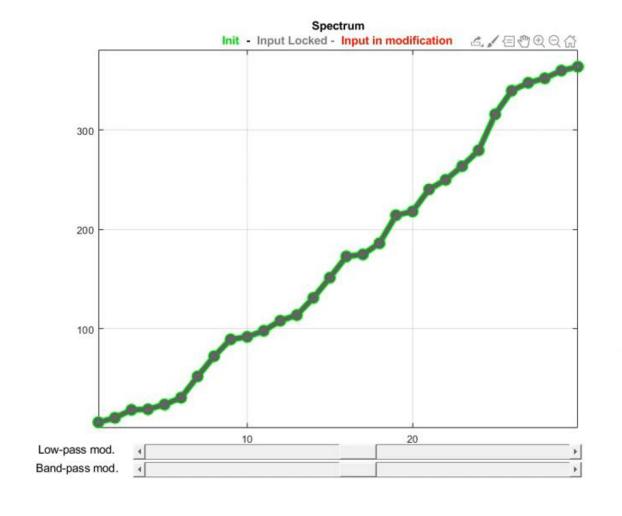
$$\min_{\mathbf{v}} \|\operatorname{Spec}(\mathcal{X}_{\operatorname{style}}) - \rho(\mathbf{v})\|_{2}^{2} + w \|\mathbf{v} - E(\mathcal{X}_{\operatorname{pose}})\|_{2}^{2}$$

Application: Style transfer

$$\min_{\mathbf{v}} \|\operatorname{Spec}(\mathcal{X}_{\text{style}}) - \rho(\mathbf{v})\|_{2}^{2} + w \|\mathbf{v} - E(\mathcal{X}_{\text{pose}})\|_{2}^{2}$$

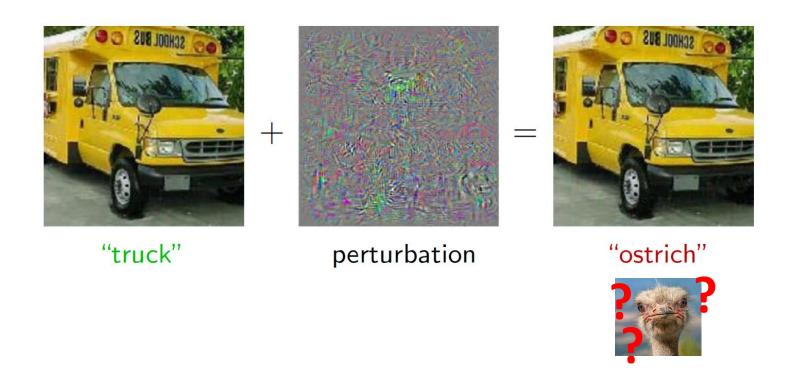


Application: Shape exploration



Adversarial attacks

Adversarial perturbations



The perturbation should be undetectable and can be explicitly optimized for.

Malicious attacks

"speed limit 50mph"

Example of a malicious attack on a visual classifier

Targeted attacks

Given an input sample x, a classifier C, and a target class t, consider:

$$\min_{\mathbf{x}' \in [0,1]^n} \|\mathbf{x} - \mathbf{x}'\|_2^2$$
s.t. $C(\mathbf{x}') = t$

We call x' an adversarial example.

Relax the difficult constraint to a penalty term:

$$\min_{\mathbf{x}' \in [0,1]^n} \|\mathbf{x} - \mathbf{x}'\|_2^2 + cL(\mathbf{x}',t)$$

Targeted attacks

A more general approach is given by:

$$\min_{\boldsymbol{\delta} \in [0,1]^n} d(\mathbf{x}, \mathbf{x} + \boldsymbol{\delta}) + c f(\mathbf{x} + \boldsymbol{\delta})$$

where the perturbation δ appears explicitly, and d is some distance

f is such that $C(\mathbf{x} + \boldsymbol{\delta}) = t$ if and only if $f(\mathbf{x} + \boldsymbol{\delta}) \leq 0$.

$$f_1(x') = -\log_{F,t}(x') + 1$$

$$f_2(x') = (\max_{i \neq t} (F(x')_i) - F(x')_t)^+$$

$$f_3(x') = \operatorname{softplus}(\max_{i \neq t} (F(x')_i) - F(x')_t) - \log(2)$$

$$f_4(x') = (0.5 - F(x')_t)^+$$

$$f_5(x') = -\log(2F(x')_t - 2)$$

$$f_6(x') = (\max_{i \neq t} (Z(x')_i) - Z(x')_t)^+$$

$$f_7(x') = \operatorname{softplus}(\max_{i \neq t} (Z(x')_i) - Z(x')_t) - \log(2)$$

See:

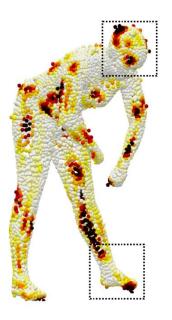
Carlini and Wagner, 2016 "Towards evaluating the robustness of neural networks"

Surface attacks

A perturbation V is a displacement field:

$$X' = X + V$$

Arbitrary displacement can lead to noticeable adversarial jittering:

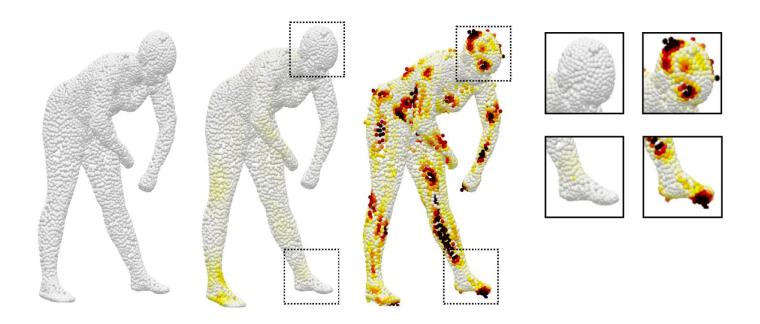


Surface attacks

A perturbation V is a displacement field:

$$X' = X + V$$

Arbitrary displacement can lead to noticeable adversarial jittering:



Idea: Regularize the displacement to make it less noticeable.

Band-limited perturbations

Represent the perturbation in the truncated Laplacian eigenbasis:

$$\mathbf{V} = \mathbf{\Phi} \mathbf{v}$$

Theorem 1 [ABK15] For any given choice of $k \ge 1$ and any function $f \in \mathcal{F}(\mathcal{X})$, the inequality:

$$\|f - \sum_{i=1}^{k} \langle \mathbf{\psi}_i, f \rangle \mathbf{\psi}_i\|^2 \le \alpha \frac{\|\nabla f\|^2}{\lambda_{k+1}} \tag{4}$$

holds for $\alpha = 1$ whenever one chooses ψ_i to be the Laplacian eigenfunctions, while tightening the bound with $0 \le \alpha < 1$ is not possible for *any* sequence of orthogonal functions $\{\psi_i \in \mathcal{F}(\mathcal{X})\}$.

Band-limited perturbations

Represent the perturbation in the truncated Laplacian eigenbasis:

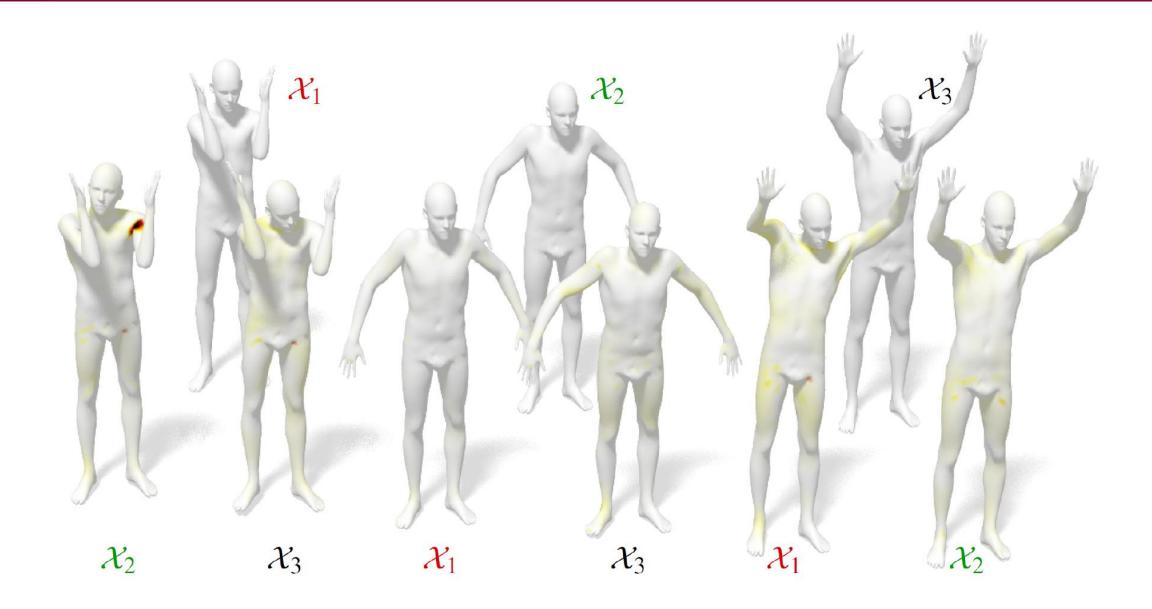
$$V = \Phi v$$

Theorem 1 [ABK15] For any given choice of $k \ge 1$ and any function $f \in \mathcal{F}(\mathcal{X})$, the inequality:

$$||f - \sum_{i=1}^{k} \langle \psi_i, f \rangle \psi_i||^2 \le \alpha \frac{||\nabla f||^2}{\lambda_{k+1}}$$
(4)

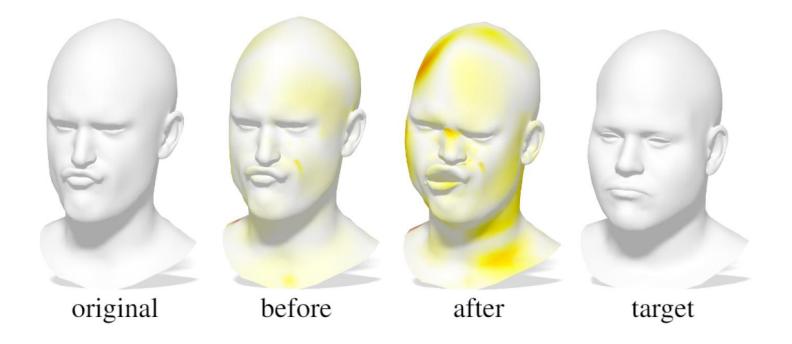
holds for $\alpha = 1$ whenever one chooses ψ_i to be the Laplacian eigenfunctions, while tightening the bound with $0 \le \alpha < 1$ is not possible for *any* sequence of orthogonal functions $\{\psi_i \in \mathcal{F}(\mathcal{X})\}$.

Examples



Adversarial training

Using adversarial examples as training data improves the robustness of the attacked learning model:

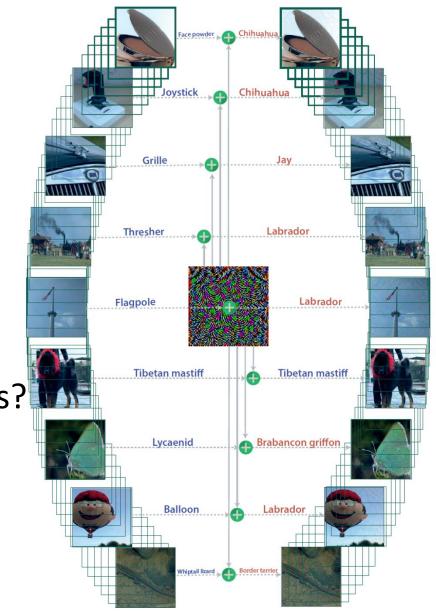


Universal perturbations

Image-agnostic perturbations are known to exist.

What about surfaces and point clouds?

Can we even define a single spatial perturbation for an entire collection of shapes?

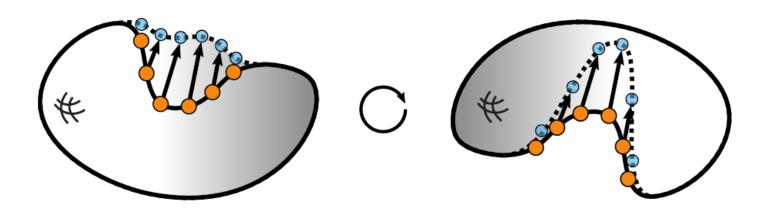


Universal spatial perturbations

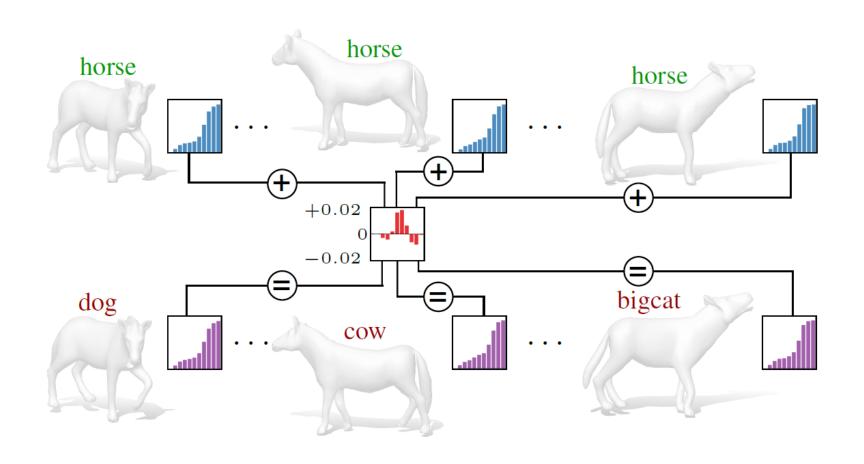
No!

Each shape is its own domain.

Any spatial perturbation only applies to the domain where it is defined.

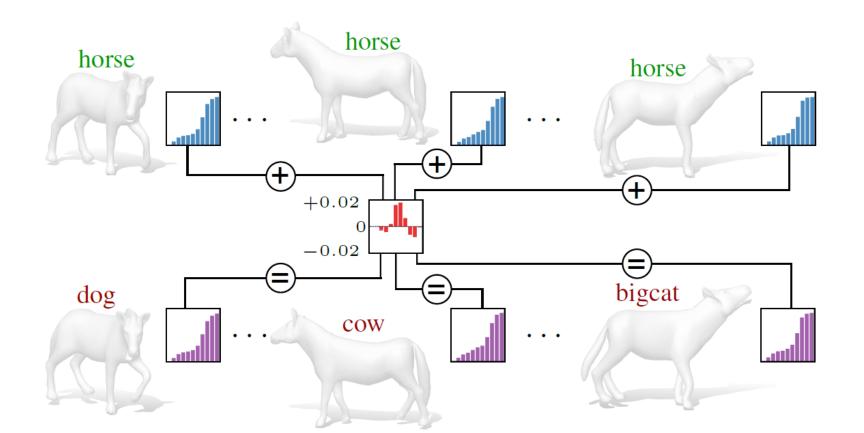


Universal spectral perturbations



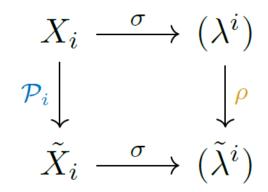
Universal spectral perturbations

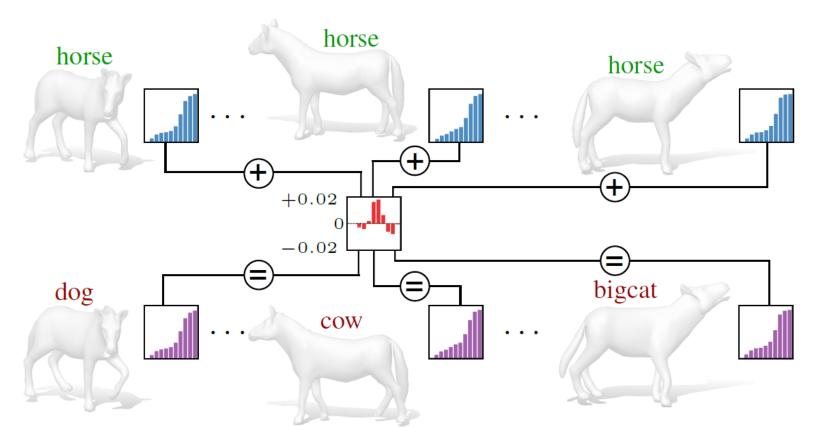
$$\min_{\substack{\rho \in \mathbb{R}^k \\ \mathcal{P}_i}} \sum_{X_i \in \mathcal{S}} \|\sigma(X_i)(1+\rho) - \sigma(\mathcal{P}_i(X_i))\|_2^2$$
s.t. $\mathcal{C}(\mathcal{P}_i(X_i)) \neq \mathcal{C}(X_i) \quad \forall X_i \in \mathcal{S}$



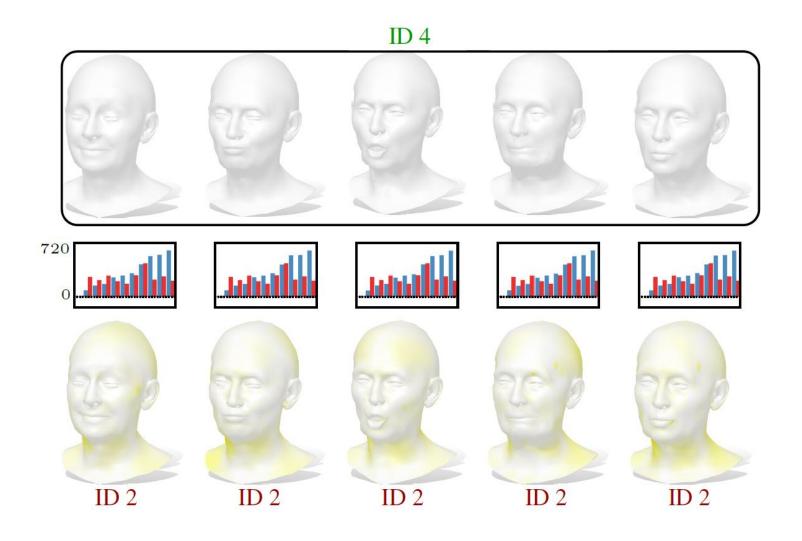
Universal spectral perturbations

$$\min_{\substack{\rho \in \mathbb{R}^k \\ \mathcal{P}_i}} \sum_{X_i \in \mathcal{S}} \|\sigma(X_i)(1+\rho) - \sigma(\mathcal{P}_i(X_i))\|_2^2$$
s.t. $\mathcal{C}(\mathcal{P}_i(X_i)) \neq \mathcal{C}(X_i) \quad \forall X_i \in \mathcal{S}$





Examples



Thanks for hearing listening!

