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Overview

Sci-fi
Shape-from-spectrum (optimization)

Shape-from-spectrum (learning-based)
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Spectral adversarial attacks
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CAN ONE HEAR THE SHAPE OF A DRUM?
MARK KAC, The Rockefeller University, New York

To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

“La Physique ne nous donne pas seulement
I'occasion de résoudre des problémes . . ., elle nous
fait presentir la solution.” H. POINCARE.
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Isometry invariance
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Isometric shapes have the same Laplacian eigenvalues
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Isospectral # Isometric
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Existing approaches

Shape-from-metric Shape-from-operator
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An empirical approach




Discrete setting
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Isospectralization

in [[A(Ax(X)) = . X
in [IA(Ax (X)) = plle + px(X)

e Data term: weighted norm (frequency balancing)

2 ‘ 1 2
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@ Regularizers to promote smoothness / maximize volume
@ Input: < 30 eigenvalues

@ Optimization: Nonlinear conjugate gradient with automatic differentiation
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Example: Mickey-from-spectrum

Target shape Eigenvalues alignment
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Geometric priors are not enough
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Do we really have to design regularizers?

Learn from data what is hard to
model axiomatically



Data-driven formulation




Latent space connections

AE-based learning model:

E—» E Vs D—>E
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Latent space connections

AE-based learning model:

{=V0x +aly, with

| ® - b ez tx = ~|D(E(X)) - X[}

¢ I b = %(IIW(A) —EX)|z + [lo(E(X)) = All2)

ISpec(X):I_Ik
P




Latent space connections

AE-based learning model:

{=V0x +aly, with

1
g y N N lx =~ D(EX)) = X| %

1
¢ b= (A - E(X)|3 + lo(E(X)) = All3)
- The spectral loss enforces:

ISpec(X)zl_Ik 4
p 0 RT




Latent space connections

AE-based learning model:

Remarks:

— E . N.o back-propagét.lon through the
eigen-decomposition




Latent space connections

AE-based learning model:

Remarks:

— E . N.o back-propagét.lon through the
eigen-decomposition
* The input spectrum can be
arbitrarily accurate




Latent space connections

AE-based learning model:

Remarks:

— _>|Z . N.o back-propagét.ion through the
eigen-decomposition
* The input spectrum can be
¢ arbitrarily accurate
* Admits any AE model (e.g. for point

T
|SPeC(X)¢ITI<7 clouds, meshes, etc.)




Shape-from-spectrum reconstruction




Shape-from-spectrum reconstruction
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Application: Style transfer

m‘}n HSpeC(Xstyle) —p(V)Hg T va_E(XPOSG)Hg



Application: Style transfer

Hi’ilfl HSpeC(Xstyle) _p(V)Hg T wHV_E(XPOSG)Hg

style target

our result

eigenvalues




Application: Shape exploration

Spectrum
Init - Input Locked - Input in modification 4 ™ Q& Output shape from D(=x(e))

T T

Low-pass mod.

Rl [ o
Band-pass mod. ¢ ) i




Adversarial attacks




Adversarial perturbations

The perturbation should be undetectable and can be explicitly optimized for.
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Malicious attacks

“speed limit 50mph”

Example of a malicious attack on a visual classifier
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Targeted attacks

Given an input sample x, a classifier C', and a target class ¢, consider:

min  ||x — X,H%
x’'€[0,1]

s.t. C(x') =t

We call x" an adversarial example.

Relax the difficult constraint to a penalty term:

min ||x — x'||3 + ¢ L(x', 1)
X,E[O,l]n
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Targeted attacks

A more general approach Is given by:

in d ) 5
s (x,x+0) +cf(x+9)

where the perturbation d appears explicitly, and d is some distance

fis such that C(x+ ) =t if and only if f(x+d) <0

See:

fi(2") = —lossps(2') + 1
A Y J +
fol@) = (Hilif((F(n' i) = F(@)) Carlini and Wagner, 2016
f3(2") = softplus(max(F'(2”);) — F(z2')¢) — log(2) “Towards evaluating the robustness of neural networks”
it
fa(a') = (0.5 — F(2')e)"
f5(a’) = —log(2F (2"); — 2)
fola') = (max( (2");) = Z(2")e)T
fr(2") = softplus(max(Z(rz:’).,-,) — Z(2");) —log(2)
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Surface attacks

A perturbation V is a displacement field:
X' =X+V
Arbitrary displacement can lead to noticeable adversarial jittering:
| t}t"ﬁ.
*
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Surface attacks

A perturbation V is a displacement field:
X' =X+V

Arbitrary displacement can lead to noticeable adversarial jittering:
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|dea: Regularize the displacement to make it less noticeable. .



Band-limited perturbations

Represent the perturbation in the truncated Laplacian eigenbasis:

V = dv

Theorem 1 [ABK15] For any given choice of £ > 1 and any func-
tion f € F(X), the inequality:

IV£I°
A

k
1F =Y (wi, Awil]* < o (4)
=1

holds for o« = 1 whenever one chooses y; to be the Laplacian eigen-
functions, while tightening the bound with 0 < o < 1 1s not possible

for any sequence of orthogonal functions {y; € F(X)}.
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Band-limited perturbations

Represent the perturbation in the truncated Laplacian eigenbasis:

V = dv | (
¥ [

Theorem 1 [ABK15] For any given choice of £ > 1 and any func-
tion f € F(X), the inequality:

for any sequence of orthogonal functions {y; € F(X)}.

k 2 :
2 Vf
7= ¥ (i fywil? < o @
i=1 k+1
holds for o« = 1 whenever one chooses y; to be the Laplacian eigen-
functions, while tightening the bound with 0 < o < 1 1s not possible
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Adversarial training

Using adversarial examples as training data improves the robustness of
the attacked learning model:

original before after target
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Universal perturbations

owder 0 Chihuahua
Image-agnostic perturbations are known § S — ..
. TR | =T
to exist. e "
. Grill o Jay I
|
Thresh 0 Labrad

What about surfaces and point clouds?

Flagpole

Can we even define a single spatial
perturbation for an entire collection of shapes?
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Universal spatial perturbations

No!

Each shape is its own domain.
Any spatial perturbation only applies to the domain where it is defined.
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Universal spectral perturbations
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Universal spectral perturbations

o C(P;(X,) £ C(X,) VX, €S
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Universal spectral perturbations

st C(PAX)) £C(X)) VX, €8 5 X
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Thanks for hearing listening!




