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Overview
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❑ Sci-fi

❑ Shape-from-spectrum (optimization)

❑ Shape-from-spectrum (learning-based)

❑ Spectral adversarial attacks







Wave equation
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Isometry invariance

Isometric shapes have the same Laplacian eigenvalues



Isospectral  Isometric
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Existing approaches

Shape-from-metric

Chern et al 2018

Borrelli et al 2012

Shape-from-operator

Boscaini et al 2014

Corman et al 2017



An empirical approach
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Discrete setting
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Isospectralization



Example: Mickey-from-spectrum
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Geometric priors

Example: Volume regularizer to avoid isometric ambiguities



Geometric priors are not enough



Do we really have to design regularizers?

Learn from data what is hard to 
model axiomatically



Data-driven formulation
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Latent space connections

AE-based learning model:



Latent space connections

AE-based learning model:



The spectral loss enforces:

Latent space connections

AE-based learning model:



Remarks:

• No back-propagation through the 
eigen-decomposition
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Remarks:
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• The input spectrum can be 
arbitrarily accurate

Latent space connections

AE-based learning model:



Remarks:

• No back-propagation through the 
eigen-decomposition

• The input spectrum can be 
arbitrarily accurate

• Admits any AE model (e.g. for point 
clouds, meshes, etc.)

Latent space connections

AE-based learning model:



Shape-from-spectrum reconstruction



Shape-from-spectrum reconstruction



Examples



Application: Style transfer



Application: Style transfer



Application: Shape exploration



Adversarial attacks
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Adversarial perturbations

The perturbation should be undetectable and can be explicitly optimized for.

?
?

?
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Malicious attacks
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Targeted attacks
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Targeted attacks

See:

Carlini and Wagner, 2016
“Towards evaluating the robustness of neural networks”
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Surface attacks
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Surface attacks
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Band-limited perturbations

Represent the perturbation in the truncated Laplacian eigenbasis:
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Band-limited perturbations

Represent the perturbation in the truncated Laplacian eigenbasis:
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Examples
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Adversarial training
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Universal perturbations

Image-agnostic perturbations are known
to exist.

What about surfaces and point clouds?

Can we even define a single spatial
perturbation for an entire collection of shapes?
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Universal spatial perturbations

No!

Each shape is its own domain.
Any spatial perturbation only applies to the domain where it is defined.
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Universal spectral perturbations
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Universal spectral perturbations
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Universal spectral perturbations
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Examples
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Thanks for hearing listening!


